1
|
Ma L, Ai F, Xiao H, Wang F, Shi L, Bai X, Zhu Y, Ma W. Lycium barbarum polysaccharide reverses drug resistance in oxaliplatin-resistant colon cancer cells by inhibiting PI3K/AKT-dependent phosphomannose isomerase. Front Pharmacol 2024; 15:1367747. [PMID: 38576495 PMCID: PMC10991850 DOI: 10.3389/fphar.2024.1367747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Objective: Here, we aimed to explore the effect of LBP in combination with Oxaliplatin (OXA) on reversing drug resistance in colon cancer cells through in vitro and in vivo experiments. We also aimed to explore the possible mechanism underlying this effect. Finally, we aimed to determine potential targets of Lycium barbarum polysaccharide (LBP) in colon cancer (CC) through network pharmacology and molecular docking. Methods: The invasion ability of colon cancer cells was assessed using the invasion assay. The migration ability of these cells was assessed using the migration assay and wound healing assay. Cell cycle analysis was carried out using flow cytometry. The expression levels of phosphomannose isomerase (PMI) and ATP-binding cassette transport protein of G2 (ABCG2) proteins were determined using immunofluorescence and western blotting. The expression levels of phosphatidylinositol3-kinase (PI3K), protein kinase B (AKT), B-cell lymphoma 2 (Bcl-2), and BCL2-Associated X (Bax) were determined using western blotting. Forty BALB/c nude mice purchased from Weitong Lihua, Beijing, for the in vivo analyses. The mice were randomly divided into eight groups. They were administered HCT116 and HCT116-OXR cells to prepare colon cancer xenograft models and then treated with PBS, LBP (50 mg/kg), OXA (10 mg/kg), or LBP + OXA (50 mg/kg + 10 mg/kg). The tumor weight and volume of treated model mice were measured, and organ toxicity was evaluated using hematoxylin and eosin staining. The expression levels of PMI, ABCG2, PI3K, and AKT proteins were then assessed using immunohistochemistry. Moreover, PMI and ABCG2 expression levels were analyzed using immunofluorescence and western blotting. The active components and possible targets of LBP in colon cancer were explored using in silico analysis. GeneCards was used to identify CC targets, and an online Venn analysis tool was used to determine intersection targets between these and LBP active components. The PPI network for intersection target protein interactions and the PPI network for interactions between the intersection target proteins and PMI was built using STRING and Cytoscape. To obtain putative targets of LBP in CC, we performed GO function enrichment and KEGG pathway enrichment analyses. Results: Compared with the HCT116-OXR blank treatment group, both invasion and migration abilities of HCT116-OXR cells were inhibited in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group (p < 0.05). Cells in the LBP + OXA (2.5 mg/mL LBP, 10 μΜ OXA) group were found to arrest in the G1 phase of the cell cycle. Knockdown of PMI was found to downregulate PI3K, AKT, and Bcl-2 (p < 0.05), while it was found to upregulate Bax (p < 0.05). After treatment with L. barbarum polysaccharide, 40 colon cancer subcutaneous tumor models showed a decrease in tumor size. There was no difference in the liver index after LBP treatment (p > 0.05). However, the spleen index decreased in the OXA and LBP + OXA groups (p < 0.05), possibly as a side effect of oxaliplatin. Immunohistochemistry, immunofluorescence, and western blotting showed that LBP + OXA treatment decreased PMI and ABCG2 expression levels (p < 0.05). Moreover, immunohistochemistry showed that LBP + OXA treatment decreased the expression levels of PI3K and AKT (p < 0.05). Network pharmacology analysis revealed 45 active LBP components, including carotenoids, phenylpropanoids, quercetin, xanthophylls, and other polyphenols. It also revealed 146 therapeutic targets of LBP, including AKT, SRC, EGFR, HRAS, STAT3, and MAPK3. KEGG pathway enrichment analysis showed that the LBP target proteins were enriched in pathways, including cancer-related signaling pathways, PI3K/AKT signaling pathway, and IL-17 signaling pathways. Finally, molecular docking experiments revealed that the active LBP components bind well with ABCG2 and PMI. conclusion: Our in vitro experiments showed that PMI knockdown downregulated PI3K, AKT, and Bcl-2 and upregulated Bax. This finding confirms that PMI plays a role in drug resistance by regulating the PI3K/AKT pathway and lays a foundation to study the mechanism underlying the reversal of colon cancer cell drug resistance by the combination of LBP and OXA. Our in vivo experiments showed that LBP combined with oxaliplatin could inhibit tumor growth. LBP showed no hepatic or splenic toxicity. LBP combined with oxaliplatin could downregulate the expression levels of PMI, ABCG2, PI3K, and AKT; it may thus have positive significance for the treatment of advanced metastatic colon cancer. Our network pharmacology analysis revealed the core targets of LBP in the treatment of CC as well as the pathways they are enriched in. It further verified the results of our in vitro and in vivo experiments, showing the involvement of multi-component, multi-target, and multi-pathway synergism in the drug-reversing effect of LBP in CC. Overall, the findings of the present study provide new avenues for the future clinical treatment of CC.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Fangfang Ai
- Key Laboratory of Ningxia Ethnomedicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongyan Xiao
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Fang Wang
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Lei Shi
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuehong Bai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yongzhao Zhu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Wenping Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
2
|
Woodley K, Dillingh LS, Giotopoulos G, Madrigal P, Rattigan KM, Philippe C, Dembitz V, Magee AMS, Asby R, van de Lagemaat LN, Mapperley C, James SC, Prehn JHM, Tzelepis K, Rouault-Pierre K, Vassiliou GS, Kranc KR, Helgason GV, Huntly BJP, Gallipoli P. Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death. Nat Commun 2023; 14:2132. [PMID: 37059720 PMCID: PMC10104861 DOI: 10.1038/s41467-023-37652-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Resistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR). This in turn leads to cellular accumulation of polyunsaturated fatty acids, lipid peroxidation and ferroptotic cell death in AML cells. Our findings provide further support to the role of rewired metabolism in AML therapy resistance, unveil a connection between two apparently independent metabolic pathways and support further efforts to achieve eradication of therapy-resistant AML cells by sensitizing them to ferroptotic cell death.
Collapse
Affiliation(s)
- Keith Woodley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Laura S Dillingh
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Pedro Madrigal
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Hinxton, CB10 1SD, UK
| | - Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Céline Philippe
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Aoife M S Magee
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ryan Asby
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Louie N van de Lagemaat
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christopher Mapperley
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sophie C James
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Konstantinos Tzelepis
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, University of Cambridge, Cambridge, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George S Vassiliou
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kamil R Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Brian J P Huntly
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Wang Y, Xie S, He B. Mannose shows antitumour properties against lung cancer via inhibiting proliferation, promoting cisplatin‑mediated apoptosis and reducing metastasis. Mol Med Rep 2020; 22:2957-2965. [PMID: 32700756 PMCID: PMC7453596 DOI: 10.3892/mmr.2020.11354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023] Open
Abstract
It has been reported that mannose exerts antitumour effects against certain types of cancer. The present study was designed to evaluate whether mannose exerted potential anticancer effects on A549 and H1299 non-small cell lung cancer (NSCLC) cells in vitro, which has not been reported previously. A Cell Counting Kit-8 cell viability assay was used to assess the antiproliferative effects of mannose on NSCLC cells. Flow cytometry-based methods were used to evaluate the effects of mannose on the cell cycle distribution and cisplatin-mediated apoptosis of NSCLC cells. Transwell migration and invasion assays were conducted to examine whether mannose could inhibit the invasive abilities of NSCLC cells. The effects of mannose on the PI3K/AKT and ERK signalling pathways were explored through western blot analysis assessing the expression of phosphorylated (p)-AKT and p-ERK1/2. It was found that mannose showed potential anticancer effects against NSCLC cells in vitro by inhibiting proliferation, inducing G0/G1 cell cycle arrest, promoting cisplatin-induced apoptosis and decreasing the invasive abilities. These data indicate the potential anticancer properties of mannose and suggest the application of mannose-based therapies to treat NSCLC.
Collapse
Affiliation(s)
- Youyu Wang
- Department of Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Bin He
- Department of Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
4
|
Luo Q, Li B, Li G. Mannose Suppresses the Proliferation and Metastasis of Lung Cancer by Targeting the ERK/GSK-3β/β-Catenin/SNAIL Axis. Onco Targets Ther 2020; 13:2771-2781. [PMID: 32308412 PMCID: PMC7135191 DOI: 10.2147/ott.s241816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION It has been found that mannose exerts antitumoural properties in vitro and in animal models. Whether mannose has potential anti-proliferative and anti-metastatic properties against non-small-cell lung cancer (NSCLC) is still unclear. METHODS Here, we performed ex vivo experiments and established a nude mouse model to evaluate the anticancer effects of mannose on NSCLC cells and its effects on the ERK/GSK-3β/β-catenin/SNAIL axis. A CCK-8 assay was conducted to evaluate the effects of mannose on lung cancer cells (A549 and HCC827) and normal lung cells (HPAEpiC). Transwells were used to examine the motility of cancer cells. qRT-PCR was used to evaluate the effects of mannose on the mRNA expression of β-catenin. Western blotting was conducted to explore the effects of mannose on the ERK/GSK-3β/β-catenin/SNAIL axis and nuclear accumulation of β-catenin. An animal model was established to evaluate the antitumoural effect of mannose on hepatic metastasis in vivo. RESULTS In this study, we found that mannose inhibited the proliferation of A549 and HCC827 cells in vitro both time- and dose-dependently. However, it exerted only a slight influence on the viability of normal lung cells in vitro. Moreover, mannose also inhibited the migrating and invading capacity of NSCLC cells in vitro. Using Western blotting, we observed that mannose reduced SNAIL and β-catenin expression and ERK activation and promoted phospho-GSK-3β expression. The ERK agonist LM22B-10 promoted the metastatic ability of NSCLC cells and increased SNAIL and β-catenin expression in cancer cells, which could be reversed by mannose. Furthermore, ERK-mediated phosphorylation of the β-catenin-Tyr654 residue might participate in the nuclear accumulation of β-catenin and its transcriptional function. The results from animal experiments showed that mannose effectively reduced hepatic metastasis of A549 cells in vivo. Furthermore, mannose inhibited ERK/GSK-3β/β-catenin/SNAIL in tumour tissues obtained from nude mice. DISCUSSION Collectively, these findings suggest that mannose exerts anti-metastatic activity against NSCLC by inhibiting the activation of the ERK/GSK-3β/β-catenin/SNAIL axis, which indicates the potential anticancer effects of mannose.
Collapse
Affiliation(s)
- Qingsong Luo
- Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan610072, People’s Republic of China
| | - Bei Li
- Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan610072, People’s Republic of China
| | - Gang Li
- Thoracic Surgery, Sichuan Academy Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan610072, People’s Republic of China
| |
Collapse
|
5
|
Footprints of natural selection at the mannose-6-phosphate isomerase locus in barnacles. Proc Natl Acad Sci U S A 2020; 117:5376-5385. [PMID: 32098846 PMCID: PMC7071928 DOI: 10.1073/pnas.1918232117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rocky intertidal is a natural laboratory to study how natural selection acts on the genes and proteins responsible for organismal survival and reproduction. Alternative forms of enzymes that differ across the intertidal have been known for decades and have provided examples of selection, but the genetic basis of such enzyme variation is known in only a few cases. In this paper, we present molecular evidence of natural selection at the Mpi gene, a key enzyme in energy metabolism that alters survival of barnacles living across the stress gradient imposed by the intertidal. Our study demonstrates how natural selection can facilitate survival in highly heterogeneous environments through the maintenance of multiple molecular solutions to ecological stresses. The mannose-6-phosphate isomerase (Mpi) locus in Semibalanus balanoides has been studied as a candidate gene for balancing selection for more than two decades. Previous work has shown that Mpi allozyme genotypes (fast and slow) have different frequencies across Atlantic intertidal zones due to selection on postsettlement survival (i.e., allele zonation). We present the complete gene sequence of the Mpi locus and quantify nucleotide polymorphism in S. balanoides, as well as divergence to its sister taxon Semibalanus cariosus. We show that the slow allozyme contains a derived charge-altering amino acid polymorphism, and both allozyme classes correspond to two haplogroups with multiple internal haplotypes. The locus shows several footprints of balancing selection around the fast/slow site: an enrichment of positive Tajima’s D for nonsynonymous mutations, an excess of polymorphism, and a spike in the levels of silent polymorphism relative to silent divergence, as well as a site frequency spectrum enriched for midfrequency mutations. We observe other departures from neutrality across the locus in both coding and noncoding regions. These include a nonsynonymous trans-species polymorphism and a recent mutation under selection within the fast haplogroup. The latter suggests ongoing allelic replacement of functionally relevant amino acid variants. Moreover, predicted models of Mpi protein structure provide insight into the functional significance of the putatively selected amino acid polymorphisms. While footprints of selection are widespread across the range of S. balanoides, our data show that intertidal zonation patterns are variable across both spatial and temporal scales. These data provide further evidence for heterogeneous selection on Mpi.
Collapse
|
6
|
Lania G, Nanayakkara M, Maglio M, Auricchio R, Porpora M, Conte M, De Matteis MA, Rizzo R, Luini A, Discepolo V, Troncone R, Auricchio S, Barone MV. Constitutive alterations in vesicular trafficking increase the sensitivity of cells from celiac disease patients to gliadin. Commun Biol 2019; 2:190. [PMID: 31123714 PMCID: PMC6527696 DOI: 10.1038/s42003-019-0443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Celiac Disease (CD) is an autoimmune disease characterized by inflammation of the intestinal mucosa due to an immune response to wheat gliadins. Some gliadin peptides (e.g., A-gliadin P57-68) induce an adaptive Th1 pro-inflammatory response. Other gliadin peptides (e.g., A-gliadin P31-43) induce a stress/innate immune response involving interleukin 15 (IL15) and interferon α (IFN-α). In the present study, we describe a stressed/inflamed celiac cellular phenotype in enterocytes and fibroblasts probably due to an alteration in the early-recycling endosomal system. Celiac cells are more sensitive to the gliadin peptide P31-43 and IL15 than controls. This phenotype is reproduced in control cells by inducing a delay in early vesicular trafficking. This constitutive lesion might mediate the stress/innate immune response to gliadin, which can be one of the triggers of the gliadin-specific T-cell response.
Collapse
Affiliation(s)
- Giuliana Lania
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Merlin Nanayakkara
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariangela Conte
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Antonietta De Matteis
- Department of Molecular Medicine and Medical Biotechnology, University of Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry—IBP-CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Valentina Discepolo
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Baro M, Lopez Sambrooks C, Quijano A, Saltzman WM, Contessa J. Oligosaccharyltransferase Inhibition Reduces Receptor Tyrosine Kinase Activation and Enhances Glioma Radiosensitivity. Clin Cancer Res 2018; 25:784-795. [PMID: 29967251 DOI: 10.1158/1078-0432.ccr-18-0792] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/21/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Parallel signaling reduces the effects of receptor tyrosine kinase (RTK)-targeted therapies in glioma. We hypothesized that inhibition of protein N-linked glycosylation, an endoplasmic reticulum co- and posttranslational modification crucial for RTK maturation and activation, could provide a new therapeutic approach for glioma radiosensitization.Experimental Design: We investigated the effects of a small-molecule inhibitor of the oligosaccharyltransferase (NGI-1) on EGFR family receptors, MET, PDGFR, and FGFR1. The influence of glycosylation state on tumor cell radiosensitivity, chemotherapy-induced cell toxicity, DNA damage, and cell-cycle arrest were determined and correlated with glioma cell receptor expression profiles. The effects of NGI-1 on xenograft tumor growth were tested using a nanoparticle formulation validated by in vivo molecular imaging. A mechanistic role for RTK signaling was evaluated through the expression of a glycosylation-independent CD8-EGFR chimera. RESULTS NGI-1 reduced glycosylation, protein levels, and activation of most RTKs. NGI-1 also enhanced the radiosensitivity and cytotoxic effects of chemotherapy in those glioma cells with elevated ErbB family activation, but not in cells without high levels of RTK activation. NGI-1 radiosensitization was associated with increases in both DNA damage and G1 cell-cycle arrest. Combined treatment of glioma xenografts with fractionated radiotherapy and NGI-1 significantly reduced tumor growth compared with controls. Expression of the CD8-EGFR eliminated the effects of NGI-1 on G1 arrest, DNA damage, and cellular radiosensitivity, identifying RTK inhibition as the principal mechanism for the NGI-1 effect. CONCLUSIONS This study suggests that oligosaccharyltransferase inhibition with NGI-1 is a novel approach to radiosensitize malignant gliomas with enhanced RTK signaling.See related commentary by Wahl and Lawrence, p. 455.
Collapse
Affiliation(s)
- Marta Baro
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | | | - Amanda Quijano
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut. .,Department of Pharmacology, Yale University, New Haven, Connecticut
| |
Collapse
|
8
|
Bennett DC, Cazet A, Charest J, Contessa JN. MPDU1 regulates CEACAM1 and cell adhesion in vitro and in vivo. Glycoconj J 2018; 35:265-274. [PMID: 29671116 DOI: 10.1007/s10719-018-9819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
N-linked glycosylation (NLG) is a co-translational modification that is essential for the folding, stability, and trafficking of transmembrane (TM) and secretory glycoproteins. Efficient NLG requires the stepwise synthesis and en bloc transfer of a 14-sugar carbohydrate known as a lipid-linked oligosaccharide (LLO). The genetics of LLO biosynthesis have been established in yeast and Chinese hamster systems, but human models of LLO biosynthesis are lacking. In this study we report that Kato III human gastric cancer cells represent a model of deficient LLO synthesis, possessing a homozygous deletion of the LLO biosynthesis factor, MPDU1. Kato III cells lacking MPDU1 have all the hallmarks of a glycosylation-deficient cell line, including altered sensitivity to lectins and the formation of truncated LLOs. Analysis of transcription using an expression microarray and protein levels using a proteome antibody array reveal changes in the expression of several membrane proteins, including the metalloprotease ADAM-15 and the cell adhesion molecule CEACAM1. Surprisingly, the restoration of MPDU1 expression in Kato III cells demonstrated a clear phenotype of increased cell-cell adhesion, a finding that was confirmed in vivo through analysis of tumor xenografts. These experiments also confirmed that protein levels of CEACAM-1, which functions in cell adhesion, is dependent on LLO biosynthesis in vivo. Kato III cells and the MPDU1-rescued Kato IIIM cells therefore provide a novel model to examine the consequences of defective LLO biosynthesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Daniel C Bennett
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Aurelie Cazet
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jon Charest
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
9
|
Ferreira IG, Pucci M, Venturi G, Malagolini N, Chiricolo M, Dall'Olio F. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling. Int J Mol Sci 2018; 19:ijms19020580. [PMID: 29462882 PMCID: PMC5855802 DOI: 10.3390/ijms19020580] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1) by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2) through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3) by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.
Collapse
Affiliation(s)
- Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), General Pathology Building, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Jiang H, López-Aguilar A, Meng L, Gao Z, Liu Y, Tian X, Yu G, Ovryn B, Moremen KW, Wu P. Modulating Cell-Surface Receptor Signaling and Ion Channel Functions by In Situ Glycan Editing. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201706535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education and Qingdao National Laboratory for Marine Science & Technology and Shandong Provincial Key Lab of Glycoscience & Glycoengineering, School of Medicine and Pharmacy; Ocean University of China; 5 Yushan Road Qingdao 266003 China
| | - Aimé López-Aguilar
- Department of Molecular Medicine; The Scripps Research Institute; 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Lu Meng
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology; University of Georgia; 315 Riverbend Road Athens GA 30602 USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology; University of Georgia; 315 Riverbend Road Athens GA 30602 USA
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy; Qingdao University; 38 Dengzhou Road Qingdao 266021 China
| | - Xiao Tian
- Key Laboratory of Marine Drugs, Ministry of Education and Qingdao National Laboratory for Marine Science & Technology and Shandong Provincial Key Lab of Glycoscience & Glycoengineering, School of Medicine and Pharmacy; Ocean University of China; 5 Yushan Road Qingdao 266003 China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education and Qingdao National Laboratory for Marine Science & Technology and Shandong Provincial Key Lab of Glycoscience & Glycoengineering, School of Medicine and Pharmacy; Ocean University of China; 5 Yushan Road Qingdao 266003 China
| | - Ben Ovryn
- Department of Molecular Medicine; The Scripps Research Institute; 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology; University of Georgia; 315 Riverbend Road Athens GA 30602 USA
| | - Peng Wu
- Department of Molecular Medicine; The Scripps Research Institute; 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
11
|
Jiang H, López-Aguilar A, Meng L, Gao Z, Liu Y, Tian X, Yu G, Ovryn B, Moremen KW, Wu P. Modulating Cell-Surface Receptor Signaling and Ion Channel Functions by In Situ Glycan Editing. Angew Chem Int Ed Engl 2018; 57:967-971. [PMID: 29292859 DOI: 10.1002/anie.201706535] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/24/2017] [Indexed: 12/23/2022]
Abstract
Glycans anchored on cell-surface receptors are active modulators of receptor signaling. A strategy is presented that enforces transient changes to cell-surface glycosylation patterns to tune receptor signaling. This approach, termed in situ glycan editing, exploits recombinant glycosyltransferases to incorporate monosaccharides with linkage specificity onto receptors in situ. α2,3-linked sialic acid or α1,3-linked fucose added in situ suppresses signaling through epidermal growth factor receptor and fibroblast growth factor receptor. We also applied the same strategy to regulate the electrical signaling of a potassium ion channel-human ether-à-go-go-related gene channel. Compared to gene editing, no long-term perturbations are introduced to the treated cells. In situ glycan editing therefore offers a promising approach for studying the dynamic role of specific glycans in membrane receptor signaling and ion channel functions.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education and Qingdao National Laboratory for Marine Science & Technology and Shandong Provincial Key Lab of Glycoscience & Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Aimé López-Aguilar
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Lu Meng
- Complex Carbohydrate Research Center and Department of, Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center and Department of, Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Xiao Tian
- Key Laboratory of Marine Drugs, Ministry of Education and Qingdao National Laboratory for Marine Science & Technology and Shandong Provincial Key Lab of Glycoscience & Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education and Qingdao National Laboratory for Marine Science & Technology and Shandong Provincial Key Lab of Glycoscience & Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Ben Ovryn
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center and Department of, Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Shtraizent N, DeRossi C, Nayar S, Sachidanandam R, Katz LS, Prince A, Koh AP, Vincek A, Hadas Y, Hoshida Y, Scott DK, Eliyahu E, Freeze HH, Sadler KC, Chu J. MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. eLife 2017. [PMID: 28644127 PMCID: PMC5495572 DOI: 10.7554/elife.22477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to maintain Warburg metabolism in zebrafish embryos and in both primary and malignant mammalian cells. The functional consequences of MPI loss are striking: glycolysis is blocked and cells die. These phenotypes are caused by induction of p53 and accumulation of the glycolytic intermediate fructose 6-phosphate, leading to engagement of the hexosamine biosynthetic pathway (HBP), increased O-GlcNAcylation, and p53 stabilization. Inhibiting the HBP through genetic and chemical methods reverses p53 stabilization and rescues the Mpi-deficient phenotype. This work provides mechanistic evidence by which MPI loss induces p53, and identifies MPI as a novel regulator of p53 and Warburg metabolism. DOI:http://dx.doi.org/10.7554/eLife.22477.001
Collapse
Affiliation(s)
- Nataly Shtraizent
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Shikha Nayar
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Liora S Katz
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Adam Prince
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anna P Koh
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Adam Vincek
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yujin Hoshida
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Donald K Scott
- Department of Medicine, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Kirsten C Sadler
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|