1
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Suzuki T, Takagi S, Funada J, Egawa Y, Yamakawa M, Hara T. DDX1 is required for non-spliceosomal splicing of tRNAs but not of XBP1 mRNA. Commun Biol 2025; 8:92. [PMID: 39833356 PMCID: PMC11747266 DOI: 10.1038/s42003-025-07523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
RNA helicase DEAD-box helicase 1 (DDX1) forms a complex with the RNA ligase 2´,3´-cyclic phosphate and 5´-OH ligase (RTCB), which plays a vital role in non-spliceosomal splicing of tRNA and X-box binding protein 1 (XBP1) mRNA. However, the importance of DDX1 in non-spliceosomal splicing has not been clarified. To analyze the functions of DDX1 in mammalian cells, we generated DDX1 cKO cells from the polyploid human U2OS cell line and found that splicing of intron-containing tRNAs was significantly disturbed in DDX1-deficient cells, whereas endoplasmic reticulum (ER) stress-induced splicing of XBP1 mRNA was unaffected. Additionally, the enforced expression of DDX1, but not of its helicase-inactive mutant, rescued the splicing defects of tRNAs in DDX1-deficient cells. These results indicate that RTCB is required for the splicing of both tRNA and XBP1 mRNA, whereas the DDX1 enzymatic activity is specifically required for tRNA splicing in vivo.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Satoko Takagi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Junta Funada
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Yuka Egawa
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Mana Yamakawa
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
3
|
Wang Y, Kazuki K, Hichiwa G, Hiratsuka M, Ogihara R, Abe S, Tu H, Li Y, Gao X, Oshimura M, Tomizuka K, Kazuki Y. Human artificial chromosome carrying R-spondin1 and IL-22 expression cassettes in rejuvenated MSCs enhances therapeutic efficacy in ulcerative colitis model mice. Biomed Pharmacother 2025; 182:117751. [PMID: 39693903 DOI: 10.1016/j.biopha.2024.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Ulcerative colitis (UC) is an incurable intestinal disease, with current treatments mainly focused on inflammation control and, in severe cases, surgical resection. Recent studies have highlighted the need for new therapies that promote tissue regeneration. R-spondin-1 (RSPO1) and interleukin-22 (IL-22) have shown anti-inflammatory and regenerative effects in UC models, but have short half-lives and poor targeting abilities. Another therapeutic tool, mesenchymal stem cells (MSCs), offer promising migratory and homing capabilities; however, the preparation of homogeneous therapeutic MSCs at sufficient levels in vitro is challenging. Therefore, we developed a novel line of MSCs (HAC-MSC) with significant therapeutic effects in dextran sodium sulfate (DSS)-induced colitis mice. Construction of HAC-MSC involved a two-part strategy: 1) establishment of a non-integrating human artificial chromosome (HAC) vector carrying therapeutic genes encoding IL22 and RSPO1; and 2) transfer of the HAC to previously characterized rejuvenated MSCs (rej-MSCs) prepared using Sendai virus technology for prolonged proliferation capacity in vitro. HAC-MSC stably and efficiently produced therapeutic factors in vitro and, following intraperitoneal administration to DSS-induced colitis mice, showed continuous expression of the therapeutic factors over 5 days. Additionally, HAC-MSC-treated mice showed alleviation of the disease activity index score, reduced depth of injury, and promotion of intestinal growth compared with MSC-treated mice. Furthermore, effective treatment with HAC-MSC required only a fraction (1 %-10 %) of the number of cells needed for conventional MSC therapy. These findings highlight the outstanding potential of rej-MSCs carrying therapeutic factor-loaded HACs as a cell therapy tool with prospective applications in the treatment of UC and other diseases.
Collapse
Affiliation(s)
- Yayan Wang
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Genki Hichiwa
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Masaharu Hiratsuka
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Ryohei Ogihara
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Haochen Tu
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Mitsuo Oshimura
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
4
|
Suzuki T, Takagi S, Hara T. Multiple Gene Transfer and All-In-One Conditional Knockout Systems in Mouse Embryonic Stem Cells for Analysis of Gene Function. Front Cell Dev Biol 2022; 10:870629. [PMID: 35419367 PMCID: PMC8995969 DOI: 10.3389/fcell.2022.870629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) are powerful tools for functional analysis of stem cell-related genes; however, complex gene manipulations, such as locus-targeted introduction of multiple genes and conditional gene knockout conditional knockout, are technically difficult. Here, we review recent advances in technologies aimed at generating cKO clones in ESCs, including two new methods developed in our laboratory: the simultaneous or sequential integration of multiple genes system for introducing an unlimited number of gene cassettes into a specific chromosomal locus using reciprocal recombinases; and the all-in-one cKO system, which enables introduction of an EGFP reporter expression cassette and FLAG-tagged gene of interest under an endogenous promoter. In addition, methods developed in other laboratories, including conventional approaches to establishment of cKO cell clones, inducible Cas9-mediated cKO generation, and cKO assisted by reporter construct, invertible gene-trap cassette, and conditional protein degradation. Finally, we discuss the advantages of each approach, as well as the remaining issues and challenges.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoko Takagi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
5
|
Uno N, Takata S, Komoto S, Miyamoto H, Nakayama Y, Osaki M, Mayuzumi R, Miyazaki N, Hando C, Abe S, Sakuma T, Yamamoto T, Suzuki T, Nakajima Y, Oshimura M, Tomizuka K, Kazuki Y. Panel of human cell lines with human/mouse artificial chromosomes. Sci Rep 2022; 12:3009. [PMID: 35194085 PMCID: PMC8863800 DOI: 10.1038/s41598-022-06814-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) are non-integrating chromosomal gene delivery vectors for molecular biology research. Recently, microcell-mediated chromosome transfer (MMCT) of HACs/MACs has been achieved in various human cells that include human immortalised mesenchymal stem cells (hiMSCs) and human induced pluripotent stem cells (hiPSCs). However, the conventional strategy of gene introduction with HACs/MACs requires laborious and time-consuming stepwise isolation of clones for gene loading into HACs/MACs in donor cell lines (CHO and A9) and then transferring the HAC/MAC into cells via MMCT. To overcome these limitations and accelerate chromosome vector-based functional assays in human cells, we established various human cell lines (HEK293, HT1080, hiMSCs, and hiPSCs) with HACs/MACs that harbour a gene-loading site via MMCT. Model genes, such as tdTomato, TagBFP2, and ELuc, were introduced into these preprepared HAC/MAC-introduced cell lines via the Cre-loxP system or simultaneous insertion of multiple gene-loading vectors. The model genes on the HACs/MACs were stably expressed and the HACs/MACs were stably maintained in the cell lines. Thus, our strategy using this HAC/MAC-containing cell line panel has dramatically simplified and accelerated gene introduction via HACs/MACs.
Collapse
Affiliation(s)
- Narumi Uno
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, Faculty of Medicine, School of Life Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiohji, Tokyo, 192-0392, Japan.
| | - Shuta Takata
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, Faculty of Medicine, School of Life Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Shinya Komoto
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, Faculty of Medicine, School of Life Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hitomaru Miyamoto
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, Faculty of Medicine, School of Life Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yuji Nakayama
- Division of Radioisotope Science, Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
- Division of Experimental Pathology, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8503, Japan
| | - Ryota Mayuzumi
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiohji, Tokyo, 192-0392, Japan
| | - Natsumi Miyazaki
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiohji, Tokyo, 192-0392, Japan
| | - Chiaki Hando
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiohji, Tokyo, 192-0392, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, 761-0395, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiohji, Tokyo, 192-0392, Japan
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, Faculty of Medicine, School of Life Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
6
|
Lee NCO, Petrov NS, Larionov V, Kouprina N. Assembly of Multiple Full-Size Genes or Genomic DNA Fragments on Human Artificial Chromosomes Using the Iterative Integration System. Curr Protoc 2021; 1:e316. [PMID: 34919348 PMCID: PMC8730363 DOI: 10.1002/cpz1.316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human artificial chromosomes (HACs) are gene delivery vectors that have been used for decades for gene functional studies. HACs have several advantages over viral‐based gene transfer systems, including stable episomal maintenance in a single copy in the cell and the ability to carry up to megabase‐sized genomic DNA segments. We have previously developed the alphoidtetO‐HAC, which has a single gene acceptor loxP site that allows insertion of an individual gene of interest using Chinese hamster ovary (CHO) hybrid cells. The HAC, along with a DNA segment of interest, can then be transferred from donor CHO cells to various recipient cells of interest via microcell‐mediated chromosome transfer (MMCT). Here, we detail a protocol for loading multiple genomic DNA segments or genes into the alphoidtetO‐HAC vector using an iterative integration system (IIS) that utilizes recombinases Cre, ΦC31, and ΦBT. This IIS‐alphoidtetO‐HAC can be used for either serially assembling genomic loci or fragments of a large gene, or for inserting multiple genes into the same artificial chromosome. The insertions are executed iteratively, whereby each round results in the insertion of a new DNA segment of interest. This is accompanied by changes of expression of marker fluorescent proteins, which simplifies screening of correct clones, and changes of selection and counterselection markers, which constitutes an error‐proofing mechanism that removes mis‐incorporated DNA segments. In addition, the IIS‐alphoidtetO‐HAC carrying the genes can be eliminated from the cells, offering the possibility to compare the phenotypes of human cells with and without functional copies of the genes of interest. The resulting HAC molecules may be used to investigate biomedically relevant pathways or the regulation of multiple genes, and to potentially engineer synthetic chromosomes with a specific set of genes of interest. The IIS‐alphoidtetO‐HAC system is expected to be beneficial in creating multiple‐gene humanized models with the purpose of understanding complex multi‐gene genetic disorders. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Integration of the first DNA segment of interest into the IIS‐alphoidteto‐HAC Basic Protocol 2: Integration of a second DNA segment of interest into the IIS‐alphoidteto‐HAC Basic Protocol 3: Integration of a third DNA segment of interest into the IIS‐alphoidteto‐HAC Support Protocol: Fluorescence in situ hybridization analysis for the circular IIS‐alphoidtetO‐HAC
Collapse
Affiliation(s)
- Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nikolai S Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Construction of stable mouse artificial chromosome from native mouse chromosome 10 for generation of transchromosomic mice. Sci Rep 2021; 11:20050. [PMID: 34625612 PMCID: PMC8501010 DOI: 10.1038/s41598-021-99535-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.
Collapse
|
8
|
Liskovykh M, Larionov V, Kouprina N. Highly Efficient Microcell-Mediated Transfer of HACs Containing a Genomic Region of Interest into Mammalian Cells. Curr Protoc 2021; 1:e236. [PMID: 34491634 PMCID: PMC10758282 DOI: 10.1002/cpz1.236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human artificial chromosomes (HACs) are considered promising tools for gene delivery, functional analyses, and gene therapy. HACs have the potential to overcome many of the problems caused by the use of viral-based gene transfer systems, such as limited cloning capacity, lack of copy number control, and insertional mutagenesis during integration into host chromosomes. The recently developed alphoidtetO -HAC has an advantage over other HAC vectors because it can be easily eliminated from dividing cells by inactivation of its conditional kinetochore. This provides a unique control mechanism to study phenotypes induced by a gene or genes carried on the HAC. The alphoidtetO -HAC has a single gene acceptor loxP site that allows insertion of an individual gene of interest or a cluster of genes of up to several Mb in size in Chinese hamster ovary (CHO) hybrid cells. The HACs carrying chromosomal copies of genes can then be transferred from these donor CHO cells to different recipient cells of interest via microcell-mediated chromosome transfer (MMCT). Here, we describe a detailed protocol for loading a gene of interest into the alphoidtetO -HAC vector and for the subsequent transfer of the HAC to recipient cells using an improved MMCT protocol. The original MMCT protocol includes treatment of donor cells with colcemid to induce micronucleation, wherein the HAC becomes surrounded with a nuclear membrane. That step is followed by disarrangement of the actin cytoskeleton using cytochalasin B to help induce microcell formation. The updated MMCT protocol, described here, features the replacement of colcemid and cytochalasin B with TN16 + griseofulvin and latrunculin B, respectively, and the use of collagen/laminin surface coating to promote attachment of metaphase cells to plates during micronuclei induction. These modifications increase the efficiency of HAC transfer to recipient cells ten fold. The improved MMCT protocol has been successfully tested on several recipient cell lines, including human mesenchymal stem cells and mouse embryonic stem cells. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Insertion of a BAC containing a gene of interest into a single loxP loading site of alphoidtetO -HAC in hamster CHO cells Basic Protocol 2: Microcell-mediated chromosome transfer from donor hamster CHO cells to mammalian cells.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Patel YD, Brown AJ, Zhu J, Rosignoli G, Gibson SJ, Hatton D, James DC. Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters. ACS Synth Biol 2021; 10:1155-1165. [PMID: 33939428 PMCID: PMC8296667 DOI: 10.1021/acssynbio.0c00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/22/2023]
Abstract
To successfully engineer mammalian cells for a desired purpose, multiple recombinant genes are required to be coexpressed at a specific and optimal ratio. In this study, we hypothesized that synthetic promoters varying in transcriptional activity could be used to create single multigene expression vectors coexpressing recombinant genes at a predictable relative stoichiometry. A library of 27 multigene constructs was created comprising three discrete fluorescent reporter gene transcriptional units in fixed series, each under the control of either a relatively low, medium, or high transcriptional strength synthetic promoter in every possible combination. Expression of each reporter gene was determined by absolute quantitation qRT-PCR in CHO cells. The synthetic promoters did generally function as designed within a multigene vector context; however, significant divergences from predicted promoter-mediated transcriptional activity were observed. First, expression of all three genes within a multigene vector was repressed at varying levels relative to coexpression of identical reporter genes on separate single gene vectors at equivalent gene copies. Second, gene positional effects were evident across all constructs where expression of the reporter genes in positions 2 and 3 was generally reduced relative to position 1. Finally, after accounting for general repression, synthetic promoter transcriptional activity within a local multigene vector format deviated from that expected. Taken together, our data reveal that mammalian synthetic promoters can be employed in vectors to mediate expression of multiple genes at predictable relative stoichiometries. However, empirical validation of functional performance is a necessary prerequisite, as vector and promoter design features can significantly impact performance.
Collapse
Affiliation(s)
- Yash D. Patel
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Adam J. Brown
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Jie Zhu
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Guglielmo Rosignoli
- Dynamic
Omics, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Suzanne J. Gibson
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Diane Hatton
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - David C. James
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| |
Collapse
|
10
|
Suzuki T, Katada E, Mizuoka Y, Takagi S, Kazuki Y, Oshimura M, Shindo M, Hara T. A novel all-in-one conditional knockout system uncovered an essential role of DDX1 in ribosomal RNA processing. Nucleic Acids Res 2021; 49:e40. [PMID: 33503245 PMCID: PMC8053084 DOI: 10.1093/nar/gkaa1296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Generation of conditional knockout (cKO) and various gene-modified cells is laborious and time-consuming. Here, we established an all-in-one cKO system, which enables highly efficient generation of cKO cells and simultaneous gene modifications, including epitope tagging and reporter gene knock-in. We applied this system to mouse embryonic stem cells (ESCs) and generated RNA helicase Ddx1 cKO ESCs. The targeted cells displayed endogenous promoter-driven EGFP and FLAG-tagged DDX1 expression, and they were converted to Ddx1 KO via FLP recombinase. We further established TetFE ESCs, which carried a reverse tetracycline transactivator (rtTA) expression cassette and a tetracycline response element (TRE)-regulated FLPERT2 cassette in the Gt(ROSA26)Sor locus for instant and tightly regulated induction of gene KO. By utilizing TetFE Ddx1F/F ESCs, we isolated highly pure Ddx1F/F and Ddx1−/− ESCs and found that loss of Ddx1 caused rRNA processing defects, thereby activating the ribosome stress–p53 pathway. We also demonstrated cKO of various genes in ESCs and homologous recombination-non-proficient human HT1080 cells. The frequency of cKO clones was remarkably high for both cell types and reached up to 96% when EGFP-positive clones were analyzed. This all-in-one cKO system will be a powerful tool for rapid and precise analyses of gene functions.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Eiji Katada
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuki Mizuoka
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoko Takagi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan.,Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan
| | - Mayumi Shindo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Kazuki Y, Uno N, Abe S, Kajitani N, Kazuki K, Yakura Y, Sawada C, Takata S, Sugawara M, Nagashima Y, Okada A, Hiratsuka M, Osaki M, Ferrari G, Tedesco FS, Nishikawa S, Fukumoto K, Takayanagi SI, Kunisato A, Kaneko S, Oshimura M, Tomizuka K. Engineering of human induced pluripotent stem cells via human artificial chromosome vectors for cell therapy and disease modeling. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:629-639. [PMID: 33552683 PMCID: PMC7819819 DOI: 10.1016/j.omtn.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 02/04/2023]
Abstract
Genetic engineering of induced pluripotent stem cells (iPSCs) holds great promise for gene and cell therapy as well as drug discovery. However, there are potential concerns regarding the safety and control of gene expression using conventional vectors such as viruses and plasmids. Although human artificial chromosome (HAC) vectors have several advantages as a gene delivery vector, including stable episomal maintenance and the ability to carry large gene inserts, the full potential of HAC transfer into iPSCs still needs to be explored. Here, we provide evidence of a HAC transfer into human iPSCs by microcell-mediated chromosome transfer via measles virus envelope proteins for various applications, including gene and cell therapy, establishment of versatile human iPSCs capable of gene loading and differentiation into T cells, and disease modeling for aneuploidy syndrome. Thus, engineering of human iPSCs via desired HAC vectors is expected to be widely applied in biomedical research.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Narumi Uno
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yuwna Yakura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Chiaki Sawada
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Shuta Takata
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Masaki Sugawara
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yuichi Nagashima
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Akane Okada
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Masaharu Hiratsuka
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Satoshi Nishikawa
- Regenerative Medicine Research Laboratories, Research Functions Unit, R&D Division, Kyowa Kirin, Co., Ltd. 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Ken Fukumoto
- Cell Therapy Project, R&D Division, Kirin Holdings, Co., Ltd. 1-13-5, Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Shin-ichiro Takayanagi
- Cell Therapy Project, R&D Division, Kirin Holdings, Co., Ltd. 1-13-5, Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Atsushi Kunisato
- Project Planning Section, Kirin Holdings, Co., Ltd., 4-10-2 Nakano, Nakano-ku, Tokyo 164-0001 Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
12
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cell Mol Life Sci 2021; 78:1207-1220. [PMID: 33011821 PMCID: PMC11072874 DOI: 10.1007/s00018-020-03653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
A novel approach in gene therapy was introduced 20 years ago since artificial non-integrative chromosome-based vectors containing gene loci size inserts were engineered. To date, different human artificial chromosomes (HAC) were generated with the use of de novo construction or "top-down" engineering approaches. The HAC-based therapeutic approach includes ex vivo gene transferring and correction of pluripotent stem cells (PSCs) or highly proliferative modified stem cells. The current progress in the technology of induced PSCs, integrating with the HAC technology, resulted in a novel platform of stem cell-based tissue replacement therapy for the treatment of genetic disease. Nowadays, the sophisticated and laborious HAC technology has significantly improved and is now closer to clinical studies. In here, we reviewed the achievements in the technology of de novo synthesized HACs for a chromosome transfer for developing gene therapy tissue replacement models of monogenic human diseases.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya Emb, St-Petersburg, 199034, Russia.
| |
Collapse
|
13
|
Current advances in microcell-mediated chromosome transfer technology and its applications. Exp Cell Res 2020; 390:111915. [PMID: 32092294 DOI: 10.1016/j.yexcr.2020.111915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Chromosomes and chromosomal gene delivery vectors, human/mouse artificial chromosomes (HACs/MACs), can introduce megabase-order DNA sequences into target cells and are used for applications including gene mapping, gene expression control, gene/cell therapy, and the development of humanized animals and animal models of human disease. Microcell-mediated chromosome transfer (MMCT), which enables chromosome transfer from donor cells to target cells, is a key technology for these applications. In this review, we summarize the principles of gene transfer with HACs/MACs; their engineering, characteristics, and utility; and recent advances in the chromosome transfer technology.
Collapse
|
14
|
Greene A, Pascarelli K, Broccoli D, Perkins E. Engineering Synthetic Chromosomes by Sequential Loading of Multiple Genomic Payloads over 100 Kilobase Pairs in Size. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:463-473. [PMID: 31193384 PMCID: PMC6527818 DOI: 10.1016/j.omtm.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
Gene delivery vehicles currently in the clinic for treatment of monogenic disorders lack sufficient carrying capacity to efficiently address complex polygenic diseases. Thus, to engineer multifaceted genetic circuits for bioengineering human cells as a therapeutic option for polygenic diseases, we require new tools that are currently in their infancy. Mammalian artificial chromosomes, or synthetic chromosomes, represent a viable approach for delivery of large genetic payloads that are mitotically stable and remain independent of the host genome. Previously, we described a mammalian synthetic chromosome platform, termed the ACE system, that requires a single unidirectional integrase for the introduction of multiple genes onto the ACE platform chromosome. In this report, we provide a proof of concept that the ACE synthetic chromosome bioengineering platform is amenable to sequential delivery of off-the-shelf large genomic fragments. Specifically, large genomic clones spanning the human solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1 or GLUT1, 169 kbp), and human monocarboxylate transporter 1 (SLC16A1 or MCT1, 144 kbp) genetic loci were engineered onto the ACE platform and demonstrated to express and correctly splice both gene transcripts. Thus, the ACE system provides a facile and tractable engineering platform for the development of gene-based therapeutic agents targeting polygenic diseases.
Collapse
Affiliation(s)
- Amy Greene
- Department of Medical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- SynPloid Biotek, LLC, Savannah, GA 31404, USA
| | | | - Dominique Broccoli
- Department of Medical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- SynPloid Biotek, LLC, Savannah, GA 31404, USA
| | - Edward Perkins
- Department of Medical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- SynPloid Biotek, LLC, Savannah, GA 31404, USA
- Corresponding author: Edward Perkins, Mercer University School of Medicine, Savannah, GA 31404, USA.
| |
Collapse
|
15
|
Qu L, Wang L, Zhu X, Zhang Y, Ou Q, Ma A, Sheng F, Wei X, Dai Y, Li G, Xie S. Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas 2019; 156:3. [PMID: 30675136 PMCID: PMC6332687 DOI: 10.1186/s41065-018-0079-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/25/2018] [Indexed: 11/22/2022] Open
Abstract
Background ΦC31 integrase, a site-specific recombinase, can efficiently target attB-bearing transgenes to endogenous pseudo attP sites within mammalian genomes. The sequence features of endogenous binding sites will help us to fully understand the site-specific recognition function by ΦC31 integrase. The present study was aimed to uncover the global map of ΦC31 integrase binding sites in bovine cells and analysis the features of these binding sites by comprehensive bioinformatics methods. Results In this study, we constructed a ChIP-seq method that can be used to uncover the global binding sites by phiC31 integrase. 6740 potential ΦC31 integrase binding sites were identified. A sequence motif was found that contains inverted repeats and has similarities to wild-type attP site. Using REPEATMASKER, we identified a total of 20,183 repeat-regions distributed in 50 repeat types for the 6740 binding sites. These sites enriched in “regulation of GTPase activity” of in the GO category of biological process and KEGG pathway of signal transmembrane transporter activity. Conclusion This study is the first time to uncover the global map of binding sites for ΦC31 integrase using ChIP-sequencing method and analysis the features of these binding sites. This method will help us to fully understand the mechanism of the site-specific integration function by phiC31 integrase and will potentially boost its genetic manipulations in both gene therapy and generation of transgenic animals. Electronic supplementary material The online version of this article (10.1186/s41065-018-0079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijuan Qu
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Lei Wang
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Xueyuan Zhu
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Yan Zhang
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Qiang Ou
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Aying Ma
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620 China
| | - Fengying Sheng
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Xiaoqing Wei
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Yue Dai
- Department of Laboratory Medicine, Shanghai Eighth People's Hospital, Shanghai, 200040 China
| | - Guoting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032 China
| | - Shuwu Xie
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032 China
| |
Collapse
|
16
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
17
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
18
|
Uno N, Fujimoto T, Komoto S, Kurosawa G, Sawa M, Suzuki T, Kazuki Y, Oshimura M. A luciferase complementation assay system using transferable mouse artificial chromosomes to monitor protein-protein interactions mediated by G protein-coupled receptors. Cytotechnology 2018; 70:1499-1508. [PMID: 30112660 PMCID: PMC6269364 DOI: 10.1007/s10616-018-0231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven-transmembrane domain receptors that interact with the β-arrestin family, particularly β-arrestin 1 (ARRB1). GPCRs interact with 33% of small molecule drugs. Ligand screening is promising for drug discovery concerning GPCR-related diseases. Luciferase complementation assay (LCA) enables detection of protein–protein complementation via bioluminescence following complementation of N- and C-terminal luciferase fragments (NEluc and CEluc) fused to target proteins, but it is necessary to co-express the two genes. Here, we developed LCAs with mouse artificial chromosomes (MACs) that have unique characteristics such as stable maintenance and a substantial insert-carrying capacity. First, an NEluc-ARRB1 was inserted into MAC4 by Cre-loxP recombination in CHO cells, named ARRB1-MAC4. Second, a parathyroid hormone receptor 2 (PTHR2)-CEluc or prostaglandin EP4 receptor (hEP4)-CEluc were inserted into ARRB1-MAC4, named ARRB1-PTHR2-MAC4 and ARRB1-hEP4-MAC4, respectively, via the sequential integration of multiple vectors (SIM) system. Each MAC was transferred into HEK293 cells by microcell-mediated chromosome transfer (MMCT). LCAs using the established HEK293 cell lines resulted in 35,000 photon counts upon somatostatin stimulation for ARRB1-MAC4 with transient transfection of the somatostatin receptor 2 (SSTR2) expression vector, 1800 photon counts upon parathyroid hormone stimulation for ARRB1-PTHR2-MAC4, and 35,000 photon counts upon prostaglandin E2 stimulation for ARRB1-hEP4-MAC4. These MACs were maintained independently from host chromosomes in CHO and HEK293 cells. HEK293 cells containing ARRB1-PTHR2-MAC4 showed a stable reaction for long-term. Thus, the combination of gene loading by the SIM system into a MAC and an LCA targeting GPCRs provides a novel and useful platform to discover drugs for GPCR-related diseases.
Collapse
Affiliation(s)
- Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Tomohito Fujimoto
- ProbeX, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Shinya Komoto
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Gene Kurosawa
- Department Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masaaki Sawa
- ProbeX, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Research and Development, Carna Biosciences, Inc., 3F BMA, 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
19
|
Honma K, Abe S, Endo T, Uno N, Oshimura M, Ohbayashi T, Kazuki Y. Development of a multiple-gene-loading method by combining multi-integration system-equipped mouse artificial chromosome vector and CRISPR-Cas9. PLoS One 2018; 13:e0193642. [PMID: 29505588 PMCID: PMC5837097 DOI: 10.1371/journal.pone.0193642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/15/2018] [Indexed: 12/02/2022] Open
Abstract
Mouse artificial chromosome (MAC) vectors have several advantages as gene delivery vectors, such as stable and independent maintenance in host cells without integration, transferability from donor cells to recipient cells via microcell-mediated chromosome transfer (MMCT), and the potential for loading a megabase-sized DNA fragment. Previously, a MAC containing a multi-integrase platform (MI-MAC) was developed to facilitate the transfer of multiple genes into desired cells. Although the MI system can theoretically hold five gene-loading vectors (GLVs), there are a limited number of drugs available for the selection of multiple-GLV integration. To overcome this issue, we attempted to knock out and reuse drug resistance genes (DRGs) using the CRISPR-Cas9 system. In this study, we developed new methods for multiple-GLV integration. As a proof of concept, we introduced five GLVs in the MI-MAC by these methods, in which each GLV contained a gene encoding a fluorescent or luminescent protein (EGFP, mCherry, BFP, Eluc, and Cluc). Genes of interest (GOI) on the MI-MAC were expressed stably and functionally without silencing in the host cells. Furthermore, the MI-MAC carrying five GLVs was transferred to other cells by MMCT, and the resultant recipient cells exhibited all five fluorescence/luminescence signals. Thus, the MI-MAC was successfully used as a multiple-GLV integration vector using the CRISPR-Cas9 system. The MI-MAC employing these methods may resolve bottlenecks in developing multiple-gene humanized models, multiple-gene monitoring models, disease models, reprogramming, and inducible gene expression systems.
Collapse
Affiliation(s)
- Kazuhisa Honma
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Takeshi Endo
- Tottori Industrial Promotion Organization, Tottori, Tottori, Japan
| | - Narumi Uno
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Tetsuya Ohbayashi
- Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Yonago, Tottori, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| |
Collapse
|
20
|
Satoh D, Abe S, Kobayashi K, Nakajima Y, Oshimura M, Kazuki Y. Human and mouse artificial chromosome technologies for studies of pharmacokinetics and toxicokinetics. Drug Metab Pharmacokinet 2018; 33:17-30. [DOI: 10.1016/j.dmpk.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/29/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022]
|
21
|
Lee NCO, Kim JH, Petrov NS, Lee HS, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System. ACS Synth Biol 2018; 7:63-74. [PMID: 28799737 PMCID: PMC5778389 DOI: 10.1021/acssynbio.7b00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The production of cells capable of carrying multiple transgenes
to Mb-size genomic loci has multiple applications in biomedicine and
biotechnology. In order to achieve this goal, three key steps are
required: (i) cloning of large genomic segments; (ii) insertion of
multiple DNA blocks at a precise location and (iii) the capability
to eliminate the assembled region from cells. In this study, we designed
the iterative integration system (IIS) that utilizes recombinases
Cre, ΦC31 and ΦBT1, and combined it with a human artificial
chromosome (HAC) possessing a regulated kinetochore (alphoidtetO-HAC). We have demonstrated that the IIS-alphoidtetO-HAC
system is a valuable genetic tool by reassembling a functional gene
from multiple segments on the HAC. IIS-alphoidtetO-HAC
has several notable advantages over other artificial chromosome-based
systems. This includes the potential to assemble an unlimited number
of genomic DNA segments; a DNA assembly process that leaves only a
small insertion (<60 bp) scar between adjacent DNA, allowing genes
reassembled from segments to be spliced correctly; a marker exchange
system that also changes cell color, and counter-selection markers
at each DNA insertion step, simplifying selection of correct clones;
and presence of an error proofing mechanism to remove cells with misincorporated
DNA segments, which improves the integrity of assembly. In addition,
the IIS-alphoidtetO-HAC carrying a locus of interest is
removable, offering the unique possibility to revert the cell line
to its pretransformed state and compare the phenotypes of human cells
with and without a functional copy of a gene(s). Thus, IIS-alphoidtetO-HAC allows investigation of complex biomedical pathways,
gene(s) regulation, and has the potential to engineer synthetic chromosomes
with a predetermined set of genes.
Collapse
Affiliation(s)
- Nicholas C. O. Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Nikolai S. Petrov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Uno N, Abe S, Oshimura M, Kazuki Y. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models. J Hum Genet 2017; 63:145-156. [PMID: 29180645 DOI: 10.1038/s10038-017-0378-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022]
Abstract
Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.
Collapse
Affiliation(s)
- Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
23
|
Satoh D, Iwado S, Abe S, Kazuki K, Wakuri S, Oshimura M, Kazuki Y. Establishment of a novel hepatocyte model that expresses four cytochrome P450 genes stably via mammalian-derived artificial chromosome for pharmacokinetics and toxicity studies. PLoS One 2017; 12:e0187072. [PMID: 29065189 PMCID: PMC5655360 DOI: 10.1371/journal.pone.0187072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/12/2017] [Indexed: 01/29/2023] Open
Abstract
The utility of HepG2 cells to assess drug metabolism and toxicity induced by chemical compounds is hampered by their low cytochrome P450 (CYP) activities. To overcome this limitation, we established HepG2 cell lines expressing major CYP enzymes involved in drug metabolism (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and CYP oxidoreductase (POR) using the mammalian-derived artificial chromosome vector. Transchromosomic HepG2 (TC-HepG2) cells expressing four CYPs and POR were used to determine time- and concentration-dependent inhibition and toxicity of several compounds by luminescence detection of CYP-specific substrates and cell viability assays. Gene expression levels of all four CYPs and POR, as well as the CYP activities, were higher in TC-HepG2 clones than in parental HepG2 cells. Additionally, the activity levels of all CYPs were reduced in a concentration-dependent manner by specific CYP inhibitors. Furthermore, preincubation of TC-HepG2 cells with CYP inhibitors known as time-dependent inhibitors (TDI) prior to the addition of CYP-specific substrates determined that CYP inhibition was enhanced in the TDI group than in the non-TDI group. Finally, the IC50 of bioactivable compound aflatoxin B1 was lower in TC-HepG2 cells than in HepG2 cells. In conclusion, the TC-HepG2 cells characterized in the current study are a highly versatile model to evaluate drug-drug interactions and hepatotoxicity in initial screening of candidate drug compounds, which require a high degree of processing capacity and reliability.
Collapse
Affiliation(s)
- Daisuke Satoh
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Satoru Iwado
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | | | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
24
|
CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells. Sci Rep 2017; 7:12739. [PMID: 28986519 PMCID: PMC5630592 DOI: 10.1038/s41598-017-10418-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5′ end, a 1 kb artificial telomere at the 3′ end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.
Collapse
|
25
|
Abstract
When constructing transgenic cell lines via plasmid DNA integration, precise targeting to a desired genomic location is advantageous. It is also often advantageous to remove the bacterial backbone, since bacterial elements can lead to the epigenetic silencing of neighboring DNA. The least cumbersome method to remove the plasmid backbone is recombinase-mediated cassette exchange (RMCE). RMCE is accomplished by arranging recombinase sites in the genome and in a donor plasmid such that a recombinase can both integrate the donor plasmid and excise its bacterial backbone. When a single recombinase is used for RMCE, recombination between undesired pairings of the sites can lead to a significant number of unwanted cell lines. To reduce the frequency with which these side products occur, several variants of RMCE that increase desired outcomes have been developed. Nevertheless, an important feature lacking from these improved RMCE methods is that none have fully utilized the recombinases that have been demonstrated to be the most robust and stringent at performing genomic integration in plants and animals, i.e., the phiC31 and Bxb1 phage integrases. To address this need, we have developed an RMCE protocol using these two serine integrases that we call dual integrase cassette exchange (DICE). Our DICE system provides a means to achieve high-precision DNA integration at a desired location and is especially well suited for repeated recombination into the same locus. In this chapter, we provide our most current protocols for using DICE in feeder-free human-induced pluripotent stem cells .
Collapse
Affiliation(s)
- Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA
| | - Mital S Bhakta
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA.
| |
Collapse
|
26
|
Abstract
The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
27
|
Moving toward a higher efficiency of microcell-mediated chromosome transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16043. [PMID: 27382603 PMCID: PMC4916947 DOI: 10.1038/mtm.2016.43] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022]
Abstract
Microcell-mediated chromosome transfer (MMCT) technology enables individual mammalian chromosomes, megabase-sized chromosome fragments, or mammalian artificial chromosomes that include human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) to be transferred from donor to recipient cells. In the past few decades, MMCT has been applied to various studies, including mapping the genes, analysis of chromosome status such as aneuploidy and epigenetics. Recently, MMCT was applied to transfer MACs/HACs carrying entire chromosomal copies of genes for genes function studies and has potential for regenerative medicine. However, a safe and efficient MMCT technique remains an important challenge. The original MMCT protocol includes treatment of donor cells by Colcemid to induce micronucleation, where each chromosome becomes surrounded with a nuclear membrane, followed by disarrangement of the actin cytoskeleton using Cytochalasin B to help induce microcells formation. In this study, we modified the protocol and demonstrated that replacing Colcemid and Cytochalasin B with TN-16 + Griseofulvin and Latrunculin B in combination with a Collage/Laminin surface coating increases the efficiency of HAC transfer to recipient cells by almost sixfold and is possibly less damaging to HAC than the standard MMCT method. We tested the improved MMCT protocol on four recipient cell lines, including human mesenchymal stem cells and mouse embryonic stem cells that could facilitate the cell engineering by HACs.
Collapse
|
28
|
Suzuki T, Kazuki Y, Oshimura M, Hara T. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins. PLoS One 2016; 11:e0157187. [PMID: 27271046 PMCID: PMC4896634 DOI: 10.1371/journal.pone.0157187] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
29
|
Endo T, Noda N, Kuromi Y, Kokura K, Kazuki Y, Oshimura M, Ohbayashi T. Evaluation of an Hprt-Luciferase Reporter Gene on a Mammalian Artificial Chromosome in Response to Cytotoxicity. Yonago Acta Med 2016; 59:174-182. [PMID: 27493490 PMCID: PMC4973025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Hypoxanthine guanine phosphoribosyltransferase (Hprt) is known as a house-keeping gene, and has been used as an internal control for real-time quantitative RT-PCR and various other methods of gene expression analysis. To evaluate the Hprt mRNA levels as a reference standard, we engineered a luciferase reporter driven by a long Hprt promoter and measured its response to cytotoxicity. METHODS We constructed a reporter vector that harbored a phiC31 integrase recognition site and a mouse Hprt promoter fused with green-emitting luciferase (SLG) coding sequence. The Hprt-SLG vector was loaded onto a mouse artificial chromosome containing a multi-integrase platform using phiC31 integrase in mouse A9 cells. We established three independent clones. RESULTS The established cell lines had similar levels of expression of the Hprt-SLG reporter gene. Hprt-SLG activity increased proportionately under growth conditions and decreased under cytotoxic conditions after blasticidin or cisplatin administration. Similar increases and decreases in the SLG luminescent were observed under growth and cytotoxic conditions, respectively, to those in the fluorescent obtained using the commercially available reagent, alamarBlue. CONCLUSION By employing a reliable and stable expression system in a mammalian artificial chromosome, the activity of an Hprt-SLG reporter can reflect cell numbers under cell growth condition and cell viability in the evaluation of cytotoxic conditions.
Collapse
Affiliation(s)
- Takeshi Endo
- Tottori Industrial Promotion Organization, Tottori 689-1112, Japan
| | - Natsumi Noda
- Tottori Industrial Promotion Organization, Tottori 689-1112, Japan
| | - Yasushi Kuromi
- Tottori Industrial Promotion Organization, Tottori 689-1112, Japan; ‡Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | - Kenji Kokura
- §Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| | - Yasuhiro Kazuki
- §Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan; ||Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Tottori University, Yonago 683-8503, Japan; ¶Division of Molecular and Cell Genetics, Department of Molecular and Cellular Biology, School of Life Sciences, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Mitsuo Oshimura
- §Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| | - Tetsuya Ohbayashi
- ‡Division of Laboratory Animal Science, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
30
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
31
|
Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 2016; 125:621-32. [PMID: 27116033 DOI: 10.1007/s00412-016-0588-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology.
Collapse
|
32
|
Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015; 23:111-33. [PMID: 25657031 PMCID: PMC4365188 DOI: 10.1007/s10577-014-9459-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microcell-mediated chromosome transfer (MMCT) is a technique to transfer a chromosome from defined donor cells into recipient cells and to manipulate chromosomes as gene delivery vectors and open a new avenue in somatic cell genetics. However, it is difficult to uncover the function of a single specific gene via the transfer of an entire chromosome or fragment, because each chromosome or fragment contains a set of numerous genes. Thus, alternative tools are human artificial chromosome (HAC) and mouse artificial chromosome (MAC) vectors, which can carry a gene or genes of interest. HACs/MACs have been generated mainly by either a "top-down approach" (engineered creation) or a "bottom-up approach" (de novo creation). HACs/MACs with one or more acceptor sites exhibit several characteristics required by an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci plus their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. The MMCT technique is also applied for manipulating HACs and MACs in donor cells and delivering them to recipient cells. This review describes the lessons learned and prospects identified from studies on the construction of HACs and MACs, and their ability to drive exogenous gene expression in cultured cells and transgenic animals via MMCT. New avenues for a variety of applications to bio-medical challenges are also proposed.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan,
| | | | | | | | | |
Collapse
|
33
|
Mouse embryonic stem cells with a multi-integrase mouse artificial chromosome for transchromosomic mouse generation. Transgenic Res 2015; 24:717-27. [PMID: 26055730 PMCID: PMC4504986 DOI: 10.1007/s11248-015-9884-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/28/2015] [Indexed: 01/25/2023]
Abstract
The mouse artificial chromosome (MAC) has several advantages as a gene delivery vector, including stable episomal maintenance of the exogenous genetic material and the ability to carry large and/or multiple gene inserts including their regulatory elements. Previously, a MAC containing multi-integration site (MI-MAC) was generated to facilitate transfer of multiple genes into desired cells. To generate transchromosomic (Tc) mice containing a MI-MAC with genes of interest, the desired genes were inserted into MI-MAC in CHO cells, and then the MI-MAC was transferred to mouse embryonic stem (mES) cells via microcell-mediated chromosome transfer (MMCT). However, the efficiency of MMCT from CHO to mES cells is very low (<10−6). In this study, we constructed mES cell lines containing a MI-MAC vector to directly insert a gene of interest into the MI-MAC in mES cells via a simple transfection method for Tc mouse generation. The recombination rate of the GFP gene at each attachment site (FRT, PhiC31attP, R4attP, TP901-1attP and Bxb1attP) on MI-MAC was greater than 50 % in MI-MAC mES cells. Chimeric mice with high coat colour chimerism were generated from the MI-MAC mES cell lines and germline transmission from the chimera was observed. As an example for the generation of Tc mice with a desired gene by the MI-MAC mES approach, a Tc mouse strain ubiquitously expressing Emerald luciferase was efficiently established. Thus, the findings suggest that this new Tc strategy employing mES cells and a MI-MAC vector is efficient and useful for animal transgenesis.
Collapse
|