1
|
Rosenbaum T, Morales-Lázaro SL. Regulation of ThermoTRP Channels by PIP2 and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:245-277. [PMID: 36988884 DOI: 10.1007/978-3-031-21547-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
2
|
Zhang XB, Li J, Gu J, Zeng YQ. Roles of Cannabidiol in the treatment and prevention of Alzheimer's disease by multi-target actions. Mini Rev Med Chem 2021; 22:43-51. [PMID: 33797364 DOI: 10.2174/1389557521666210331162857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with chronic, progressive, and irreversible characteristics, affecting nearly 50 million older adults worldwide. The pathogenesis of AD includes the formation of senile plaques, the abnormal aggregation of tau protein and the gradual degeneration and death of cerebral cortical cells. The main symptoms are memory loss, cognitive decline and behavioral disorders. Studies indicate that cannabidiol(CBD) possesses various pharmacological activities including anti-inflammatory, anti-oxidation and neuroprotective activities. It has been suggested as a potential multi-target medicine for treatment of AD. In this review, we aim to summarize the underlying mechanisms and protective effects of CBD on signaling pathways and central receptors involved in the pathogenesis of AD, including the endocannabinoid system(eCBs), the Transient receptor potential vanilloid type 1(TRPV1) receptor, and the Peroxisome proliferator-activated receptor (PPAR) receptor.
Collapse
Affiliation(s)
- Xiao-Bei Zhang
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Jintao Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500. China
| | - Juanhua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Yue-Qin Zeng
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| |
Collapse
|
3
|
Yang F, Xu L, Lee BH, Xiao X, Yarov‐Yarovoy V, Zheng J. An Unorthodox Mechanism Underlying Voltage Sensitivity of TRPV1 Ion Channel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000575. [PMID: 33101845 PMCID: PMC7578911 DOI: 10.1002/advs.202000575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/05/2020] [Indexed: 05/10/2023]
Abstract
While the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1) channel is a polymodal nociceptor for heat, capsaicin, and protons, the channel's responses to each of these stimuli are profoundly regulated by membrane potential, damping or even prohibiting its response at negative voltages and amplifying its response at positive voltages. Therefore, voltage sensitivity of TRPV1 is anticipated to play an important role in shaping pain responses. How voltage regulates TRPV1 activation remains unknown. Here, it is shown that voltage sensitivity does not originate from the S4 segment like classic voltage-gated ion channels; instead, outer pore acidic residues directly partake in voltage-sensitive activation, with their negative charges collectively constituting the observed gating charges. Outer pore gating-charge movement is titratable by extracellular pH and is allosterically coupled to channel activation, likely by influencing the upper gate in the ion selectivity filter. Elucidating this unorthodox voltage-gating process provides a mechanistic foundation for understanding TRPV1 polymodal gating and opens the door to novel approaches regulating channel activity for pain management.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biophysics, and Kidney Disease Center of the First Affiliated HospitalZhejiang University School of Medicine866 Yuhangtang RoadHangzhouZhejiang310058China
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Lizhen Xu
- Department of Biophysics, and Kidney Disease Center of the First Affiliated HospitalZhejiang University School of Medicine866 Yuhangtang RoadHangzhouZhejiang310058China
| | - Bo Hyun Lee
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Xian Xiao
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
- School of Life Sciences, Westlake Institute for Advanced StudyWestlake UniversityShilongshan Road No. 18, Xihu DistrictHangzhouZhejiang310064China
| | - Vladimir Yarov‐Yarovoy
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Jie Zheng
- Department of Physiology and Membrane BiologyUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| |
Collapse
|
4
|
Doñate-Macián P, Enrich-Bengoa J, Dégano IR, Quintana DG, Perálvarez-Marín A. Trafficking of Stretch-Regulated TRPV2 and TRPV4 Channels Inferred Through Interactomics. Biomolecules 2019; 9:biom9120791. [PMID: 31783610 PMCID: PMC6995547 DOI: 10.3390/biom9120791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential cation channels are emerging as important physiological and therapeutic targets. Within the vanilloid subfamily, transient receptor potential vanilloid 2 (TRPV2) and 4 (TRPV4) are osmo- and mechanosensors becoming critical determinants in cell structure and activity. However, knowledge is scarce regarding how TRPV2 and TRPV4 are trafficked to the plasma membrane or specific organelles to undergo quality controls through processes such as biosynthesis, anterograde/retrograde trafficking, and recycling. This review lists and reviews a subset of protein–protein interactions from the TRPV2 and TRPV4 interactomes, which is related to trafficking processes such as lipid metabolism, phosphoinositide signaling, vesicle-mediated transport, and synaptic-related exocytosis. Identifying the protein and lipid players involved in trafficking will improve the knowledge on how these stretch-related channels reach specific cellular compartments.
Collapse
Affiliation(s)
- Pau Doñate-Macián
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Catalonia, Spain
| | - Jennifer Enrich-Bengoa
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
| | - Irene R. Dégano
- CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- REGICOR Study Group, Cardiovascular Epidemiology and Genetics Group, IMIM (Hospital Del Mar Medical Research Institute), 08003 Barcelona, Catalonia, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - David G. Quintana
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain; (P.D.-M.); (J.E.-B.); (D.G.Q.)
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain
- Correspondence: ; Tel.: +34-93-581-4504
| |
Collapse
|
5
|
Benso B, Bustos D, Zarraga MO, Gonzalez W, Caballero J, Brauchi S. Chalcone derivatives as non-canonical ligands of TRPV1. Int J Biochem Cell Biol 2019; 112:18-23. [PMID: 31026506 DOI: 10.1016/j.biocel.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a polymodal cation channel activated by heat, voltage, and ligands. Also known as the capsaicin receptor, TRPV1 is expressed in numerous tissues by different cell types, including peripheral sensory fibers where acts as a thermal and chemical detector in nociceptive pathways. TRPV1 channels are able to bind a wide range of ligands, including a number of vanilloid derivatives all modulating channel's activity. When expressed by sensory neurons, activation of TRPV1 channels by heat (>40 °C), capsaicin (sub-micromolar), or acid environment (pH < 6), causes depolarization leading to burning pain sensation in mammals. Naturally occurring chalcones (1,3-diaryl-2-propen-1-ones) have been reported as effective inhibitors of TRPV1. Their relatively simple chemical structure and the possibility for handy chemical modification make them attractive ligands for the treatment of peripheral pain. By taking advantage of the structural information available, here we discuss pharmacological properties of chalcones and their putative mechanism of binding to TRPV1 channels.
Collapse
Affiliation(s)
- Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, RM, Chile; Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Daniel Bustos
- Center for Bioinformatics and Molecular Simulation (CBSM), Universidad de Talca, Talca, Chile
| | - Miguel O Zarraga
- Department of Organic Chemistry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Wendy Gonzalez
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Valdivia, Chile; Center for Bioinformatics and Molecular Simulation (CBSM), Universidad de Talca, Talca, Chile
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulation (CBSM), Universidad de Talca, Talca, Chile
| | - Sebastian Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
6
|
Doñate-Macián P, Álvarez-Marimon E, Sepulcre F, Vázquez-Ibar JL, Perálvarez-Marín A. The Membrane Proximal Domain of TRPV1 and TRPV2 Channels Mediates Protein⁻Protein Interactions and Lipid Binding In Vitro. Int J Mol Sci 2019; 20:E682. [PMID: 30764505 PMCID: PMC6387362 DOI: 10.3390/ijms20030682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/30/2023] Open
Abstract
Constitutive or regulated membrane protein trafficking is a key cell biology process. Transient receptor potential channels are somatosensory proteins in charge of detecting several physical and chemical stimuli, thus requiring fine vesicular trafficking. The membrane proximal or pre-S1 domain (MPD) is a highly conserved domain in transient receptor potential channels from the vanilloid (TRPV) subfamily. MPD shows traits corresponding to protein-protein and lipid-protein interactions, and protein regulatory regions. We have expressed MPD of TRPV1 and TRPV2 as green fluorescente protein (GFP)-fusion proteins to perform an in vitro biochemical and biophysical characterization. Pull-down experiments indicate that MPD recognizes and binds Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors (SNARE). Synchrotron radiation scattering experiments show that this domain does not self-oligomerize. MPD interacts with phosphatidic acid (PA), a metabolite of the phospholipase D (PLD) pathway, in a specific manner as shown by lipid strips and Trp fluorescence quenching experiments. We show for the first time, to the best of our knowledge, the binding to PA of an N-terminus domain in TRPV channels. The presence of a PA binding domain in TRPV channels argues for putative PLD regulation. Findings in this study open new perspectives to understand the regulated and constitutive trafficking of TRPV channels exerted by protein-protein and lipid-protein interactions.
Collapse
Affiliation(s)
- Pau Doñate-Macián
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain.
| | - Elena Álvarez-Marimon
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain.
| | - Francesc Sepulcre
- Departament d'Enginyeria Agroalimentària i Biotecnologia, Universitat Politècnica de Catalunya, 08860 Barcelona, Catalonia, Spain.
| | - José Luis Vázquez-Ibar
- Institut de Biologie Intégrative de la Cellule, CEA-Saclay, 91191 Gif-sur-Yvette, France.
- Institut des Sciences du Vivant Frédéric-JOLIOT, CEA-Saclay, 91191 Gif-sur-Yvette, France.
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain.
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Catalonia, Spain.
| |
Collapse
|
7
|
Doñate-Macián P, Crespi-Boixader A, Perálvarez-Marín A. Molecular Evolution Bioinformatics Toward Structural Biology of TRPV1-4 Channels. Methods Mol Biol 2019; 1987:1-21. [PMID: 31028670 DOI: 10.1007/978-1-4939-9446-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinformatics is a very resourceful tool to understand evolution of membrane proteins, such as transient receptor potential channels. Expert bioinformatics users rely on specialized scripting and programming skills. Several web servers and standalone tools are available for nonadvanced users willing to develop projects to understand their system of choice. In this case, we present a desktop-based protocol to develop evostructural hypotheses based on basic bioinformatics skills and resources, specifically for a small subgroup of TRPV channels, which can be further implemented for larger datasets.
Collapse
Affiliation(s)
- Pau Doñate-Macián
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Alba Crespi-Boixader
- Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.
| |
Collapse
|
8
|
Xiang H, Liu Z, Wang F, Xu H, Roberts C, Fischer G, Stucky C, Caron D, Pan B, Hogan Q, Yu H. Primary sensory neuron-specific interference of TRPV1 signaling by AAV-encoded TRPV1 peptide aptamer attenuates neuropathic pain. Mol Pain 2018; 13:1744806917717040. [PMID: 28604222 PMCID: PMC5486490 DOI: 10.1177/1744806917717040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade.
Collapse
Affiliation(s)
- Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Zhen Liu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Fei Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P.R. China 712046
| | - Hao Xu
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, P. R. China 266000
| | - Christopher Roberts
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Gregory Fischer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cheryl Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Dean Caron
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn Hogan
- 5Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| | | |
Collapse
|
9
|
A TRPV2 interactome-based signature for prognosis in glioblastoma patients. Oncotarget 2018; 9:18400-18409. [PMID: 29719613 PMCID: PMC5915080 DOI: 10.18632/oncotarget.24843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 03/01/2018] [Indexed: 11/25/2022] Open
Abstract
Proteomics aids to the discovery and expansion of protein-protein interaction networks, which are key to understand molecular mechanisms in physiology and physiopathology, but also to infer protein function in a guilt-by-association fashion. In this study we use a systematic protein-protein interaction membrane yeast two-hybrid method to expand the interactome of TRPV2, a cation channel related to nervous system development. After validation of the interactome in silico, we define a TRPV2-interactome signature combining proteomics with the available physio-pathological data in Disgenet to find interactome-disease associations, highlighting nervous system disorders and neoplasms. The TRPV2-interactome signature against available experimental data is capable of discriminating overall risk in glioblastoma multiforme prognosis, progression, recurrence, and chemotherapy resistance. Beyond the impact on glioblastoma physiopathology, this study shows that combining systematic proteomics with in silico methods and available experimental data is key to open new perspectives to define novel biomarkers for diagnosis, prognosis and therapeutics in disease.
Collapse
|
10
|
Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 2017; 7:10522. [PMID: 28874838 PMCID: PMC5585255 DOI: 10.1038/s41598-017-11274-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022] Open
Abstract
TRPV4 cation channel activation by cytochrome P450-mediated derivatives of arachidonic acid (AA), epoxyeicosatrienoic acids (EETs), constitute a major mechanisms of endothelium-derived vasodilatation. Besides, TRPV4 mechano/osmosensitivity depends on phospholipase A2 (PLA2) activation and subsequent production of AA and EETs. However, the lack of evidence for a direct interaction of EETs with TRPV4 together with claims of EET-independent mechanical activation of TRPV4 has cast doubts on the validity of this mechanism. We now report: 1) The identification of an EET-binding pocket that specifically mediates TRPV4 activation by 5',6'-EET, AA and hypotonic cell swelling, thereby suggesting that all these stimuli shared a common structural target within the TRPV4 channel; and 2) A structural insight into the gating of TRPV4 by a natural agonist (5',6'-EET) in which K535 plays a crucial role, as mutant TRPV4-K535A losses binding of and gating by EET, without affecting GSK1016790A, 4α-phorbol 12,13-didecanoate and heat mediated channel activation. Together, our data demonstrates that the mechano- and osmotransducing messenger EET gates TRPV4 by a direct action on a site formed by residues from the S2-S3 linker, S4 and S4-S5 linker.
Collapse
|
11
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease. Brain Res 2016; 1642:397-408. [PMID: 27084583 DOI: 10.1016/j.brainres.2016.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD.
Collapse
|
13
|
Polymodal Transient Receptor Potential Vanilloid (TRPV) Ion Channels in Chondrogenic Cells. Int J Mol Sci 2015; 16:18412-38. [PMID: 26262612 PMCID: PMC4581253 DOI: 10.3390/ijms160818412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV) receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.
Collapse
|
14
|
Garcia-Elias A, Berna-Erro A, Rubio-Moscardo F, Pardo-Pastor C, Mrkonjić S, Sepúlveda RV, Vicente R, González-Nilo F, Valverde MA. Interaction between the Linker, Pre-S1, and TRP Domains Determines Folding, Assembly, and Trafficking of TRPV Channels. Structure 2015; 23:1404-1413. [PMID: 26146187 DOI: 10.1016/j.str.2015.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/14/2015] [Accepted: 05/25/2015] [Indexed: 11/26/2022]
Abstract
Functional transient receptor potential (TRP) channels result from the assembly of four subunits. Here, we show an interaction between the pre-S1, TRP, and the ankyrin repeat domain (ARD)-S1 linker domains of TRPV1 and TRPV4 that is essential for proper channel assembly. Neutralization of TRPV4 pre-S1 K462 resulted in protein retention in the ER, defective glycosylation and trafficking, and unresponsiveness to TRPV4-activating stimuli. Similar results were obtained with the equivalent mutation in TRPV1 pre-S1. Molecular dynamics simulations revealed that TRPV4-K462 generated an alternating hydrogen network with E745 (TRP box) and D425 (pre-S1 linker), and that K462Q mutation affected subunit folding. Consistently, single TRPV4-E745A or TRPV4-D425A mutations moderately affected TRPV4 biogenesis while double TRPV4-D425A/E745A mutation resumed the TRPV4-K462Q phenotype. Thus, the interaction between pre-S1, TRP, and linker domains is mandatory to generate a structural conformation that allows the contacts between adjacent subunits to promote correct assembly and trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Anna Garcia-Elias
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain
| | - Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain
| | - Fanny Rubio-Moscardo
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sanela Mrkonjić
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain
| | - Romina V Sepúlveda
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Av. República 239, Santiago 8320000, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain
| | - Fernando González-Nilo
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Av. República 239, Santiago 8320000, Chile; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, Barcelona 08003, Spain.
| |
Collapse
|
15
|
Palovcak E, Delemotte L, Klein ML, Carnevale V. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels. J Gen Physiol 2015; 146:37-50. [PMID: 26078053 PMCID: PMC4485022 DOI: 10.1085/jgp.201411329] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate.
Collapse
Affiliation(s)
- Eugene Palovcak
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Lucie Delemotte
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122
| |
Collapse
|
16
|
Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochem Biophys Res Commun 2015; 462:221-6. [PMID: 25956061 DOI: 10.1016/j.bbrc.2015.04.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022]
Abstract
Transient Receptor Potential (TRP) channels are related to adaptation to the environment and somatosensation. The transient receptor potential vanilloid (TRPV) subfamily includes six closely evolutionary related ion channels sharing the same domain organization and tetrameric arrangement in the membrane. In this study we have characterized biochemically TRPV2 channel membrane protein folding and transmembrane (TM) architecture. Deleting the first N-terminal 74 residues preceding the ankyrin repeat domain (ARD) show a key role for this region in targeting the protein to the membrane. We have demonstrated the co-translational insertion of the membrane-embedded region of the TRPV2 and its disposition in biological membranes, identifying that TM1-TM4 and TM5-TM6 regions can assemble as independent folding domains. The ARD is not required for TM domain insertion in the membrane. The folding features observed for TRPV2 may be conserved and shared among other TRP channels outside the TRPV subfamily.
Collapse
|
17
|
Kumari S, Kumar A, Sardar P, Yadav M, Majhi RK, Kumar A, Goswami C. Influence of membrane cholesterol in the molecular evolution and functional regulation of TRPV4. Biochem Biophys Res Commun 2015; 456:312-9. [DOI: 10.1016/j.bbrc.2014.11.077] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
|