1
|
Gibson S, Ellsworth P. Emerging therapies for overactive bladder: preclinical, phase I and phase II studies. Expert Opin Investig Drugs 2024; 33:601-612. [PMID: 38695250 DOI: 10.1080/13543784.2024.2349285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Overactive bladder syndrome is a common chronic condition with a significant impact on quality of life and economic burden. Persistence with pharmacologic therapy has been limited by efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has led to the initial evaluation of several drugs affecting ion channels, the autonomic nervous system, and enzymes which may provide useful alternatives for the management of overactive bladder. AREAS COVERED A comprehensive review was performed using PubMed and Cochrane databases as well as reviewing clinical trials in the United States. The current standard of care for overactive bladder will be discussed, but this paper focuses on investigational drugs currently in preclinical studies and phase I and II clinical trials. EXPERT OPINION Current therapies for overactive bladder have limitations in efficacy and side effects. A greater understanding of the pathophysiology of overactive bladder has identified the role(s) of other pathways in the overactive bladder syndrome. Targeting alternative pathways including ion channels and enzymes may provide alternative therapies of overactive bladder and a more tailored approach to the management of overactive bladder.
Collapse
Affiliation(s)
- Samantha Gibson
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Pamela Ellsworth
- Division of urology, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
2
|
Kazemi A, Iraji A, Esmaealzadeh N, Salehi M, Hashempur MH. Peppermint and menthol: a review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit Rev Food Sci Nutr 2024; 65:1553-1578. [PMID: 38168664 DOI: 10.1080/10408398.2023.2296991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this manuscript, we conducted a comprehensive review of the diverse effects of peppermint on human health and explored the potential underlying mechanisms. Peppermint contains three main groups of phytochemical constituents, including essential oils (mainly menthol), flavonoids (such as hesperidin, eriodictyol, naringenin, quercetin, myricetin, and kaempferol), and nonflavonoid phenolcarboxylic acids. Peppermint exhibits antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, anti-cancer, anti-aging, and analgesic properties and may be effective in treating various disorders, including gastrointestinal disorders (e.g., irritable bowel syndrome, dyspepsia, constipation, functional gastrointestinal disorders, nausea/vomiting, and gallbladder stones). In addition, peppermint has therapeutic benefits for psychological and cognitive health, dental health, urinary retention, skin and wound healing, as well as anti-depressant and anti-anxiety effects, and it may improve memory. However, peppermint has paradoxical effects on sleep quality and alertness, as it has been shown to improve sleep quality in patients with fatigue and anxiety, while also increasing alertness under conditions of monotonous work and relaxation. We also discuss its protective effects against toxic agents at recommended doses, as well as its safety and potential toxicity. Overall, this review provides the latest findings and insights into the properties and clinical effects of peppermint/menthol and highlights its potential as a natural therapeutic agent for various health conditions.
Collapse
Affiliation(s)
- Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Engin S, Barut EN, Erac Y, Sari S, Kadioglu M. The inhibitory effect of escitalopram on mouse detrusor contractility: The role of L-type calcium channels. Toxicol Appl Pharmacol 2023; 461:116408. [PMID: 36736438 DOI: 10.1016/j.taap.2023.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are associated with urinary problems attributed to their central effects. ESC is a preferred SSRI and several case reports described that ESC is related to urinary retention. However, the direct effect of ESC on detrusor contractility is still not completely elucidated. Thus, we investigated the effect of ESC on detrusor contractility and mechanism(s) of its action in isolated mouse detrusor strips. Molecular docking and measurement of intracellular calcium were performed to determine the possible calcium channel blocking effect of ESC. The contractile responses to carbachol (CCh), KCl and electrical field stimulation of detrusor strips were significantly abolished by ESC (10 or 100 μM). ESC relaxed KCl-precontracted detrusor strips concentration-dependently, which was not affected by tetraethylammonium, glibenclamide, 4-aminopyridine, propranolol, L-NAME or methylene blue. ESC (10 or 100 μM) reduced both the CaCl2- and CCh-induced contractions under calcium-free conditions, indicating the role of calcium-involved mechanisms in ESC-mediated relaxation. Furthermore, ESC significantly decreased Bay K8644-induced contraction and the cytosolic calcium level in fura-2-loaded A7r5 cells. Molecular docking study also revealed the potential of ESC to bind L-type calcium (Cav1) channels. Our results demonstrate that ESC inhibits detrusor contractility via blocking Cav1 channels, which provides evidence for the direct effect of ESC on detrusor contractility and its mechanism.
Collapse
Affiliation(s)
- Seçkin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye.
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Türkiye
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Mine Kadioglu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
4
|
Li Z, Zhang H, Wang Y, Li Y, Li Q, Zhang L. The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Front Mol Neurosci 2022; 15:1006908. [PMID: 36277488 PMCID: PMC9580369 DOI: 10.3389/fnmol.2022.1006908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Menthol is an important flavoring additive that triggers a cooling sensation. Under physiological condition, low to moderate concentrations of menthol activate transient receptor potential cation channel subfamily M member 8 (TRPM8) in the primary nociceptors, such as dorsal root ganglion (DRG) and trigeminal ganglion, generating a cooling sensation, whereas menthol at higher concentration could induce cold allodynia, and cold hyperalgesia mediated by TRPM8 sensitization. In addition, the paradoxical irritating properties of high concentrations of menthol is associated with its activation of transient receptor potential cation channel subfamily A member 1 (TRPA1). Under pathological situation, menthol activates TRPM8 to attenuate mechanical allodynia and thermal hyperalgesia following nerve injury or chemical stimuli. Recent reports have recapitulated the requirement of central group II/III metabotropic glutamate receptors (mGluR) with endogenous κ-opioid signaling pathways for menthol analgesia. Additionally, blockage of sodium channels and calcium influx is a determinant step after menthol exposure, suggesting the possibility of menthol for pain management. In this review, we will also discuss and summarize the advances in menthol-related drugs for pathological pain treatment in clinical trials, especially in neuropathic pain, musculoskeletal pain, cancer pain and postoperative pain, with the aim to find the promising therapeutic candidates for the resolution of pain to better manage patients with pain in clinics.
Collapse
Affiliation(s)
- Ziping Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Haoyue Zhang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yigang Wang
- The Graduate School, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Qing Li,
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Linlin Zhang,
| |
Collapse
|
5
|
Jones BM, Mingin GC, Tykocki NR. Histamine receptors rapidly desensitize without altering nerve-evoked contractions in murine urinary bladder smooth muscle. Am J Physiol Renal Physiol 2022; 322:F268-F279. [PMID: 35073211 PMCID: PMC8858670 DOI: 10.1152/ajprenal.00355.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
Histamine has been implicated in urinary bladder dysfunction as an inflammatory mediator driving sensory nerve hypersensitivity. However, the direct influence of histamine on smooth muscle has not been thoroughly investigated. We hypothesized that histamine directly contracts urinary bladder smooth muscle (UBSM) independent of effects on nerves. Single cell quantitative RT-PCR determined that only histamine H1 and H2 receptors were expressed on UBSM cells. In isolated tissue bath experiments, histamine (200 µM) caused a highly variable and rapidly desensitizing contraction that was completely abolished by the H1 receptor antagonist fexofenadine (5 µM) and the Gq/11 inhibitor YM254890 (1 µM). Neither the muscarinic receptor antagonist atropine (1 µM), the Na+ channel blocker tetrodotoxin (1 µM), nor the transient receptor potential vanilloid type 1 antagonist capsazepine (10 µM) altered responses to histamine, suggesting that nerve activation was not involved. UBSM desensitization to histamine was not due to receptor internalization, as neither the cholesterol-depleting agent methyl-β-cyclodextrin (10 mM), the dynamin-mediated endocytosis inhibitor dynasore (100 µM), nor the clathrin-mediated endocytosis inhibitor pitstop2 (15 µM) augmented or prolonged histamine contractions. Buffer from desensitized tissues still contracted histamine-naïve tissues, revealing that histamine was not metabolized. Prolonged exposure to histamine also had no effect on contractions due to electrical field stimulation, suggesting that both efferent nerve and UBSM excitability were unchanged. Together, these data suggest that histamine, although able to transiently contract UBSM, does not have a lasting effect on UBSM excitability or responses to efferent nerve input. Thus, any acute effects of histamine directly on UBSM contractility are unlikely to alter urinary bladder function.NEW & NOTEWORTHY Histamine is commonly associated with inflammatory bladder pathologies. We sought to investigate the role of histamine on urinary bladder contractility. Histamine contracts the bladder, but this response is highly variable and desensitizes completely in minutes. This desensitization is not due to internalization of the receptor or metabolism of histamine. Because nerve-evoked contractions are also not increased in the presence of histamine, our findings suggest that histamine is not directly acting to change contractility.
Collapse
Affiliation(s)
- B Malique Jones
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
- Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Gerald C Mingin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
- Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nathan R Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
- Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
Wang G. Ligand-stereoselective allosteric activation of cold-sensing TRPM8 channels by an H-bonded homochiral menthol dimer with head-to-head or head-to-tail. Chirality 2021; 33:783-796. [PMID: 34596287 DOI: 10.1002/chir.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/07/2022]
Abstract
Both menthol and its analog WS-12 share the same hydrophobic intra-subunit binding pocket between a voltage-sensor-like domain and a TRP domain in a cold-sensing TRPM8 channel. However, unlike WS-12, menthol upregulates TRPM8 with a low efficacy but a high coefficient of a dose response at membrane hyperpolarization and with ligand stereoselectivity at membrane depolarization. The underlying mechanisms are unknown. Here, this in silico research suggested that the ligand-stereoselective sequential cooperativity between two menthol molecules in the WS-12 pocket is required for allosteric activation of TRPM8. Furthermore, two H-bonded homochiral menthol dimers with both head-to-head and head-to-tail can compete for the WS-12 site via non-covalent interactions. Although both dimers can form an H-bonding network with a voltage sensor S4 to disrupt a S3-S4 salt bridge in the voltage-sensor-like domain to release a "parking brake," only one dimer may drive channel opening by pushing a "gas pedal" in the TRP domain away from the S6 gate against S4. In this way, the efficacy is decreased, but the cooperativity is increased for the menthol effect at membrane hyperpolarization. Therefore, this review may extend a new pathway for ligand-stereoselective allosteric regulation of other voltage- and ligand-gated ion channels by menthol.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Drug Research and Development, Institute of Biophysical Medico-chemistry, Reno, NV, USA
| |
Collapse
|
7
|
Engin S, Kaya Yasar Y, Barut EN, Getboga D, Erac Y, Sezen SF. The inhibitory effect of trimetazidine on detrusor contractility - a potential repositioning of trimetazidine for the treatment of overactive bladder. J Pharm Pharmacol 2021; 74:94-102. [PMID: 34109981 DOI: 10.1093/jpp/rgab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to identify the effect of trimetazidine (TMZ), an antianginal drug, on detrusor smooth muscle (DSM) contractility and its possible mechanisms of action. METHODS We performed in-vitro contractility studies on isolated mouse DSM strips and investigated the effect of TMZ on Ca2+ levels in fura-2-loaded A7r5 cells. KEY FINDINGS TMZ (300 or 1000 µM) inhibited carbachol (CCh)- and KCl-induced contractions and produced a concentration-dependent (10-1000 µM) relaxation in KCl-precontracted DSM strips. TMZ-induced relaxation was markedly decreased by BaCl2, an inward-rectifying K+ channel blocker, but was not altered by preincubation with tetraethylammonium, glibenclamide, 4-aminopyridine, propranolol, L-NAME or methylene blue. TMZ (300 or 1000 µM) reduced both the CaCl2-induced contraction of depolarized DSM strips under Ca2+-free conditions and the CCh-induced contraction of DSM strips preincubated with nifedipine in Ca2+-containing Krebs solution. Furthermore, TMZ (1000 µM) significantly decreased the Ca2+ levels in fura-2-loaded A7r5 cells. CONCLUSIONS TMZ decreased DSM contractility and caused a concentration-dependent relaxation of the tissue possibly through its actions on Ca2+ transients and K+ channels. Our results provide preclinical evidence that TMZ would be a potential candidate to treat disorders related to the overactivity of the bladder.
Collapse
Affiliation(s)
- Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Yesim Kaya Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Damla Getboga
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Yasemin Erac
- Department of Pharmacology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Liu J, Liu L, Zhao M, Ding N, Ge N, Daugherty SL, Beckel JM, Wang S, Zhang X. Activation of TRPM8 channel inhibits contraction of the isolated human ureter. Neurourol Urodyn 2021; 40:1450-1459. [PMID: 34015169 DOI: 10.1002/nau.24689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Indexed: 12/19/2022]
Abstract
AIMS The transient receptor potential melastin-8 (TRPM8) channel is a "cooling" receptor expressed in primary sensory neurons and can be activated by compounds like menthol or icilin. TRPM8 is involved in the regulation of urinary bladder sensory function and contraction, but the role of TRPM8 in the ureter, particularly in the human ureter, is poorly understood. The aim of this study is to examine the effects of TRPM8 activation on human ureter contraction. METHODS Human ureters were acquired from 20 patients undergoing radical nephrectomy. Contractions of ureter strips were recorded by an isometric transducer in the organ bath. Ureteral TRPM8 expression in the human ureter was examined by immunofluorescence and western blot. RESULTS The two TRPM8 agonists menthol and icilin both reduced the frequency of spontaneous, electrical field stimulation, or neurokinin A-evoked ureteral contractions in a dose-dependent manner. The inhibitory effects were decreased by 10-fold in mucosa-denuded strips. The inhibitory effects of TRPM8 agonists were mimicked by calcitonin gene-related peptide (CGRP), and were blocked by KRP2579 (a TRPM8 antagonist), tetrodotoxin (a sodium channel blocker), olcegepant (BIBN, a CGRP receptor antagonist), SQ22536 (an adenylate cyclase antagonist), or H89 (a nonspecific cAMP-dependent protein kinase A inhibitor). TRPM8 was coexpressed with CGRP on the nerves located in the suburothelial and intermuscular regions and was not expressed in the urothelium. CONCLUSIONS The TRPM8 channel expressed on sensory nerve terminals of the human ureter is involved in the inhibitory sensory neurotransmission and modulate ureter contraction via the CGRP-adenylyl cyclase-protein kinase A pathway. TRPM8 may be involved in stone-induced changes in ureter contraction or pain.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Ning Ding
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Nan Ge
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Antispasmodic Effect of Essential Oils and Their Constituents: A Review. Molecules 2019; 24:molecules24091675. [PMID: 31035694 PMCID: PMC6539827 DOI: 10.3390/molecules24091675] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
The antispasmodic effect of drugs is used for the symptomatic treatment of cramping and discomfort affecting smooth muscles from the gastrointestinal, billiary or genitourinary tract in a variety of clinical situations.The existing synthetic antispasmodic drugs may cause a series of unpleasant side effects, and therefore the discovery of new molecules of natural origin is an important goal for the pharmaceutical industry. This review describes a series of recent studies investigating the antispasmodic effect of essential oils from 39 plant species belonging to 12 families. The pharmacological models used in the studies together with the mechanistic discussions and the chemical composition of the essential oils are also detailed. The data clearly demonstrate the antispasmodic effect of the essential oils from the aromatic plant species studied. Further research is needed in order to ascertain the therapeutic importance of these findings.
Collapse
|
10
|
[Menthol in the control of bladder activity: A review]. Prog Urol 2018; 28:523-529. [PMID: 30098904 DOI: 10.1016/j.purol.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Menthol is a natural compound, of which the known effects on human physiology are manifold (a feeling of freshness, decongestant, bowel antispasmodic). Its implication in vesico-sphincteral physiopathology has been studied since the nineties. METHOD Literature review of the previous studies having implied menthol in pelvi-perineal physiology through the articles indexed on the Pubmed database, with keywords menthol, menthol and bladder, menthol and toxicity, and TRPM8. Only articles in English were selected. RESULTS Of the 30 articles that were included, most demonstrated the existence of a micturition reflex to menthol and cold, mediated by the C-type nerve to the spine through activation of TRPM8 urothelial receptors. More recent experiments paradoxically showed an inhibitory effect of menthol on detrusor contractility, independently of TRPM8, when muscle tissue is directly exposed to the compound. However, similar effects of targeted cutaneous exposure or urothelial exposure on detrusorian function have also been demonstrated through TRPM8. This receptor also appears to be involved in interstitial cystitis and idiopathic detrusor overactivity. Lastly, the potential toxicity of menthol appears negligible. Most of the referenced studies are related to animal experiments. Of the three studies that implied humans, only one elucidates some therapeutic applications. CONCLUSION It seems that menthol and its receptors are involved in vesico-sphincteral physiopathology and could provide therapeutic potential in detrusorian overactivity and interstitial cystitis with reduced toxicity.
Collapse
|
11
|
de Oliveira MG, Nascimento DM, Alexandre EC, Bonilla-Becerra SM, Zapparoli A, Mónica FZ, Antunes E. Menthol ameliorates voiding dysfunction in types I and II diabetic mouse model. Neurourol Urodyn 2018; 37:2510-2518. [DOI: 10.1002/nau.23785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Mariana G. de Oliveira
- Faculty of Medical Sciences; Department of Pharmacology; University of Campinas; Campinas Sao Paulo Brazil
| | - Daniel M. Nascimento
- Faculty of Medical Sciences; Department of Pharmacology; University of Campinas; Campinas Sao Paulo Brazil
| | - Eduardo C. Alexandre
- Faculty of Medical Sciences; Department of Pharmacology; University of Campinas; Campinas Sao Paulo Brazil
| | - Sandra M. Bonilla-Becerra
- Faculty of Medical Sciences; Department of Pharmacology; University of Campinas; Campinas Sao Paulo Brazil
| | - Adriana Zapparoli
- Faculty of Medical Sciences; Department of Medicine and Experimental Surgery; University of Campinas; Campinas Sao Paulo Brazil
| | - Fabiola Z. Mónica
- Faculty of Medical Sciences; Department of Pharmacology; University of Campinas; Campinas Sao Paulo Brazil
| | - Edson Antunes
- Faculty of Medical Sciences; Department of Pharmacology; University of Campinas; Campinas Sao Paulo Brazil
| |
Collapse
|
12
|
The Influence of Resiniferatoxin (RTX) and Tetrodotoxin (TTX) on the Distribution, Relative Frequency, and Chemical Coding of Noradrenergic and Cholinergic Nerve Fibers Supplying the Porcine Urinary Bladder Wall. Toxins (Basel) 2017; 9:toxins9100310. [PMID: 28972567 PMCID: PMC5666357 DOI: 10.3390/toxins9100310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 12/25/2022] Open
Abstract
The present study investigated the influence of intravesically instilled resiniferatoxin (RTX) or tetrodotoxin (TTX) on the distribution, number, and chemical coding of noradrenergic and cholinergic nerve fibers (NF) supplying the urinary bladder in female pigs. Samples from the bladder wall were processed for double-labelling immunofluorescence with antibodies against cholinergic and noradrenergic markers and some other neurotransmitter substances. Both RTX and TTX caused a significant decrease in the number of cholinergic NF in the urinary bladder wall (in the muscle coat, submucosa, and beneath the urothelium). RTX instillation resulted in a decrease in the number of noradrenergic NF in the submucosa and urothelium, while TTX treatment caused a significant increase in the number of these axons in all the layers. The most remarkable changes in the chemical coding of the NF comprised a distinct decrease in the number of the cholinergic NF immunoreactive to CGRP (calcitonin gene-related peptide), nNOS (neuronal nitric oxide synthase), SOM (somatostatin) or VIP (vasoactive intestinal polypeptide), and an increase in the number of noradrenergic NF immunopositive to GAL (galanin) or nNOS, both after RTX or TTX instillation. The present study is the first to suggest that both RTX and TTX can modify the number of noradrenergic and cholinergic NF supplying the porcine urinary bladder.
Collapse
|
13
|
Oz M, El Nebrisi EG, Yang KHS, Howarth FC, Al Kury LT. Cellular and Molecular Targets of Menthol Actions. Front Pharmacol 2017; 8:472. [PMID: 28769802 PMCID: PMC5513973 DOI: 10.3389/fphar.2017.00472] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 02/04/2023] Open
Abstract
Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Department of Basic Medical Sciences, College of Medicine, Qatar UniversityDoha, Qatar
| | - Eslam G El Nebrisi
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Keun-Hang S Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman UniversityOrange, CA, United States
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed UniversityAbu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
The Influence of Tetrodotoxin (TTX) on the Distribution and Chemical Coding of Caudal Mesenteric Ganglion (CaMG) Neurons Supplying the Porcine Urinary Bladder. Mar Drugs 2017; 15:md15040101. [PMID: 28358321 PMCID: PMC5408247 DOI: 10.3390/md15040101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/25/2023] Open
Abstract
The treatment of micturition disorders creates a serious problem for urologists. Recently, new therapeutic agents, such as neurotoxins, are being considered for the therapy of urological patients. The present study investigated the chemical coding of caudal mesenteric ganglion (CaMG) neurons supplying the porcine urinary bladder after intravesical instillation of tetrodotoxin (TTX). The CaMG neurons were visualized with retrograde tracer Fast blue (FB) and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against tyrosine hydroxylase (TH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), calbindin (CB), galanin (GAL) and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 6) and TTX-treated pigs (n = 6), the vast majority (92.6% ± 3.4% and 88.8% ± 2%, respectively) of FB-positive (FB+) nerve cells were TH+. TTX instillation caused a decrease in the number of FB+/TH+ neurons immunopositive to NPY (88.9% ± 5.3% in the control animals vs. 10.6% ± 5.3% in TTX-treated pigs) or VIP (1.7% ± 0.6% vs. 0%), and an increase in the number of FB+/TH+ neurons immunoreactive to SOM (8.8% ± 1.6% vs. 39% ± 12.8%), CB (1.8% ± 0.7% vs. 12.6% ± 2.7%), GAL (1.7% ± 0.8% vs. 10.9% ± 2.6%) or nNOS (0% vs. 1.1% ± 0.3%). The present study is the first to suggest that TTX modifies the chemical coding of CaMG neurons supplying the porcine urinary bladder.
Collapse
|
15
|
Martin-Cano FE, Caso-Agundez M, Camello-Almaraz C, Santos FJ, Espin MT, Madrid JA, Diez-Perez A, Camello PJ, Pozo MJ. Octodon degus, a new model to study the agonist and plexus-induced response in the urinary bladder. J Physiol Biochem 2016; 73:77-87. [PMID: 27738973 DOI: 10.1007/s13105-016-0527-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023]
Abstract
Urinary bladder function consists in the storage and controlled voiding of urine. Translational studies require animal models that match human characteristics, such as Octodon degus, a diurnal rodent. This study aims to characterize the contractility of the detrusor muscle and the morphology and code of the vesical plexus from O. degus. Body temperature was measured by an intra-abdominal sensor, the contractility of detrusor strips was evaluated by isometric tension recording, and the vesical plexus was studied by electrical field stimulation (EFS) and immunofluorescence. The animals showed a diurnal chronotype as judged from core temperature. The myogenic contractile response of the detrusor muscle to increasing doses of KCl reached its maximum (31.04 mN/mm2) at 60 mM. In the case of cumulative dose-response of bethanecol, the maximum response (37.42 mN/mm2) was reached at 3.2 × 10-4 M. The response to ATP was clearly smaller (3.8 mN/mm2). The pharmacological dissection of the EFS-induced contraction identified ACh and sensory fibers as the main contributors to this response. The neurons of the vesical plexus were located mainly in the trigone area, grouped in big and small ganglia. Out of them, 48.1 % of the neurons were nitrergic and 62.7 % cholinergic. Our results show functional and morphological similarities between the urinary bladder of O. degus and that of humans.
Collapse
Affiliation(s)
- Francisco Eduardo Martin-Cano
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | - Mercedes Caso-Agundez
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | - Cristina Camello-Almaraz
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | | | - María Teresa Espin
- Digestive Surgery Service, "Infanta Cristina" Hospital, 06006, Badajoz, Spain
| | - Juan Antonio Madrid
- Chronobiology Laboratory, College of Biology, University of Murcia, IMIB-Arrixaca, 30100, Murcia, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal research group, Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), ISCIII, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | - Pedro Javier Camello
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain
| | - Maria Jose Pozo
- Department of Physiology, Faculty of Nursing and Occupational Therapy, University of Extremadura, 10003, Caceres, Spain.
| |
Collapse
|
16
|
Zhu J, Dong X, Liu Q, Wu C, Wang Q, Long Z, Li L. Hydrophobic bile acids relax rat detrusor contraction via inhibiting the opening of the Na⁺/Ca²⁺ exchanger. Sci Rep 2016; 6:21358. [PMID: 26892434 PMCID: PMC4759538 DOI: 10.1038/srep21358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
Hydrophobic bile acids (BAs) are thought to inhibit smooth muscle contractility in several organs. The present study was undertaken to investigate the effects of hydrophobic BAs on the detrusor contractility of rat bladder and to explore the possible mechanism. Lithocholic acid (LCA) treatment increased the micturition interval and induced a concentration-dependent relaxation of bladder detrusor strips. In addition, LCA reduced the concentration of intracellular free Ca(2+)([Ca(2+)]i) and inhibited both the outward and inward Na(+)/Ca(2+) exchanger (NCX) current (INCX) in primary isolated smooth muscle cells (SMCs). To further investigate the mechanism of action of LCA, several pharmacologic agents were used. We found that the NCX inhibitor 3',4'-Dichlorobenzamil (DCB) can significantly inhibit the relaxation of detrusor strips and a reduction of the [Ca(2+)]i induced by LCA, while the antagonist of muscarinic receptor and the agonist of the G protein-coupled bile acid receptor (TGR5) and the farnesoid X receptor (FXR) had no effect. In conclusion, these data suggest that the relaxation of rat detrusor induced by hydrophobic BAs is mediated by NCX. Further research is needed to carry out to demonstrate the possible pathway and provide a potential new strategy to investigation for the treatment of the low urinary tract syndromes.
Collapse
Affiliation(s)
- Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chao Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhou Long
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
17
|
Ito H, Aizawa N, Sugiyama R, Watanabe S, Takahashi N, Tajimi M, Fukuhara H, Homma Y, Kubota Y, Andersson KE, Igawa Y. Functional role of the transient receptor potential melastatin 8 (TRPM8) ion channel in the urinary bladder assessed by conscious cystometry andex vivomeasurements of single-unit mechanosensitive bladder afferent activities in the rat. BJU Int 2015; 117:484-94. [DOI: 10.1111/bju.13225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hiroki Ito
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
- Department of Urology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Naoki Aizawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Rino Sugiyama
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | | | | | | | - Hiroshi Fukuhara
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yukio Homma
- Department of Urology; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| | - Yoshinobu Kubota
- Department of Urology; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | | | - Yasuhiko Igawa
- Department of Continence Medicine; The University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
18
|
Effects of monoterpenes on ion channels of excitable cells. Pharmacol Ther 2015; 152:83-97. [PMID: 25956464 DOI: 10.1016/j.pharmthera.2015.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Monoterpenes are a structurally diverse group of phytochemicals and a major constituent of plant-derived 'essential oils'. Monoterpenes such as menthol, carvacrol, and eugenol have been utilized for therapeutical purposes and food additives for centuries and have been reported to have anti-inflammatory, antioxidant and analgesic actions. In recent years there has been increasing interest in understanding the pharmacological actions of these molecules. There is evidence indicating that monoterpenes can modulate the functional properties of several types of voltage and ligand-gated ion channels, suggesting that some of their pharmacological actions may be mediated by modulations of ion channel function. In this report, we review the literature concerning the interaction of monoterpenes with various ion channels.
Collapse
|