1
|
Uhl B, Wölfling M, Bässler C. Mediterranean moth diversity is sensitive to increasing temperatures and drought under climate change. Sci Rep 2022; 12:14473. [PMID: 36008549 PMCID: PMC9411567 DOI: 10.1038/s41598-022-18770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Climate change affects ecosystems worldwide and is threatening biodiversity. Insects, as ectotherm organisms, are strongly dependent on the thermal environment. Yet, little is known about the effects of summer heat and drought on insect diversity. In the Mediterranean climate zone, a region strongly affected by climate change, hot summers might have severe effects on insect communities. Especially the larval stage might be sensitive to thermal variation, as larvae—compared to other life stages—cannot avoid hot temperatures and drought by dormancy. Here we ask, whether inter-annual fluctuations in Mediterranean moth diversity can be explained by temperature (TLarv) and precipitation during larval development (HLarv). To address our question, we analyzed moth communities of a Mediterranean coastal forest during the last 20 years. For species with summer-developing larvae, species richness was significantly negatively correlated with TLarv, while the community composition was affected by both, TLarv and HLarv. Therefore, summer-developing larvae seem particularly sensitive to climate change, as hot summers might exceed the larval temperature optima and drought reduces food plant quality. Increasing frequency and severity of temperature and drought extremes due to climate change, therefore, might amplify insect decline in the future.
Collapse
Affiliation(s)
- Britta Uhl
- Institute for Ecology, Evolution and Diversity, Conservation Biology, Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | | | - Claus Bässler
- Institute for Ecology, Evolution and Diversity, Conservation Biology, Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Nationalpark Bayerischer Wald, 94481, Grafenau, Germany
| |
Collapse
|
2
|
Local adaptation to climate anomalies relates to species phylogeny. Commun Biol 2022; 5:143. [PMID: 35177761 PMCID: PMC8854402 DOI: 10.1038/s42003-022-03088-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Climatic anomalies are increasing in intensity and frequency due to rapid rates of global change, leading to increased extinction risk for many species. The impacts of anomalies are likely to vary between species due to different degrees of sensitivity and extents of local adaptation. Here, we used long-term butterfly monitoring data of 143 species across six European bioclimatic regions to show how species’ population dynamics have responded to local or globally-calculated climatic anomalies, and how species attributes mediate these responses. Contrary to expectations, degree of apparent local adaptation, estimated from the relative population sensitivity to local versus global anomalies, showed no associations with species mobility or reproductive rate but did contain a strong phylogenetic signal. The existence of phylogenetically-patterned local adaptation to climate has important implications for forecasting species responses to current and future climatic conditions and for developing appropriate conservation practices. Melero et al. investigate butterfly responses to climatic anomalies from long-term monitoring observations in the field. They found the degree of adaptation to local fluctuations in climate had a strong phylogenetic signal but was not associated with mobility or reproductive rate of a species.
Collapse
|
3
|
Degut A, Fischer K, Quque M, Criscuolo F, Michalik P, Beaulieu M. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. J Exp Biol 2022; 225:273908. [PMID: 34989809 DOI: 10.1242/jeb.243724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Within populations, phenotypic plasticity may allow adaptive phenotypic variation in response to selection generated by environmental heterogeneity. For instance, in multivoltine species, seasonal changes between and within generations may trigger morphological and physiological variation enhancing fitness under different environmental conditions. These seasonal changes may irreversibly affect adult phenotypes when experienced during development. Yet, the irreversible effects of developmental plasticity on adult morphology have rarely been linked to life-history traits even though they may affect different fitness components such as reproduction, mobility and self-maintenance. To address this issue, we raised larvae of Pieris napi butterflies under warm or cool conditions to subsequently compare adult performance in terms of reproduction performance (as assessed through fecundity), displacement capacity (as assessed through flight propensity and endurance) and self-maintenance (as assessed through the measurement of oxidative markers). As expected in ectotherms, individuals developed faster under warm conditions and were smaller than individuals developing under cool conditions. They also had more slender wings and showed a higher wing surface ratio. These morphological differences were associated with changes in the reproductive and flight performances of adults, as individuals developing under warm conditions laid fewer eggs and flew larger distances. Accordingly, the examination of their oxidative status suggested that individuals developing under warm conditions invested more strongly into self-maintenance than individuals developing under cool conditions (possibly at the expense of reproduction). Overall, our results indicate that developmental conditions have long-term consequences on several adult traits in butterflies. This plasticity likely acts on life history strategies for each generation to keep pace with seasonal variations and may facilitate acclimation processes in the context of climate change.
Collapse
Affiliation(s)
- Anaïs Degut
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.,Institute for Integrated Sciences, University of Koblenz-Landau, Universität Str. 1, 56070 Koblenz, Germany
| | - Martin Quque
- Institut Pluridisciplinaire Hubert Curien
- IPHC · Department of Ecology, Physiology and Ethology, Strasbourg, France
| | - François Criscuolo
- Institut Pluridisciplinaire Hubert Curien
- IPHC · Department of Ecology, Physiology and Ethology, Strasbourg, France
| | - Peter Michalik
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany.,German Oceanographic Museum, Katharinenberg 14-20, 18439 Stralsund, Germany
| |
Collapse
|
4
|
Greenwell MP, Botham MS, Bruford MW, Day JC, Evans LC, Gibbs M, Middlebrook I, Roy DB, Watts K, Oliver TH. The influence of chalk grasslands on butterfly phenology and ecology. Ecol Evol 2021; 11:14521-14539. [PMID: 34765123 PMCID: PMC8571638 DOI: 10.1002/ece3.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
The influence of large-scale variables such as climate change on phenology has received a great deal of research attention. However, local environmental factors also play a key role in determining the timing of species life cycles. Using the meadow brown butterfly Maniola jurtina as an example, we investigate how a specific habitat type, lowland calcareous grassland, can affect the timing of flight dates. Although protracted flight periods have previously been reported in populations on chalk grassland sites in the south of England, no attempt has yet been made to quantify this at a national level, or to assess links with population genetics and drought tolerance. Using data from 539 sites across the UK, these differences in phenology are quantified, and M. jurtina phenology is found to be strongly associated with both site geology and topography, independent of levels of abundance. Further investigation into aspects of M. jurtina ecology at a subset of sites finds no genetic structuring or drought tolerance associated with these same site conditions.
Collapse
Affiliation(s)
| | | | | | - John C. Day
- UK Centre for Ecology and HydrologyWallingfordUK
| | - Luke C. Evans
- School of Biological SciencesUniversity of ReadingReadingUK
| | | | | | - David B. Roy
- UK Centre for Ecology and HydrologyWallingfordUK
| | | | - Tom H. Oliver
- School of Biological SciencesUniversity of ReadingReadingUK
| |
Collapse
|
5
|
Hayes T, López-Martínez G. Resistance and survival to extreme heat shows circadian and sex-specific patterns in A cavity nesting bee. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100020. [PMID: 36003599 PMCID: PMC9387514 DOI: 10.1016/j.cris.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
The pollination services provided by insects have been a crucial part of evolution and survival for many species, including humans. For bees to be efficient pollinators they must survive the environmental insults they face daily. Thus, looking into the short- and long-term effects of heat exposure on bee performance provides us with a foundation for investigating how stress can affect insect pollination. Solitary bees are a great model for investigating the effects of environmental stress on pollinators because the vast majority of insect pollinator species are solitary rather than social. One of the most pervasive environmental stressors to insects is temperature. Here we investigated how a one-hour heat shock affected multiple metrics of performance in the alfalfa leafcutting bee, Megachile rotundata. We found that a short heat shock (1hr at 45°C) can delay adult emergence in males but not females. Bee pupae were rather resilient to a range of high temperature exposures that larvae did not survive. Following heat shock (1hr at 50°C), adult bees were drastically less active than untreated bees, and this reduction in activity was evident over several days. Heat shock also led to a decrease in bee survival and longevity. Additionally, we found a connection between starvation survival after heat shock and time of exposure, where bees exposed in the morning survived longer than those exposed in the afternoon, when they would normally experience heat shock in the field. These data suggest that there is an unexplored daily/circadian component to the stress response in bees likely similar to that seen in flies, nematodes, and plants which is constitutive or preemptive rather than restorative. Taken together our data indicate that single heat shock events have strong potential to negatively impact multiple life history traits correlated with reproduction and fitness.
Collapse
Affiliation(s)
- Tayia Hayes
- Department of Natural Sciences and Environmental Health, Mississippi Valley State University, Itta Bena, MS 38941
| | | |
Collapse
|
6
|
Garnas JR, Vann KE, Hurley BP. Biotic and abiotic effects on density, body size, sex ratio, and survival in immature stages of the European woodwasp, Sirex noctilio. Ecol Evol 2020; 10:13752-13766. [PMID: 33391678 PMCID: PMC7771164 DOI: 10.1002/ece3.6966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/09/2022] Open
Abstract
Resource quality can have direct or indirect effects on female oviposition choice, offspring growth and survival, and ultimately on body size and sex ratio. We examined these patterns in Sirex noctilio Fabricus, the globally invasive European pine woodwasp, in South African Pinus patula plantations. We studied how tree position as well as natural variation in biotic and abiotic factors influenced sex-specific density, larval size, tunnel length, male proportion, and survival across development. Twenty infested trees divided into top, middle, and bottom sections were sampled at three time points during larval development. We measured moisture content, bluestain fungal colonization, and co-occurring insect density and counted, measured, and sexed all immature wasps. A subset of larval tunnels was measured to assess tunnel length and resource use efficiency (tunnel length as a function of immature wasp size). Wasp density increased from the bottoms to the tops of trees for both males and females. However, the largest individuals and the longest tunnels were found in bottom sections. Male bias was strong (~10:1) and likewise differed among sections, with the highest proportion in the middle and top sections. Sex ratios became more strongly male biased due to high female mortality, especially in top and middle sections. Biotic and abiotic factors such as colonization by Diplodia sapinea, weevil (Pissodes sp.) density, and wood moisture explained modest residual variation in our primary mixed effects models (0%-22%). These findings contribute to a more comprehensive understanding of sex-specific resource quality for S. noctilio and of how variation in key biotic and abiotic factors can influence body size, sex ratio, and survival in this economically important woodwasp.
Collapse
Affiliation(s)
- Jeff R. Garnas
- Department of Natural Resources and the Environment (NREN)University of New HampshireDurhamNHUSA
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Katie E. Vann
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
- Present address:
WeyerhaeuserWeyerhaeuser NRVanceboroNCUSA
| | - Brett P. Hurley
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
- Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| |
Collapse
|
7
|
Mukherjee S, Basu P, Saha GK, Aditya G. Food dependent changes of the life history traits of Catopsilia pyranthe (Lepidoptera: Pieridae). INVERTEBR REPROD DEV 2020. [DOI: 10.1080/07924259.2020.1769747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Parthiba Basu
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Goutam K. Saha
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Gautam Aditya
- Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
8
|
Sexual differences in age-dependent survival and life span of adults in a natural butterfly population. Sci Rep 2020; 10:10394. [PMID: 32587296 PMCID: PMC7316833 DOI: 10.1038/s41598-020-66922-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Adult survival and longevity in insects are key life-history traits, but their variation between sexes and individuals in natural populations is largely unexplored. Sexual divergence in senescence, the decline in survival with age is also poorly understood. Based on an intensive mark-recapture dataset of the butterfly Polyommatus daphnis, we aimed to assess whether adult survival is age-dependent, and to estimate life span distribution and abundance of males and females using Cormack-Jolly-Seber and Jolly-Seber models. Female survival slightly increased with date of emergence and slightly decreased with age, while male survival considerably declined with age. Mean life span of females (12.7 days) was ~50% higher than that of males (8.5 days), but two times higher if only the oldest 5% of each sex was considered (39 vs.19 days). Abundance of females (358 ± 14) and males (359 ± 11) was similar, but peak abundance of males preceded that of females by 11 days. Our results suggest that senescence is much more rapid in males than in females in this butterfly, which is in agreement with sexual selection theory. We also conclude that estimating life span distributions provides much more valuable information on the demography of natural populations than simply reporting the mean life span.
Collapse
|
9
|
Lipovšek S, Leitinger G, Janžekovič F, Kozel P, Dariš B, Perc M, Devetak D, Weiland N, Novak T. Towards understanding partial adaptation to the subterranean habitat in the European cave spider, Meta menardi: An ecocytological approach. Sci Rep 2019; 9:9121. [PMID: 31235705 PMCID: PMC6591380 DOI: 10.1038/s41598-019-45291-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
The European cave spider, Meta menardi, is a representative of the troglophiles, i.e. non-strictly subterranean organisms. Our aim was to interpret the cytological results from an ecological perspective, and provide a synthesis of the hitherto knowledge about M. menardi into a theory of key features marking it a troglophile. We studied ultrastructural changes of the midgut epithelial cells in individuals spending winter under natural conditions in caves, using light microscopy and TEM. The midgut diverticula epithelium consisted of secretory cells, digestive cells and adipocytes. During winter, gradual vacuolization of some digestive cells appeared, and some necrotic digestive cells and necrotic adipocytes appeared. This cytological information completes previous studies on M. menardi starved under controlled conditions in the laboratory. In experimental starvation and natural winter conditions, M. menardi gradually exploit reserve compounds from spherites, protein granules and through autophagy, and energy-supplying lipids and glycogen, as do many overwintering arthropods. We found no special cellular response to living in the habitat. Features that make it partly adapted to the subterranean habitat include starvation hardiness as a possible preadaptation, an extremely opportunistic diet, a partly reduced orb, tracking and capturing prey on bare walls and partly reduced tolerance to below-zero temperatures.
Collapse
Affiliation(s)
- Saška Lipovšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, University of Maribor, 2000, Maribor, Slovenia
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Franc Janžekovič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Peter Kozel
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Karst Research Institute ZRC SAZU, Titov trg 2, 6230, Postojna, Slovenia
- UNESCO Chair on Karst Education, University of Nova Gorica, Glavni trg 8, 5271, Vipava, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia
| | - Matjaž Perc
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Dušan Devetak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Nina Weiland
- Vodovodna ulica 27, 2352, Selnica ob Dravi, Slovenia
| | - Tone Novak
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.
| |
Collapse
|
10
|
Towarnicki SG, Ballard JWO. Mitotype Interacts With Diet to Influence Longevity, Fitness, and Mitochondrial Functions in Adult Female Drosophila. Front Genet 2018; 9:593. [PMID: 30555517 PMCID: PMC6284043 DOI: 10.3389/fgene.2018.00593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA) and the dietary macronutrient ratio are known to influence a wide range of phenotypic traits including longevity, fitness and energy production. Commonly mtDNA mutations are posited to be selectively neutral or reduce fitness and, to date, no selectively advantageous mtDNA mutations have been experimentally demonstrated in adult female Drosophila. Here we propose that a ND V161L mutation interacted with diets differing in their macronutrient ratios to influence organismal physiology and mitochondrial traits, but further studies are required to definitively show no linked mtDNA mutations are functionally significant. We utilized two mtDNA types (mitotypes) fed either a 1:2 Protein: Carbohydrate (P:C) or 1:16 P:C diet. When fed the former diet, Dahomey females harboring the V161L mitotype lived longer than those with the Alstonville mitotype and had higher climbing, basal reactive oxygen species (ROS) and elevated glutathione S-transferase E1 expression. The short lived Alstonville females ate more, had higher walking speed and elevated mitochondrial functions as suggested by respiratory control ratio (RCR), mtDNA copy number and expression of mitochondrial transcription termination factor 3. In contrast, Dahomey females fed 1:16 P:C were shorter lived, had higher fecundity, walking speed and mitochondrial functions. They had reduced climbing. This result suggests that mtDNA cannot be assumed to be a strictly neutral evolutionary marker when the dietary macronutrient ratio of a species varies over time and space and supports the hypothesis that mtDNA diversity may reflect the amount of time since the last selective sweep rather than strictly demographic processes.
Collapse
Affiliation(s)
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Tejeda MT, Arredondo J, Liedo P, Pérez-Staples D, Ramos-Morales P, Díaz-Fleischer F. Reasons for success: Rapid evolution for desiccation resistance and life-history changes in the polyphagous flyAnastrepha ludens. Evolution 2016; 70:2583-2594. [DOI: 10.1111/evo.13070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Marco T. Tejeda
- INBIOTECA; Universidad Veracruzana; Xalapa Veracruz 91090 México
- Departamento de Cría; Programa Moscamed acuerdo SAGARPA-IICA; Metapa de Domínguez Chiapas 30860 México
| | - José Arredondo
- Departamento de Biología, Ecología y Comportamiento; Desarrollo de Métodos; Programa Moscafrut acuerdo SAGARPA-IICA Metapa de Domínguez Chiapas 30860 México
| | - Pablo Liedo
- El Colegio de la Frontera Sur; Tapachula Chiapas 30700 México
| | | | - Patricia Ramos-Morales
- UNAM, Facultad de Ciencias; Laboratorio de Genética y Toxicología Ambiental and Drosophila Stock Center México; Distrito Federal 04510 México
| | | |
Collapse
|