1
|
Sjöling Å, Ashokkumar E, Bjurnemark C, Thorell K, Xiao X, von Mentzer A, Hu YOO, Zhu B, Joffré E. Survival and adaptative strategies of Enterotoxigenic E. coli (ETEC) to the freshwater environment. RESEARCH SQUARE 2025:rs.3.rs-6252921. [PMID: 40166005 PMCID: PMC11957205 DOI: 10.21203/rs.3.rs-6252921/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Waterborne pathogenic enterobacteria are adapted for infection of human hosts but can also survive for long periods in water environments. To understand how the human pathogen enterotoxigenic Escherichia coli (ETEC) adapts to acute and long-term hypo-osmotic stress and oligotrophic water conditions, this study aimed to explore the effects of short- and long-term freshwater exposure on ETEC isolates by examining transcriptional responses, survival mechanisms, and antibiotic resistance development. RNA sequencing revealed that over 1,700 genes were differentially expressed, with significant transcriptional reprogramming occurring early within the first two hours of water exposure. Early responses included activation of catabolic pathways for nitrogen and carbon assimilation and downregulation of energy metabolism and anabolic processes to mitigate osmotic stress. Notably, the arnBCADTEF operon was upregulated, facilitating lipid A modification and membrane enforcement which also confers colistin tolerance. ETEC carries virulence genes on large plasmids which cause diarrheal disease in humans. Plasmid gene analysis indicated repression of virulence genes and upregulation of mobilization and toxin-antitoxin systems during the first 48 hours in water, suggesting a shift towards genetic adaptability. Prolonged exposure over weeks enhanced biofilm formation capacity and adherence to human epithelial cells, and ETEC isolates evolved towards increased colistin resistance. These findings stress the significant influence of freshwater on ETEC adaptive strategies, suggesting a role of waterborne transmission for human pathogens in development of persistence, biofilm formation capability and the emergence of antibiotic tolerance.
Collapse
Affiliation(s)
- Åsa Sjöling
- Dept Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eswari Ashokkumar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Biomedicum A8, Stockholm, Sweden
| | - Caroline Bjurnemark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Biomedicum A8, Stockholm, Sweden
| | - Kaisa Thorell
- Dept Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Xue Xiao
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Yue O O Hu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Biomedicum A8, Stockholm, Sweden
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Enrique Joffré
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Biomedicum A8, Stockholm, Sweden
| |
Collapse
|
2
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Yamamoto K, Tsujimura Y, Ato M. Catheter-associated Mycobacterium intracellulare biofilm infection in C3HeB/FeJ mice. Sci Rep 2023; 13:17148. [PMID: 37816786 PMCID: PMC10564925 DOI: 10.1038/s41598-023-44403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023] Open
Abstract
Non-tuberculosis mycobacterial (NTM) diseases are steadily increasing in prevalence and mortality worldwide. Mycobacterium avium and M. intracellulare, the two major pathogens of NTM diseases, are resistant to antibiotics, and chlorine, necessitating their capacity to survive in natural environments (e.g. soil and rivers) and disinfected municipal water. They can also form biofilms on artificial surfaces to provide a protective barrier and habitat for bacilli, which can cause refractory systemic disseminated NTM disease. Therefore, preventing biofilm formation by these pathogens is crucial; however, not many in vivo experimental systems and studies on NTM biofilm infection are available. This study develops a mouse model of catheter-associated systemic disseminated disease caused by M. intracellulare that reproduces the pathophysiology of catheter-associated infections observed in patients undergoing peritoneal dialysis. In addition, the bioluminescence system enabled noninvasive visualization of the amount and distribution of bacilli in vivo and conveniently examine the efficacy of antimicrobials. Furthermore, the cellulose-based biofilms, which were extensively formed in the tissue surrounding the catheter insertion site, reduced drug therapy effectiveness. Overall, this study provides insights into the cause of the drug resistance of NTM and may guide the development of new therapies for NTM diseases.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
5
|
Schumacher K, Brameyer S, Jung K. Bacterial acid stress response: from cellular changes to antibiotic tolerance and phenotypic heterogeneity. Curr Opin Microbiol 2023; 75:102367. [PMID: 37633223 DOI: 10.1016/j.mib.2023.102367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Most bacteria are neutralophiles but can survive fluctuations in pH in their environment. Herein, we provide an overview of the adaptation of several human, soil, and food bacteria to acid stress, mainly based on next-generation sequencing studies, highlighting common and specific strategies. We also discuss the interplay between acid stress response and antibiotic tolerance, as well as the response of individual cells.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
6
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
7
|
Ogawa A, Kojima F, Miyake Y, Yoshimura M, Ishijima N, Iyoda S, Sekine Y, Yamanaka Y, Yamamoto K. Regulation of constant cell elongation and Sfm pili synthesis in Escherichia coli via two active forms of FimZ orphan response regulator. Genes Cells 2022; 27:657-674. [PMID: 36057789 DOI: 10.1111/gtc.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Escherichia coli (E. coli) has multiple copies of the chaperone-usher (CU) pili operon in five fimbria groups: CU pili, curli, type IV pili, type III secretion pili, and type IV secretion pili. Commensal E. coli K-12 contains 12 CU pili operons. Among these operons, Sfm is expressed by the sfmACDHF operon. Transcriptome analyses, reporter assays, and chromatin immunoprecipitation PCR analyses reported that FimZ directly binds to and activates the sfmA promoter, transcribing sfmACDHF. In addition, FimZ regularly induces constant cell elongation in E. coli, which is required for F-type ATPase function. The bacterial two-hybrid system showed a specific interaction between FimZ and the α subunit of the cytoplasmic F1 domain of F-type ATPase. Studies performed using mutated FimZs have revealed two active forms, I and II. Active form I is required for constant cell elongation involving amino acid residues K106 and D109. Active form II additionally required D56, a putative phosphorylation site, to activate the sfmA promoter. The chromosomal fimZ was hardly expressed in parent strain but functioned in phoB and phoP double-gene knockout strains. These insights may help to understand bacterial invasion restricted host environments by the sfm γ-type pili.
Collapse
Affiliation(s)
- Ayano Ogawa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Fumika Kojima
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Miho Yoshimura
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Nippon Dental University School of Dentistry, Tokyo, Japan
| | | |
Collapse
|
8
|
The Rcs System Contributes to the Motility Defects of the Twin-Arginine Translocation System Mutant of Extraintestinal Pathogenic Escherichia coli. J Bacteriol 2022; 204:e0061221. [PMID: 35311558 DOI: 10.1128/jb.00612-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flagellum-mediated bacterial motility is important for bacteria to take up nutrients, adapt to environmental changes, and establish infection. The twin-arginine translocation system (Tat) is an important protein export system, playing a critical role in bacterial physiology and pathogenesis. It has been observed for a long time that the Tat system is critical for bacterial motility. However, the underlying mechanism remains unrevealed. In this study, a comparative transcriptomics analysis was performed with extraintestinal pathogenic Escherichia coli (ExPEC), which identified a considerable number of genes differentially expressed when the Tat system was disrupted. Among them, a large proportion of flagellar biosynthesis genes showed downregulation, indicating that transcription regulation plays an important role in mediating the motility defects. We further identified three Tat substrate proteins, MdoD, AmiA, and AmiC, that were responsible for the nonmotile phenotype. The Rcs system was deleted in the Δtat, the ΔmdoD, and the ΔamiAΔamiC strains, which restored the motility of ΔmdoD and partially restored the motility of Δtat and ΔamiAΔamiC. The flagella were also observed in all of the ΔtatΔrcsDB, ΔmdoDΔrcsDB, and ΔamiAΔamiCΔrcsDB strains, but not in the Δtat, ΔmdoD, and ΔamiAΔamiC strains, by using transmission electron microscopy. Quantitative reverse transcription-PCR data revealed that the regulons of the Rcs system displayed differential expression in the tat mutant, indicating that the Rcs signaling was activated. Our results suggest that the Rcs system plays an important role in mediating the motility defects of the tat mutant of ExPEC. IMPORTANCE The Tat system is an important protein export system critical for bacterial physiology and pathogenesis. It has been observed for a long time that the Tat system is critical for bacterial motility. However, the underlying mechanism remains unrevealed. In this study, we combine transcriptomics analysis and bacterial genetics, which reveal that transcription regulation plays an important role in mediating the motility defects of the tat mutant of extraintestinal pathogenic Escherichia coli. The Tat substrate proteins responsible for the motility defects are identified. We further show that the Rcs system contributes to the motility suppression. We for the first time reveal the link between the Tat system and bacterial motility, which is important for understanding the physiological functions of the Tat system.
Collapse
|
9
|
Bhowmik P, Rajagopal S, Hmar RV, Singh P, Saxena P, Amar P, Thomas T, Ravishankar R, Nagaraj S, Katagihallimath N, Sarangapani RK, Ramachandran V, Datta S. Validated In Silico Model for Biofilm Formation in Escherichia coli. ACS Synth Biol 2022; 11:713-731. [PMID: 35025506 DOI: 10.1021/acssynbio.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.
Collapse
Affiliation(s)
- Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Rothangamawi Victoria Hmar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Purnima Singh
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Pragya Saxena
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Prakruthi Amar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Teby Thomas
- St. John’s Research Institute, Bengaluru, Karnataka 560034, India
| | - Rajani Ravishankar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Savitha Nagaraj
- St. John’s Medical College, Bengaluru, Karnataka 560034, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ramanujan Kadambi Sarangapani
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| |
Collapse
|
10
|
The hdeD Gene Represses the Expression of Flagella Biosynthesis via LrhA in Escherichia coli K-12. J Bacteriol 2021; 204:e0042021. [PMID: 34694904 DOI: 10.1128/jb.00420-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagella synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagella synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagella biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagella biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagella systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.
Collapse
|
11
|
Inada S, Okajima T, Utsumi R, Eguchi Y. Acid-Sensing Histidine Kinase With a Redox Switch. Front Microbiol 2021; 12:652546. [PMID: 34093469 PMCID: PMC8174306 DOI: 10.3389/fmicb.2021.652546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
The EvgS/EvgA two-component signal transduction system in Escherichia coli is activated under mildly acidic pH conditions. Upon activation, this system induces the expression of a number of genes that confer acid resistance. The EvgS histidine kinase sensor has a large periplasmic domain that is required for perceiving acidic signals. In addition, we have previously proposed that the cytoplasmic linker region of EvgS is also involved in the activation of this sensor. The cytoplasmic linker region resembles a Per-ARNT-Sim (PAS) domain, which is known to act as a molecular sensor that is responsive to chemical and physical stimuli and regulates the activity of diverse effector domains. Our EvgS/EvgA reporter assays revealed that under EvgS-activating mildly acidic pH conditions, EvgS was activated only during aerobic growth conditions, and not during anaerobic growth. Studies using EvgS mutants revealed that C671A and C683A mutations in the cytoplasmic PAS domain activated EvgS even under anaerobic conditions. Furthermore, among the electron carriers of the electron transport chain, ubiquinone was required for EvgS activation. The present study proposes a model of EvgS activation by oxidation and suggests that the cytoplasmic PAS domain serves as an intermediate redox switch for this sensor.
Collapse
Affiliation(s)
- Shinya Inada
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Toshihide Okajima
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ryutaro Utsumi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Yoko Eguchi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
12
|
Serdyukov DS, Goryachkovskaya TN, Mescheryakova IA, Bannikova SV, Kuznetsov SA, Cherkasova OP, Popik VM, Peltek SE. Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. BIOMEDICAL OPTICS EXPRESS 2020; 11:5258-5273. [PMID: 33014613 PMCID: PMC7510871 DOI: 10.1364/boe.400432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Three novel fluorescent biosensors sensitive to terahertz (THz) radiation were developed via transformation of Escherichia coli (E. coli) cells with plasmids, in which a promotor of genes matA, safA, or chbB controls the expression of a fluorescent protein. The biosensors were exposed to THz radiation from two sources: a high-intensity pulsed short-wave free electron laser and a low-intensity continuous long-wave IMPATT-diode-based device. The threshold and dynamics of fluorescence were found to depend on radiation parameters and exposure time. Heat shock or chemical stress yielded the absence of fluorescence induction. The biosensors are evaluated to be suitable for studying influence of THz radiation on the activity of gene networks related with considered gene promoters.
Collapse
Affiliation(s)
- Danil S. Serdyukov
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatiana N. Goryachkovskaya
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Irina A. Mescheryakova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V. Bannikova
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergei A. Kuznetsov
- Physics Department, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
- Technological Design Institute of Applied Microelectronics, Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 2/1 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, 15B Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vasiliy M. Popik
- Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, 11 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Laboratory of Molecular Biotechnologies of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Kurchatov Genomics Center of Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
O'Boyle N, Turner NCA, Roe AJ, Connolly JPR. Plastic Circuits: Regulatory Flexibility in Fine Tuning Pathogen Success. Trends Microbiol 2020; 28:360-371. [PMID: 32298614 DOI: 10.1016/j.tim.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens employ diverse fitness and virulence mechanisms to gain an advantage in competitive niches. These lifestyle-specific traits require integration into the regulatory network of the cell and are often controlled by pre-existing transcription factors. In this review, we highlight recent advances that have been made in characterizing this regulatory flexibility in prominent members of the Enterobacteriaceae. We focus on the direct global interactions between transcription factors and their target genes in pathogenic Escherichia coli and Salmonella revealed using chromatin immunoprecipitation coupled with next-generation sequencing. Furthermore, the implications and advantages of such regulatory adaptations in benefiting distinct pathogenic lifestyles are discussed.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Natasha C A Turner
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrew J Roe
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
| | - James P R Connolly
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
| |
Collapse
|
14
|
Yamanaka Y, Watanabe H, Yamauchi E, Miyake Y, Yamamoto K. Measurement of the Promoter Activity in Escherichia coli by Using a Luciferase Reporter. Bio Protoc 2020; 10:e3500. [PMID: 33654727 DOI: 10.21769/bioprotoc.3500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/02/2022] Open
Abstract
The reporter system is widely used technique for measuring promoter activity in bacterial cells. Until now, a number of reporter system have been developed, but the bioluminescent reporter constructed from the bacterial luciferase genes is one of the useful systems for measuring in vivo dynamics of gene expression. The introduced bioluciferase lux reporter enables easy, fast, and sensitive measurement of the promoter activity without cell lysis because the substrates of bioluminescent reaction are synthesized inside the bacterial cell, thereby allowing low-cost experiments. This protocol describes a high throughput technique to measure the promoter activity in Escherichia coli K-12 using the lux reporter system.
Collapse
Affiliation(s)
- Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan.,Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Erika Yamauchi
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan.,Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| |
Collapse
|
15
|
Miyake Y, Inaba T, Watanabe H, Teramoto J, Yamamoto K, Ishihama A. Regulatory roles of pyruvate-sensing two-component system PyrSR (YpdAB) inEscherichia coliK-12. FEMS Microbiol Lett 2019; 366:5281236. [DOI: 10.1093/femsle/fnz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/08/2019] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei 184-8584, Tokyo, Japan
| | - Tatsuya Inaba
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei 184-8584, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei 184-8584, Tokyo, Japan
| | - Jun Teramoto
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei 184-8584, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei 184-8584, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Kogagnei 184-0003, Tokyo, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei 184-8584, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Kogagnei 184-0003, Tokyo, Japan
| |
Collapse
|
16
|
Shimada T, Yamamoto K, Nakano M, Watanabe H, Schleheck D, Ishihama A. Regulatory role of CsqR (YihW) in transcription of the genes for catabolism of the anionic sugar sulfoquinovose (SQ) in Escherichia coli K-12. MICROBIOLOGY-SGM 2018; 165:78-89. [PMID: 30372406 DOI: 10.1099/mic.0.000740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units. De-repression of the yih operons was found to be under the control of SQ as inducer, but not of lactose, glucose or galactose. Furthermore, a mode of its cooperative DNA binding was suggested for YihW by atomic force microscopy. Hence, as a regulator of the catabolism of SQ, we renamed YihW as CsqR.
Collapse
Affiliation(s)
- Tomohiro Shimada
- 1Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Kaneyoshi Yamamoto
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| | - Masahiro Nakano
- 4Kyoto University, Institute for Frontier Life and Medical Sciences, Sakyo-ku, Kyoto, Japan
| | - Hiroki Watanabe
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - David Schleheck
- 5Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Akira Ishihama
- 3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| |
Collapse
|
17
|
Yamanaka Y, Winardhi RS, Yamauchi E, Nishiyama SI, Sowa Y, Yan J, Kawagishi I, Ishihama A, Yamamoto K. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation. J Biol Chem 2018; 293:9496-9505. [PMID: 29695505 DOI: 10.1074/jbc.ra117.001425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/20/2018] [Indexed: 11/06/2022] Open
Abstract
The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing.
Collapse
Affiliation(s)
- Yuki Yamanaka
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan.,the Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore, and
| | - Ricksen S Winardhi
- the Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore, and.,the Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Erika Yamauchi
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - So-Ichiro Nishiyama
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Yoshiyuki Sowa
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Jie Yan
- the Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore, and.,the Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Ikuro Kawagishi
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan.,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| | - Kaneyoshi Yamamoto
- From the Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan, .,the Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
18
|
Shimada T, Momiyama E, Yamanaka Y, Watanabe H, Yamamoto K, Ishihama A. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12. FEMS Microbiol Lett 2018; 364:4566516. [PMID: 29087459 DOI: 10.1093/femsle/fnx220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eri Momiyama
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Yuki Yamanaka
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Kajino-cho 3-7-2, Koganei, Tokyo 184-0003, Japan
| |
Collapse
|
19
|
Yamamoto K, Yamanaka Y, Shimada T, Sarkar P, Yoshida M, Bhardwaj N, Watanabe H, Taira Y, Chatterji D, Ishihama A. Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome. mSystems 2018; 3:e00172-17. [PMID: 29468196 PMCID: PMC5811629 DOI: 10.1128/msystems.00172-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ-defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ-deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β', of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Yuki Yamanaka
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| | - Tomohiro Shimada
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Paramita Sarkar
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Neerupma Bhardwaj
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Hiroki Watanabe
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yuki Taira
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Dipankar Chatterji
- Indian Institute of Science, Molecular Biophysics Unit, Bangalore, India
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Tokyo, Japan
| |
Collapse
|
20
|
Guo XP, Sun YC. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Front Microbiol 2017; 8:2014. [PMID: 29089936 PMCID: PMC5651002 DOI: 10.3389/fmicb.2017.02014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Rcs phosphorelay system, a non-orthodox two-component regulatory system, integrates environmental signals, regulates gene expression, and alters the physiological behavior of members of the Enterobacteriaceae family of Gram-negative bacteria. Recent studies of Rcs system focused on protein interactions, functions, and the evolution of Rcs system components and its auxiliary regulatory proteins. Herein we review the latest advances on the Rcs system proteins, and discuss the roles that the Rcs system plays in the environmental adaptation of various Enterobacteriaceae species.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. Characterization of LipN (Rv2970c) of Mycobacterium Tuberculosis H37Rv and its Probable Role in Xenobiotic Degradation. J Cell Biochem 2016. [PMID: 26212120 DOI: 10.1002/jcb.25285] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
LipN (Rv2970c) belongs to the Lip family of M. tuberculosis H37Rv and is homologous to the human Hormone Sensitive Lipase. The enzyme demonstrated preference for short carbon chain substrates with optimal activity at 45°C/pH 8.0 and stability between pH 6.0-9.0. The specific activity of the enzyme was 217 U/mg protein with pNP-butyrate as substrate. It hydrolyzed tributyrin to di- and monobutyrin. The active-site residues of the enzyme were confirmed to be Ser216, Asp316, and His346. Tetrahydrolipstatin, RHC-80267 and N-bromosuccinimide inhibited LipN enzyme activity completely. Interestingly, Trp145, a non active-site residue, demonstrated functional role to retain enzyme activity. The enzyme was localized in cytosolic fraction of M. tuberculosis H37Rv. The enzyme was able to synthesize ester of butyric acid, methyl butyrate, in presence of methanol. LipN was able to hydrolyze 4-hydroxyphenylacetate to hydroquinone. The gene was not expressed in in-vitro growth conditions while the expression of rv2970c gene was observed post 6h of macrophage infection by M. tuberculosis H37Ra. Under individual in-vitro stress conditions, the gene was expressed during acidic stress condition only. These findings suggested that LipN is a cytosolic, acid inducible carboxylesterase with no positional specificity in demonstrating activity with short carbon chain substrates. It requires Trp145, a non active site residue, for it's enzyme activity.
Collapse
Affiliation(s)
| | - Nandita Dogra
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Stuti Arya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurpreet Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gurdyal Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
22
|
Yamanaka Y, Shimada T, Yamamoto K, Ishihama A. Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol. Microbiology (Reading) 2016; 162:1253-1264. [DOI: 10.1099/mic.0.000292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yuki Yamanaka
- Research Center for Micro-Nano Technology, Nano Technology, Koganei, Tokyo 184-8584, Japan
| | - Tomohiro Shimada
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Nano Technology, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
23
|
Pannen D, Fabisch M, Gausling L, Schnetz K. Interaction of the RcsB Response Regulator with Auxiliary Transcription Regulators in Escherichia coli. J Biol Chem 2015; 291:2357-70. [PMID: 26635367 DOI: 10.1074/jbc.m115.696815] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
The Rcs phosphorelay is a two-component signal transduction system that is induced by cell envelope stress. RcsB, the response regulator of this signaling system, is a pleiotropic transcription regulator, which is involved in the control of various stress responses, cell division, motility, and biofilm formation. RcsB regulates transcription either as a homodimer or together with auxiliary regulators, such as RcsA, BglJ, and GadE in Escherichia coli. In this study, we show that RcsB in addition forms heterodimers with MatA (also known as EcpR) and with DctR. Our data suggest that the MatA-dependent transcription regulation is mediated by the MatA-RcsB heterodimer and is independent of RcsB phosphorylation. Furthermore, we analyzed the relevance of amino acid residues of the active quintet of conserved residues, and of surface-exposed residues for activity of RcsB. The data suggest that the activity of the phosphorylation-dependent dimers, such as RcsA-RcsB and RcsB-RcsB, is affected by mutation of residues in the vicinity of the phosphorylation site, suggesting that a phosphorylation-induced structural change modulates their activity. In contrast, the phosphorylation-independent heterodimers BglJ-RcsB and MatA-RcsB are affected by only very few mutations. Heterodimerization of RcsB with various auxiliary regulators and their differential dependence on phosphorylation add an additional level of control to the Rcs system that is operating at the output level.
Collapse
Affiliation(s)
- Derk Pannen
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Maria Fabisch
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Lisa Gausling
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Karin Schnetz
- From the Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| |
Collapse
|
24
|
Yoshida M, Ishihama A, Yamamoto K. Cross talk in promoter recognition between six NarL-family response regulators of Escherichia coli two-component system. Genes Cells 2015; 20:601-12. [PMID: 26010043 DOI: 10.1111/gtc.12251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/21/2015] [Indexed: 12/01/2022]
Abstract
Bacterial two-component system (TCS) is composed of the sensor kinase (SK) and the response regulator (RR). After monitoring an environmental signal or condition, SK activates RR through phosphorylation, ultimately leading to the signal-dependent regulation of genome transcription. In Escherichia coli, a total of more than 30 SK-RR pairs exist, each forming a cognate signal transduction system. Cross talk of the signal transduction takes place at three stages: signal recognition by SK (stage 1); RR phosphorylation by SK (stage 2); and target recognition by RR (stage 3). Previously, we analyzed the stage 2 cross talk between the whole set of E. coli SK-RR pairs and found that the cross talk takes place for certain combinations. As an initial attempt to identify the stage 3 cross talk at the step of target promoter recognition by RR, we analyzed in this study the cross-recognition of target promoters by six NarL-family RRs, EvgA, NarL, NarP, RcsB, UhpA, and UvrY. Results of both in vivo and in vitro studies indicated that the stage 3 cross talk takes place for limited combinations, in particular, including a multifactor-regulated ydeP promoter.
Collapse
Affiliation(s)
- Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 185-8584, Japan
| | - Akira Ishihama
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 185-8584, Japan.,Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003, Japan
| |
Collapse
|
25
|
Yamamoto K, Nakano M, Ishihama A. Regulatory role of transcription factor SutR (YdcN) in sulfur utilization in Escherichia coli. Microbiology (Reading) 2015; 161:99-111. [DOI: 10.1099/mic.0.083550-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kaneyoshi Yamamoto
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| | - Masahiro Nakano
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
| | - Akira Ishihama
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo 185-8584, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 185-8584, Japan
| |
Collapse
|