1
|
Tsurusaki S, Kizana E. Mechanisms and Therapeutic Potential of Multiple Forms of Cell Death in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:13492. [PMID: 39769255 PMCID: PMC11728078 DOI: 10.3390/ijms252413492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI). MIRI occurs when blood flow and oxygen return to an ischemic area, causing excessive production of reactive oxygen species. While this reperfusion is critical for treating myocardial infarction, it inevitably causes cellular damage via oxidative stress. Furthermore, this cellular damage triggers multiple forms of cardiomyocyte death, which is the primary cause of inflammation, cardiac tissue remodeling, and ensuing heart failure. Therefore, understanding the molecular mechanisms of various forms of cell death in MIRI is crucial for therapeutic target discovery. Developing therapeutic strategies to inhibit multiple cell death pathways simultaneously could provide effective protection against MIRI. In this paper, we review the fundamental molecular pathways and MIRI-specific mechanisms of apoptosis, necroptosis, ferroptosis, and pyroptosis. Additionally, we suggest that the simultaneous suppression of multiple cell death pathways could be an effective therapy and identify potential therapeutic targets for implementing this strategy.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Williams LE, Frishman WH. FDY-5301: An Innovative Approach to The Treatment of Revascularization Coronary Injury. Cardiol Rev 2024; 32:429-432. [PMID: 36883828 DOI: 10.1097/crd.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
After experiencing an acute ST-segment elevation myocardial infarction (STEMI), percutaneous coronary intervention (PCI) is a preferred method of restoring blood flow to the heart. While this reperfusion has long-term benefits, it can result in reperfusion injury in the short term, which involves the formation of reactive oxygen species (ROS) and neutrophil recruitment. FDY-5301 is a sodium iodide-based drug that acts as a catalyst in the conversion of hydrogen peroxide to water and oxygen. FDY-5301 is designed to be administered as an intravenous bolus following a STEMI, before reperfusion with PCI, to reduce the damage associated with reperfusion injury. Clinical trials have shown FDY-5301 administration to be safe, feasible, and fast-acting in its ability to increase plasma iodide concentration, and the results are favorable in demonstrating potential efficacy. FDY-5301 shows potential in its use to reduce the effects of reperfusion injury, and ongoing Phase 3 trials will allow for continued evaluation of its performance.
Collapse
Affiliation(s)
- Lauren E Williams
- Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, New York
| | - William H Frishman
- Departments of Medicine and Cardiology, New York Medical College/Westchester Medical Center, Valhalla, New York
| |
Collapse
|
3
|
Vafaeipour Z, Imenshahidi M, Mohammadpour AH, Taghdisi SM, Danesh NM, Moshiri M, Jafarian AH, Abnous K. Evaluation of the Protective Effects of Lugol's Solution in Rats Poisoned with Aluminum Phosphide (Rice Tablets). Cardiovasc Toxicol 2024; 24:955-967. [PMID: 38990500 DOI: 10.1007/s12012-024-09890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Aluminum phosphide (AlP) is the main component of rice tablets (a pesticide), which produces phosphine gas (PH3) when exposed to stomach acid. The most important symptoms of PH3 toxicity include, lethargy, tachycardia, hypotension, and cardiac shock. It was shown that Iodine can chemically react with PH3, and the purpose of this study is to investigate the protective effects of Lugol solution in poisoning with rice tablets. Five doses (12, 15, 21, 23, and 25 mg/kg) of AlP were selected, for calculating its lethal dose (LD50). Then, the rats were divided into 4 groups: AlP, Lugol, AlP + Lugol, and Almond oil (as a control). After 4 h, the blood pressure and electrocardiogram (ECG) were recorded, and blood samples were obtained for biochemical tests, then liver, lung, kidney, heart, and brain tissues were removed for histopathological examination. The results of the blood pressure showed no significant changes (P > 0.05). In ECG, the PR interval showed a significant decrease in the AlP + Lugol group (P < 0.05). In biochemical tests, LDH, Ca2+, Creatinine, ALP, Mg2+, and K+ represented significant decreases in AlP + Lugol compared to the AlP group (P < 0.05). Also, the administration of Lugol's solution to AlP-poisoned rats resulted in a significant decrease in malondialdehyde levels and a significant increase in catalase activity (P < 0.05). Histopathological evaluation indicates that Lugol improves changes in the lungs, kidneys, brain, and heart. Our results showed that the Lugol solution could reduce tissue damage and oxidative stress in AlP-poisoned rats. We assume that the positive effects of Lugol on pulmonary and cardiac tissues are due to its ability to react directly with PH3.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Jokumsen KV, Huhle VH, Hägglund PM, Davies MJ, Gamon LF. Elevated levels of iodide promote peroxidase-mediated protein iodination and inhibit protein chlorination. Free Radic Biol Med 2024; 220:207-221. [PMID: 38663830 DOI: 10.1016/j.freeradbiomed.2024.04.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024]
Abstract
At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed. Excessive or misplaced HOCl formation damages host tissues with this linked to multiple inflammatory diseases. Previously (Redox Biology, 2020, 28, 101331) we reported that iodide (I⁻) modulates MPO-mediated protein damage by decreasing HOCl generation with concomitant hypoiodous acid (HOI) formation. HOI may however impact on protein structure, so in this study we examined whether and how HOI, from peroxidase/H₂O₂/I⁻ systems ± Cl⁻, modifies proteins. Experiments employed MPO and lactoperoxidase (LPO) and multiple proteins (serum albumins, anastellin), with both chemical (intact protein and peptide mass mapping, LC-MS) and structural (SDS-PAGE) changes assessed. LC-MS analyses revealed dose-dependent iodination of anastellin and albumins by LPO/H2O2 with increasing I⁻. Incubation of BSA with MPO/H2O2/Cl⁻ revealed modest chlorination (Tyr286, Tyr475, ∼4 %) and Met modification. Lower levels of these species, and extensive iodination at specific Tyr and His residues (>20 % modification with ≥10 μM I⁻) were detected with increasing I⁻. Anastellin dimerization was inhibited by increasing I⁻, but less marked changes were observed with albumins. These data confirm that I⁻ competes with Cl⁻ for MPO and is an efficient HOCl scavenger. These processes decrease protein chlorination and oxidation, but result in extensive iodination. This is consistent with published data on the presence of iodinated Tyr on neutrophil proteins. The biological implications of protein iodination relative to chlorination require further clarification.
Collapse
Affiliation(s)
| | - Valerie H Huhle
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Per M Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Tratnig-Frankl P, Andrews AR, Berkane Y, Guinier C, Goutard M, Lupon E, Lancia HH, Morrison ML, Roth MB, Randolph MA, Cetrulo CL, Lellouch AG. Exploring Iodide and Hydrogen Sulfide as ROS Scavengers to Delay Acute Rejection in MHC-Defined Vascularized Composite Allografts. Antioxidants (Basel) 2024; 13:531. [PMID: 38790636 PMCID: PMC11118872 DOI: 10.3390/antiox13050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Vascularized composite allografts (VCA) face ischemic challenges due to their limited availability. Reperfusion following ischemia triggers oxidative stress and immune reactions, and scavenger molecules could mitigate ischemia-reperfusion injuries and, therefore, immune rejection. We compared two scavengers in a myocutaneous flap VCA model. In total, 18 myocutaneous flap transplants were performed in Major histocompatibility complex (MHC)-defined miniature swine. In the MATCH group (n = 9), donors and recipients had minor antigen mismatch, while the animals were fully mismatched in the MISMATCH group (n = 9). Grafts were pretreated with saline, sodium iodide (NaI), or hydrogen sulfide (H2S), stored at 4 °C for 3 h, and then transplanted. Flaps were monitored until clinical rejection without immunosuppression. In the MATCH group, flap survival did not significantly differ between the saline and hydrogen sulfide treatments (p = 0.483) but was reduced with the sodium iodide treatment (p = 0.007). In the MISMATCH group, survival was similar between the saline and hydrogen sulfide treatments (p = 0.483) but decreased with the sodium iodide treatment (p = 0.007). Rhabdomyolysis markers showed lower but non-significant levels in the experimental subgroups for both the MATCH and MISMATCH animals. This study provides insightful data for the field of antioxidant-based approaches in VCA and transplantation.
Collapse
Affiliation(s)
- Philipp Tratnig-Frankl
- Division of Plastic, Reconstructive and Aesthetic Surgery, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Alec R. Andrews
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, University of Rennes, 35000 Rennes, France
| | - Claire Guinier
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Department of Plastic Surgery, NOVO Hospital, 95300 Pontoise, France
| | - Marion Goutard
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Elise Lupon
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Department of Plastic and Reconstructive Surgery, Institut Universitaire Locomoteur et du Sport, Pasteur 2 Hospital, University Côte d’Azur, 06300 Nice, France
| | - Hyshem H. Lancia
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Michael L. Morrison
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (M.L.M.); (M.B.R.)
| | - Mark B. Roth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (M.L.M.); (M.B.R.)
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- INSERM UMRS 1140 Innovation Thérapeutique en Hémostase, University of Paris, 75006 Paris, France
| |
Collapse
|
6
|
Ganguly S, Kumar J. Role of Antioxidant Vitamins and Minerals from Herbal Source in the Management of Lifestyle Diseases. ROLE OF HERBAL MEDICINES 2023:443-460. [DOI: 10.1007/978-981-99-7703-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Xu S, Chuang CY, Malle E, Gamon LF, Hawkins CL, Davies MJ. Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage. Free Radic Biol Med 2022; 188:162-174. [PMID: 35718304 DOI: 10.1016/j.freeradbiomed.2022.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase (MPO) mediates pathogen destruction by generating the bactericidal oxidant hypochlorous acid (HOCl). Formation of this oxidant is however associated with host tissue damage and disease. MPO also utilizes H2O2 to oxidize other substrates, and we hypothesized that mixtures of other plasma anions, including bromide (Br-), iodide (I-), thiocyanate (SCN-) and nitrite (NO2-), at normal or supplemented concentrations, might modulate MPO-mediated HOCl damage. For the (pseudo)halide anions, only SCN- significantly modulated HOCl formation (IC50 ∼33 μM), which is within the normal physiological range, as judged by damage to human plasma fibronectin or extracellular matrix preparations detected by ELISA and LC-MS. NO2- modulated HOCl-mediated damage, in a dose-dependent manner, at physiologically-attainable anion concentrations. However, this was accompanied by increased tyrosine and tryptophan nitration (detected by ELISA and LC-MS), and the overall extent of damage remained approximately constant. Increasing NO2- concentrations (0.5-20 μM) diminished HOCl-mediated modification of tyrosine and methionine, whereas tryptophan loss was enhanced. At higher NO2- concentrations, enhanced tyrosine and methionine loss was detected. These analytical data were confirmed in studies of cell adhesion and metabolic activity. Together, these data indicate that endogenous plasma levels of SCN- (but not Br- or I-) can modulate protein modification induced by MPO, including the extent of chlorination. In contrast, NO2- alters the type of modification, but does not markedly decrease its extent, with chlorination replaced by nitration. These data also indicate that MPO could be a major source of nitration in vivo, and particularly at inflammatory sites where NO2- levels are often elevated.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Adlam D, Zarebinski M, Uren NG, Ptaszynski P, Oldroyd KG, Munir S, Zaman A, Contractor H, Kiss RG, Édes I, Szachniewicz J, Nagy GG, Garcia MJ, Tomcsanyi J, Irving J, Sharp ASP, Musialek P, Lupkovics G, Shirodaria C, Selvanayagam JB, Quinn P, Ng L, Roth M, Insko MA, Haber B, Hill S, Siegel L, Tulloch S, Channon KM. A Randomized, double-blind, dose ranging clinical trial of intravenous FDY-5301 in acute STEMI patients undergoing primary PCI. Int J Cardiol 2022; 347:1-7. [PMID: 34774885 DOI: 10.1016/j.ijcard.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/31/2021] [Accepted: 11/07/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury remains a major clinical problem in patients with ST-elevation myocardial infarction (STEMI), leading to myocardial damage despite early reperfusion by primary percutaneous coronary intervention (PPCI). There are no effective therapies to limit ischemia-reperfusion injury, which is caused by multiple pathways activated by rapid tissue reoxygenation and the generation of reactive oxygen species (ROS). FDY-5301 contains sodium iodide, a ubiquitous inorganic halide and elemental reducing agent that can act as a catalytic anti-peroxidant. We tested the feasibility, safety and potential utility of FDY-5301 as a treatment to limit ischemia-reperfusion injury, in patients with first-time STEMI undergoing emergency PPCI. METHODS STEMI patients (n = 120, median 62 years) presenting within 12 h of chest pain onset were randomized at 20 PPCI centers, in a double blind Phase 2 clinical trial, to receive FDY-5301 (0.5, 1.0 or 2.0 mg/kg) or placebo prior to reperfusion, to evaluate the feasibility endpoints. Participants underwent continuous ECG monitoring for 14 days after PPCI to address pre-specified cardiac arrhythmia safety end points and cardiac magnetic resonance imaging (MRI) at 72 h and at 3 months to assess exploratory efficacy end points. RESULTS Intravenous FDY-5301 was delivered before re-opening of the infarct-related artery in 97% participants and increased plasma iodide levels ~1000-fold within 2 min. There was no significant increase in the primary safety end point of incidence of cardiac arrhythmias of concern. MRI at 3 months revealed median final infarct sizes in placebo vs. 2.0 mg/kg FDY-5301-treated patients of 14.9% vs. 8.5%, and LV ejection fractions of 53.9% vs. 63.2%, respectively, although the study was not powered to detect statistical significance. In patients receiving FDY-5301, there was a significant reduction in the levels of MPO, MMP2 and NTproBNP after PPCI, but no reduction with placebo. CONCLUSIONS Intravenous FDY-5301, delivered immediately prior to PPCI in acute STEMI, is feasible, safe, and shows potential efficacy. A larger trial is justified to test the effects of FDY-5301 on acute ischemia-reperfusion injury and clinical outcomes. CLINICAL TRIAL REGISTRATION CT.govNCT03470441; EudraCT 2017-000047-41.
Collapse
Affiliation(s)
- David Adlam
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, UK
| | - Maciej Zarebinski
- Invasive Cardiology Dept. Western Hospital, Grodzisk Mazowiecki, Poland
| | - Neal G Uren
- Edinburgh Heart Centre, Royal Infirmary, Edinburgh, UK
| | - Pawel Ptaszynski
- Department of Electrocardiology, Medical University of Lodz, Poland; Central University Hospital, Lodz, Poland
| | - Keith G Oldroyd
- West of Scotland Regional Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Shahzad Munir
- Cardiology Department, Wolverhampton Heart and Lung Centre, New Cross Hospital, Wolverhampton Road, Wolverhampton, UK
| | - Azfar Zaman
- Freeman Hospital and Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Hussain Contractor
- Department of Cardiovascular Medicine, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | | | - István Édes
- Department of Cardiology, Debrecen University, Debrecen, Hungary
| | | | - Gergely Gyorgy Nagy
- Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, 1st Department of Internal Medicine and Cardiology, Miskolc, Hungary
| | - Mario J Garcia
- Division of Cardiology, Montefiore Medical Center, Bronx, NY, USA
| | - János Tomcsanyi
- Department of Cardiology, St. John of Brother of God Hospital, Budapest, Hungary
| | - John Irving
- Department of Cardiology, Ninewells Hospital, Dundee, UK
| | | | - Piotr Musialek
- Jagiellonian University Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland
| | - Géza Lupkovics
- Department of Cardiology, St. Raphael Hospital of Zala County, Zalaegerszeg, Hungary
| | | | - Joseph B Selvanayagam
- Flinders University and South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Pauline Quinn
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, UK
| | - Mark Roth
- Faraday Pharmaceuticals Inc., Seattle, USA
| | | | - Ben Haber
- Faraday Pharmaceuticals Inc., Seattle, USA
| | | | | | | | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, National Institute for Health (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust and University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
9
|
Mucke HA. Patent highlights June-July 2021. Pharm Pat Anal 2021; 10:237-244. [PMID: 34753317 DOI: 10.4155/ppa-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
10
|
Samra K, Kuganesan M, Smith W, Kleyman A, Tidswell R, Arulkumaran N, Singer M, Dyson A. The Pharmacology and Therapeutic Utility of Sodium Hydroselenide. Int J Mol Sci 2021; 22:3258. [PMID: 33806825 PMCID: PMC8005069 DOI: 10.3390/ijms22063258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe-/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK; (K.S.); (M.K.); (W.S.); (A.K.); (R.T.); (N.A.); (M.S.)
| |
Collapse
|
11
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
12
|
Fries MR, Conzelmann NF, Günter L, Matsarskaia O, Skoda MWA, Jacobs RMJ, Zhang F, Schreiber F. Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:139-150. [PMID: 33393312 DOI: 10.1021/acs.langmuir.0c02618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proteins are ubiquitous and play a critical role in many areas from living organisms to protein microchips. In humans, serum albumin has a prominent role in the foreign body response since it is the first protein which will interact with, e.g., an implant or stent. In this study, we focused on the influence of salts (i.e., different cations (Y3+, La3+) and anions (Cl-, I-) on bovine serum albumin (BSA) in terms of its bulk behavior as well as the role of charges for protein adsorption at the solid-liquid interface in order to understand and control the underlying molecular mechanisms and interactions. This is part of our group's effort to gain a deeper understanding of protein-protein and protein-surface interactions in the presence of multivalent ions. In the bulk, we established two new phase diagrams and found not only multivalent cation-triggered phase transitions, but also a dependence of the protein behavior on the type of anion. The attractive interactions between proteins were observed to increase from Cl- < NO3- < I-, resulting in iodide preventing re-entrant condensation and promoting liquid-liquid phase separation in bulk. Using ellipsometry and a quartz-crystal microbalance with dissipation (QCM-D), we obtained insight into the growth of the protein adsorption layer. Importantly, we found that phase transitions at the substrate can be triggered by certain interface properties, whether they exist in the bulk solution or not. Through the use of a hydrophilic, negatively charged surface (native silica), the direct binding of anions to the interface was prevented. Interestingly, this led to re-entrant adsorption even in the absence of re-entrant condensation in bulk. However, the overall amount of adsorbed protein was enhanced through stronger attractive protein-protein interactions in the presence of iodide salts. These findings illustrate how carefully chosen surface properties and salts can directly steer the binding of anions and cations, which guide protein behavior, thus paving the way for specific/triggered protein-protein, protein-salt, and protein-surface interactions.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Nina F Conzelmann
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Luzie Günter
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin (ILL), CS20156, F-38042 Grenoble, France
| | - Maximilian W A Skoda
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, United Kingdom
| | - Robert M J Jacobs
- Department for Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Maldonado-Araque C, Valdés S, Badía-Guillén R, Lago-Sampedro A, Colomo N, Garcia-Fuentes E, Gutierrez-Repiso C, Goday A, Calle-Pascual A, Castaño L, Castell C, Delgado E, Menendez E, Franch-Nadal J, Gaztambide S, Girbés J, Chaves FJ, Soriguer F, Rojo-Martínez G. Iodine Deficiency and Mortality in Spanish Adults: Di@bet.es Study. Thyroid 2021; 31:106-114. [PMID: 32781944 PMCID: PMC7840306 DOI: 10.1089/thy.2020.0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Longitudinal data assessing the impact of iodine deficiency (ID) on mortality are scarce. We aimed to study the association between the state of iodine nutrition and the risk of total and cause-specific mortality in a representative sample of the Spanish adult population. Methods: We performed a longitudinal observational study to estimate mortality risk according to urinary iodine (UI) concentrations using a sample of 4370 subjects >18 years representative of the Spanish adult population participating in the nationwide study Di@bet.es (2008-2010). We used Cox regression to assess the association between UI at the start of the study (<50, 50-99, 100-199, 200-299, and ≥300 μg/L) and mortality during follow-up (National death registry-end of follow-up December 2016) in raw models, and adjusted for possible confounding variables: age, sex, educational level, hypertension, diabetes, obesity, chronic kidney disease, smoking, hypercholesterolemia, thyroid dysfunction, diagnosis of cardiovascular disease or cancer, area of residence, physical activity, adherence to Mediterranean diet, dairy and iodinated salt intake. Results: A total of 254 deaths were recorded during an average follow-up period of 7.3 years. The causes of death were cardiovascular 71 (28%); cancer 85 (33.5%); and other causes 98 (38.5%). Compared with the reference category with adequate iodine nutrition (UI 100-300 μg/L), the hazard ratios (HRs) of all-cause mortality in the category with UI ≥300 μg/L were 1.04 (95% confidence interval [CI 0.54-1.98]); however, in the categories with 50-99 UI and <50 μg/L, the HRs were 1.29 [CI 0.97-1.70] and 1.71 [1.18-2.48], respectively (p for trend 0.004). Multivariate adjustment did not significantly modify the results. Conclusions: Our data indicate an excess mortality in individuals with moderate-severe ID adjusted for other possible confounding factors.
Collapse
Affiliation(s)
- Cristina Maldonado-Araque
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Valdés
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Address correspondence to: Sergio Valdés, MD, PhD, Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga/Universidad de Málaga, IBIMA, Plaza del Hospital Civil s/n, Malaga 29009, Spain
| | - Rocío Badía-Guillén
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Ana Lago-Sampedro
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Colomo
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Garcia-Fuentes
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Carolina Gutierrez-Repiso
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, Instituto de Investigagión Biomedica de Málaga-IBIMA, Málaga, Spain
| | - Albert Goday
- Department of Endocrinology and Nutrition, Hospital del Mar, Barcelona, Spain
| | - Alfonso Calle-Pascual
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario S. Carlos de Madrid, Madrid, Spain
| | - Luis Castaño
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario Cruces, BioCruces Bizkaia, UPV/EHU, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Conxa Castell
- Department of Health, Public Health Agency of Catalonia, Barcelona, Spain
| | - Elías Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias/University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Edelmiro Menendez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias/University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Josep Franch-Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- EAP Raval Sud, Institut Català de la Salut, Red GEDAPS, Primary Care, Unitat de Suport a la Recerca (IDIAP—Fundació Jordi Gol), Barcelona, Spain
| | - Sonia Gaztambide
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitario Cruces, BioCruces Bizkaia, UPV/EHU, Barakaldo, Spain
| | - Joan Girbés
- Diabetes Unit, Hospital Arnau de Vilanova, Valencia, Spain
| | - Francisco Javier Chaves
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Genomic Studies and Genetic Diagnosis Unit, Fundación de Investigación del Hospital Clínico de Valencia-INCLIVA, Valencia, Spain
| | - Federico Soriguer
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Rojo-Martínez
- Department of Endocrinology and Nutrition, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomedica de Málaga-IBIMA, Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Morrison ML, Iwata A, Wick ML, VandenEkart E, Insko MA, Henning DJ, Frare C, Rice SA, Drew KL, Maier RV, Roth MB. Iodine Redistribution During Trauma, Sepsis, and Hibernation: An Evolutionarily Conserved Response to Severe Stress. Crit Care Explor 2020; 2:e0215. [PMID: 33063025 PMCID: PMC7531756 DOI: 10.1097/cce.0000000000000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We performed these studies to learn how iodine in the form of free iodide behaves during stress. DESIGN Prospective observational trial using samples obtained from human trauma patients and retrospective observational study using remnant samples from human sepsis patients and arctic ground squirrels. Preclinical interventional study using hind-limb ischemia and reperfusion injury in mice. SETTING Level I trauma center emergency room and ICU and animal research laboratories. SUBJECTS Adult human sepsis and trauma patients, wild-caught adult arctic ground squirrels, and sexually mature laboratory mice. INTERVENTIONS Ischemia and reperfusion injury was induced in mice by temporary application of tourniquet to one hind-limb. Iodide was administered IV just prior to reperfusion. MEASUREMENTS AND MAIN RESULTS Free iodide was measured using ion chromatography. Relative to iodide in plasma from normal donors, iodide was increased 17-fold in plasma from trauma patients and 26-fold in plasma from sepsis patients. In arctic ground squirrels, iodide increases over three-fold during hibernation. And during ischemia/reperfusion injury in mice, iodide accumulates in ischemic tissue and reduces both local and systemic tissue damage. CONCLUSIONS Iodide redistributes during stress and improves outcome after injury. Essential functions of iodide may have contributed to its evolutionary selection and be useful as a therapeutic intervention for human patients.
Collapse
Affiliation(s)
- Michael L Morrison
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Akiko Iwata
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Merry L Wick
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Emily VandenEkart
- Laboratory and Clinical Research, Faraday Pharmaceuticals, Seattle, WA
| | - Michael A Insko
- Laboratory and Clinical Research, Faraday Pharmaceuticals, Seattle, WA
| | - Daniel J Henning
- Department of Emergency Medicine, University of Washington, Seattle, WA
| | - Carla Frare
- Department of Chemistry and Biochemistry and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
| | - Sarah A Rice
- Department of Chemistry and Biochemistry and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
| | - Kelly L Drew
- Department of Chemistry and Biochemistry and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
| | - Ronald V Maier
- Department of Surgery, Harborview Medical Center and University of Washington, Seattle, WA
| | - Mark B Roth
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
15
|
Abstract
OBJECTIVES In this study, we tested whether iodide would reduce heart damage in rat and pig models of acute myocardial infarction as a risk analysis for a human trial. DESIGN Prospective blinded and randomized laboratory animal investigation. SETTING Animal research laboratories. SUBJECTS Sexually mature rats and pigs. INTERVENTIONS Acute myocardial infarction was induced by temporary ligation of the coronary artery followed by reperfusion. Iodide was administered orally in rats or IV in rats and pigs just prior to reperfusion. MEASUREMENTS AND MAIN RESULTS Damage was assessed by blood cardiac troponin and infarct size; heart function was determined by echocardiography. Blood peroxide scavenging activity was measured enzymatically, and blood thyroid hormone was determined using radioimmune assay. Iodide administration preserved heart function and reduced blood cardiac troponin and infarct size by approximately 45% in pigs and approximately 60% in rats. Iodide administration also increased blood peroxide scavenging activity and maintained thyroid hormone levels. CONCLUSIONS Iodide administration improved the structure and function of the heart after acute myocardial infarction in rats and pigs.
Collapse
|
16
|
Iodide modulates protein damage induced by the inflammation-associated heme enzyme myeloperoxidase. Redox Biol 2019; 28:101331. [PMID: 31568923 PMCID: PMC6812061 DOI: 10.1016/j.redox.2019.101331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
Iodide ions (I-) are an essential dietary mineral, and crucial for mental and physical development, fertility and thyroid function. I- is also a high affinity substrate for the heme enzyme myeloperoxidase (MPO), which is involved in bacterial cell killing during the immune response, and also host tissue damage during inflammation. In the presence of H2O2 and Cl-, MPO generates the powerful oxidant hypochlorous acid (HOCl), with excessive formation of this species linked to multiple inflammatory diseases. In this study, we have examined the hypothesis that elevated levels of I- would decrease HOCl formation and thereby protein damage induced by a MPO/Cl-/H2O2 system, by acting as a competitive substrate. The presence of increasing I- concentrations (0.1-10 μM; i.e. within the range readily achievable by oral supplementation in humans), decreased damage to both model proteins and extracellular matrix components as assessed by gross structural changes (SDS-PAGE), antibody recognition of parent and modified protein epitopes (ELISA), and quantification of both parent amino acid loss (UPLC) and formation of the HOCl-biomarker 3-chlorotyrosine (LC-MS) (reduced by ca. 50% at 10 μM I-). Elevated levels of I- ( > 1 μM) also protected against functional changes as assessed by a decreased loss of adhesion (eg. 40% vs. < 22% with >1 μM I-) of primary human coronary artery endothelial cells (HCAECs), to MPO-modified human plasma fibronectin. These data indicate that low micromolar concentrations of I-, which can be readily achieved in humans and are readily tolerated, may afford protection against cell and tissue damage induced by MPO.
Collapse
|
17
|
Quintero-García M, Delgado-González E, Sánchez-Tusie A, Vázquez M, Aceves C, Anguiano B. Iodine prevents the increase of testosterone-induced oxidative stress in a model of rat prostatic hyperplasia. Free Radic Biol Med 2018; 115:298-308. [PMID: 29248723 DOI: 10.1016/j.freeradbiomed.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Oxidative stress and inflammation are involved in the development and/or progression of benign prostatic hyperplasia (BPH). Molecular iodine (I2) induces antiproliferative and apoptotic effects in prostate cancer cells, but it is unknown if I2 regulates oxidative stress in the normal and/or tumoral prostate. The purpose of this study was to analyze the effects of I2 and celecoxib (Cxb) on oxidative stress and inflammation in a model of prostatic hyperplasia. Cxb was used as positive control of cyclooxygenase-2 (COX-2) inhibition. Prostatic hyperplasia was induced in male Wistar rats (170g) with testosterone (5mg/kg/week, for three weeks). One week before hyperplasia induction, I2 (25mg/day/rat) or Cxb (1.25mg/day/rat) was supplied for four weeks in the drinking water. Prostatic hyperplasia was evaluated by histological analysis, DNA content, and/or proliferating cell nuclear antigen (PCNA) expression. Lipoperoxidation (malondialdehyde) and nitrite (NO2-) levels were analyzed by colorimetric methods, while nitric oxide synthase (NOS), COX, and myeloperoxidase (MPO) enzymes were analyzed using RT-PCR, immunoblotting, and/or enzymatic assays. Levels of 15-F2t-isoprostanes, prostaglandins (PGE2), leukotrienes (LTB4), and tumor necrosis factor alpha (TNFα) were measured by ELISA. Control testosterone-treated animals exhibited hyperplasia in the dorsolateral prostate, as well as increments in almost all oxidative parameters except for COX-1, TNFα, or MPO. I2 and Cxb prevented epithelial hyperplasia (DNA content) and oxidative stress induction generated by testosterone in almost the same intensity, and the minimum I2 dose required was 2.5mg/rat. The antioxidant capacity of I2 was also analyzed in a cell-free system, showing that this element inhibited the conversion of nitrate (NO3-) to NO2-. I2 did not modify the prostatic oxidative state in testosterone untreated rats. In summary, our data showed that antiproliferative and antioxidant effects of I2 involve the inhibition of NOS and the COX-2 pathway. Further studies are necessary to analyze the therapeutic and/or adjuvant effects of I2 with first-line medications used to treat BPH.
Collapse
Affiliation(s)
- Michelle Quintero-García
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico
| | - Evangelina Delgado-González
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico
| | - Ana Sánchez-Tusie
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico
| | - Mario Vázquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico
| | - Carmen Aceves
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico
| | - Brenda Anguiano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
18
|
Tran HV, Erskine NA, Kiefe CI, Barton BA, Lapane KL, Do VTH, Goldberg RJ. Is low iodine a risk factor for cardiovascular disease in Americans without thyroid dysfunction? Findings from NHANES. Nutr Metab Cardiovasc Dis 2017; 27:651-656. [PMID: 28689680 DOI: 10.1016/j.numecd.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Low body iodine levels are associated with cardiovascular disease, in part through alterations in thyroid function. While this association suggested from animal studies, it lacks supportive evidence in humans. This study examined the association between urine iodine levels and presence of coronary artery disease (CAD) and stroke in adults without thyroid dysfunction. METHODS AND RESULTS This cross-sectional study included 2440 adults (representing a weighted n = 91,713,183) aged ≥40 years without thyroid dysfunction in the nationally-representative 2007-2012 National Health and Nutrition Examination Survey. The age and sex-adjusted urine iodine/creatinine ratio (aICR) was categorized into low (aICR<116 μg/day), medium (116 μg/day ≤ aICR < 370μg/day), and high (aICR ≥ 370μg/day) based on lowest/highest quintiles. Stroke and CAD were from self-reported physician diagnoses. We examined the association between low urine aICR and CAD or stroke using multivariable logistic regression modeling. The mean age of this population was 56.0 years, 47% were women, and three quarters were non-Hispanic whites. Compared with high urine iodine levels, multivariable adjusted odds ratios aOR (95% confidence intervals) for CAD were statistically significant for low, aOR = 1.97 (1.08-3.59), but not medium, aOR = 1.26 (0.75-2.13) urine iodine levels. There was no association between stroke and low, aOR = 1.12 (0.52-2.44) or medium, aOR = 1.48 (0.88-2.48) urine iodine levels. CONCLUSION The association between low urine iodine levels and CAD should be confirmed in a prospective study with serial measures of urine iodine. If low iodine levels precede CAD, then this potential and modifiable new CAD risk factor might have therapeutic implications.
Collapse
Affiliation(s)
- H V Tran
- Clinical and Population Health Research Program, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, USA; Department of Quantitative Health Sciences, University of Massachusetts Medical School, USA.
| | - N A Erskine
- Clinical and Population Health Research Program, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, USA; Department of Quantitative Health Sciences, University of Massachusetts Medical School, USA
| | - C I Kiefe
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, USA
| | - B A Barton
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, USA
| | - K L Lapane
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, USA
| | - V T H Do
- Internal Medicine, Department of Medicine, Bridgeport Hospital - Yale Medicine, USA
| | - R J Goldberg
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, USA
| |
Collapse
|
19
|
Iwata A, Morrison ML, Roth MB. Correction: Iodide Protects Heart Tissue from Reperfusion Injury. PLoS One 2015; 10:e0138396. [PMID: 26368932 PMCID: PMC4569290 DOI: 10.1371/journal.pone.0138396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Zhang S, Duehrkop C, Plock JA, Rieben R. Inhalation anesthesia of rats: influence of the fraction of inspired oxygen on limb ischemia/reperfusion injury. Lab Anim 2015; 50:185-97. [PMID: 26345513 DOI: 10.1177/0023677215604531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2 on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2 in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2 Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2 as compared with 100% FiO2 (P < 0.05). Partial pressure of oxygen, oxygen saturation, and oxyhemoglobin were significantly higher in the 100% O2 group as compared with 40% O2 No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2. Oxidative stress did not correlate with FiO2 and seemed to have no influence on reperfusion injury.
Collapse
Affiliation(s)
- S Zhang
- Department of Clinical Research, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - C Duehrkop
- Department of Immunology, University of Uppsala, Uppsala, Sweden
| | - J A Plock
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - R Rieben
- Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Abstract
OBJECTIVES Since blood selenium levels decrease after ischemia and reperfusion injury, and low blood selenium correlates with negative outcome, we designed and performed experiments to determine how selenium distribution is affected by ischemia reperfusion injury. Furthermore, we tested whether different chemical forms of selenium would affect outcome after ischemia and reperfusion injury. We also examined the metabolic effects of selenide administration. DESIGN Laboratory investigation. SETTING Animal research laboratory. SUBJECTS Adult male C57BL/6 mice. INTERVENTIONS To determine selenium localization, we administered tracer doses of radioactive selenium 75 in the form of selenite or selenide and measured blood and tissue selenium levels after ischemia and reperfusion injury. Anesthetized mice were subjected to myocardial ischemia reperfusion injury (coronary artery occlusion for 60 min followed by 5 min of reperfusion after occlusion was removed) or hindlimb ischemia reperfusion injury (left leg tourniquet for 90 min followed by 5 min reperfusion after tourniquet removal). To determine whether exogenous selenium administration could reduce ischemia reperfusion injury, we synthesized and administered sodium hydroselenide and sodium selenite solutions (0.05-2.4 mg/kg). Solutions were administered at the end of coronary artery occlusion but before reperfusion. In order to determine the metabolic effects of selenide administration, we exposed mice to hydrogen selenide gas (0-5 ppm) mixed into air (20.95% oxygen) for up to 3 hours. MEASUREMENTS AND MAIN RESULTS In targeting assays, we measured blood and tissue selenium levels. We observed that blood selenium decreases after myocardial ischemia reperfusion and displays an inverse correlation with injury severity; selenium accumulation in heart correlates directly with injury severity. We also measured whether oxidized selenium, selenite, and reduced selenium, selenide, would target to injured heart tissue in myocardial ischemia reperfusion and injured leg muscle in a hindlimb model of ischemia reperfusion. Only selenide targets to injured tissue. We also measured damage after myocardial ischemia reperfusion injury using morphometry, neutrophil accumulation, blood cardiac troponin levels, and echocardiography and observed in all assays that selenide reduced damage to the heart; selenite was not effective. And finally, to assay metabolism, we measured oxygen consumption, carbon dioxide production, and body core temperature before, during, and after hydrogen selenide administration. All measurements indicate that selenide decreases metabolism. CONCLUSIONS Selenide targets to reperfusing tissue and reduces reperfusion injury perhaps by affecting oxygen metabolism.
Collapse
|
22
|
Bioprotective Carnitinoids: Lipoic Acid, Butyrate, and Mitochondria-Targeting to Treat Radiation Injury: Mitochondrial Drugs Come of Age. Drug Dev Res 2015; 76:167-75. [DOI: 10.1002/ddr.21258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022]
|