1
|
Gordon JL, Oliva Chavez AS, Martinez D, Vachiery N, Meyer DF. Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium by ntrX gene conversion from an inverted segmental duplication. PLoS One 2023; 18:e0266234. [PMID: 36800354 PMCID: PMC9937504 DOI: 10.1371/journal.pone.0266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/16/2022] [Indexed: 02/18/2023] Open
Abstract
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | - Adela S. Oliva Chavez
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | | | | | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
2
|
Walker DH, Blanton LS, Laroche M, Fang R, Narra HP. A Vaccine for Canine Rocky Mountain Spotted Fever: An Unmet One Health Need. Vaccines (Basel) 2022; 10:1626. [PMID: 36298491 PMCID: PMC9610744 DOI: 10.3390/vaccines10101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Outbreaks of life-threatening Rocky Mountain spotted fever in humans and dogs associated with a canine-tick maintenance cycle constitute an important One Health opportunity. The reality of the problem has been observed strikingly in Mexico, Brazil, Colombia, and Native American tribal lands in Arizona. The brown dog tick, Rhipicephalus sanguineus sensu lato, acquires the rickettsia from bacteremic dogs and can maintain the bacterium transtadially to the next tick stage. The subsequent adult tick can then transmit infection to a new host, as shown by guinea pig models. These brown dog ticks maintain spotted fever group rickettsiae transovarially through many generations, thus serving as both vector and reservoir. Vaccine containing whole-killed R. rickettsii does not stimulate sufficient immunity. Studies of Rickettsia subunit antigens have demonstrated that conformationally preserved outer-membrane autotransporter proteins A and B are the leading vaccine candidates. The possibility of a potentially safe and effective live attenuated vaccine has only begun to be explored as gene knockout methods are applied to these obligately intracellular pathogens.
Collapse
Affiliation(s)
- David H. Walker
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Lucas S. Blanton
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0435, USA
| | - Maureen Laroche
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1019, USA
| | - Rong Fang
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| | - Hema P. Narra
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-0609, USA
| |
Collapse
|
3
|
Arroyave E, Hyseni I, Burkhardt N, Kuo YF, Wang T, Munderloh U, Fang R. Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens 2021; 10:pathogens10070819. [PMID: 34208806 PMCID: PMC8308654 DOI: 10.3390/pathogens10070819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Although rickettsiae can cause life-threatening infections in humans worldwide, no licensed vaccine is currently available. To evaluate the suitability of live-attenuated vaccine candidates against rickettsioses, we generated a Rickettsia parkeri mutant RPATATE_0245::pLoxHimar (named 3A2) by insertion of a modified pLoxHimar transposon into the gene encoding a phage integrase protein. For visualization and selection, R. parkeri 3A2 expressed mCherry fluorescence and resistance to spectinomycin. Compared to the parent wild type (WT) R. parkeri, the virulence of R. parkeri 3A2 was significantly attenuated as demonstrated by significantly smaller size of plaque, failure to grow in human macrophage-like cells, rapid elimination of Rickettsia and ameliorated histopathological changes in tissues in intravenously infected mice. A single dose intradermal (i.d.) immunization of R. parkeri 3A2 conferred complete protection against both fatal R. parkeri and R. conorii rickettsioses in mice, in association with a robust and durable rickettsiae-specific IgG antibody response. In summary, the disruption of RPATATE_0245 in R. parkeri resulted in a mutant with a significantly attenuated phenotype, potent immunogenicity and protective efficacy against two spotted fever group rickettsioses. Overall, this proof-of-concept study highlights the potential of R. parkeri mutants as a live-attenuated and multivalent vaccine platform in response to emergence of life-threatening spotted fever rickettsioses.
Collapse
Affiliation(s)
- Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Ilirjana Hyseni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Nicole Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Tian Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| |
Collapse
|
4
|
Engström P, Burke TP, Tran CJ, Iavarone AT, Welch MD. Lysine methylation shields an intracellular pathogen from ubiquitylation and autophagy. SCIENCE ADVANCES 2021; 7:eabg2517. [PMID: 34172444 PMCID: PMC8232902 DOI: 10.1126/sciadv.abg2517] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/12/2021] [Indexed: 05/05/2023]
Abstract
Many intracellular pathogens avoid detection by their host cells. However, it remains unknown how they avoid being tagged by ubiquitin, an initial step leading to antimicrobial autophagy. Here, we show that the intracellular bacterial pathogen Rickettsia parkeri uses two protein-lysine methyltransferases (PKMTs) to modify outer membrane proteins (OMPs) and prevent their ubiquitylation. Mutants deficient in the PKMTs were avirulent in mice and failed to grow in macrophages because of ubiquitylation and autophagic targeting. Lysine methylation protected the abundant surface protein OmpB from ubiquitin-dependent depletion from the bacterial surface. Analysis of the lysine-methylome revealed that PKMTs modify a subset of OMPs, including OmpB, by methylation at the same sites that are modified by host ubiquitin. These findings show that lysine methylation is an essential determinant of rickettsial pathogenesis that shields bacterial proteins from ubiquitylation to evade autophagic targeting.
Collapse
Affiliation(s)
- Patrik Engström
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Thomas P Burke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cuong J Tran
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
6
|
Driscoll TP, Verhoeve VI, Guillotte ML, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, Azad AF, Gillespie JJ. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells. mBio 2017; 8:e00859-17. [PMID: 28951473 PMCID: PMC5615194 DOI: 10.1128/mbio.00859-17] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/15/2017] [Indexed: 02/02/2023] Open
Abstract
Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.IMPORTANCE A hallmark of obligate intracellular bacteria is the tradeoff of metabolic genes for the ability to acquire host metabolites. For species of Rickettsia, arthropod-borne parasites with the potential to cause serious human disease, the range of pilfered host metabolites is unknown. This information is critical for dissociating rickettsiae from eukaryotic cells to facilitate rickettsial genetic manipulation. In this study, we reconstructed the Rickettsia metabolic network and identified 51 host metabolites required to compensate patchwork Rickettsia biosynthesis pathways. Remarkably, some metabolites are not known to be transported by any bacteria, and overall, few cognate transporters were identified. Several pathways contain missing enzymes, yet similar pathways in unrelated bacteria indicate convergence and possible novel enzymes awaiting characterization. Our work illuminates the parasitic nature by which rickettsiae hijack host metabolism to counterbalance numerous disintegrated biosynthesis pathways that have arisen through evolution within the eukaryotic cell. This metabolic blueprint reveals what a Rickettsia axenic medium might entail.
Collapse
Affiliation(s)
- Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Victoria I Verhoeve
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mark L Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sherri A Rennoll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Tago D, Meyer DF. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium. Front Cell Infect Microbiol 2016; 6:86. [PMID: 27610355 PMCID: PMC4997789 DOI: 10.3389/fcimb.2016.00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Damian Tago
- La Recherche Agronomique Pour le Développement (CIRAD), UMR Contrôle des Maladies Animales, Exotiques et Émergentes (CMAEE)Petit-Bourg, France; Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| | - Damien F Meyer
- La Recherche Agronomique Pour le Développement (CIRAD), UMR Contrôle des Maladies Animales, Exotiques et Émergentes (CMAEE)Petit-Bourg, France; Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| |
Collapse
|