1
|
Fegraeus K, Rosengren MK, Naboulsi R, Orlando L, Åbrink M, Jouni A, Velie BD, Raine A, Egner B, Mattsson CM, Lång K, Zhigulev A, Björck HM, Franco-Cereceda A, Eriksson P, Andersson G, Sahlén P, Meadows JRS, Lindgren G. An endothelial regulatory module links blood pressure regulation with elite athletic performance. PLoS Genet 2024; 20:e1011285. [PMID: 38885195 PMCID: PMC11182536 DOI: 10.1371/journal.pgen.1011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/02/2024] [Indexed: 06/20/2024] Open
Abstract
The control of transcription is crucial for homeostasis in mammals. A previous selective sweep analysis of horse racing performance revealed a 19.6 kb candidate regulatory region 50 kb downstream of the Endothelin3 (EDN3) gene. Here, the region was narrowed to a 5.5 kb span of 14 SNVs, with elite and sub-elite haplotypes analyzed for association to racing performance, blood pressure and plasma levels of EDN3 in Coldblooded trotters and Standardbreds. Comparative analysis of human HiCap data identified the span as an enhancer cluster active in endothelial cells, interacting with genes relevant to blood pressure regulation. Coldblooded trotters with the sub-elite haplotype had significantly higher blood pressure compared to horses with the elite performing haplotype during exercise. Alleles within the elite haplotype were part of the standing variation in pre-domestication horses, and have risen in frequency during the era of breed development and selection. These results advance our understanding of the molecular genetics of athletic performance and vascular traits in both horses and humans.
Collapse
Affiliation(s)
- Kim Fegraeus
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Maria K. Rosengren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Rakan Naboulsi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Stockholm
| | - Ludovic Orlando
- Centre d’Anthropobiologie et de Génomique de Toulouse (CNRS UMR 5288), Université Paul Sabatier, Toulouse, France
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ahmad Jouni
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Brandon D. Velie
- School of Life & Environmental Sciences, University of Sydney, Sydney, Australia
| | - Amanda Raine
- Department of Medical Sciences, Science for life laboratory, Uppsala University, Sweden
| | - Beate Egner
- Department of Cardio-Vascular Research, Veterinary Academy of Higher Learning, Babenhausen, Germany
| | - C Mikael Mattsson
- Silicon Valley Exercise Analytics (svexa), MenloPark, CA, United States of America
| | - Karin Lång
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Artemy Zhigulev
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Hanna M. Björck
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Anders Franco-Cereceda
- Section of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
| | - Pelin Sahlén
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences Uppsala, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Olsvik PA, Brokke KE, Samuelsen OB, Hannisdal R. Lufenuron treatment temporarily represses gene expression and affects the SUMO pathway in liver of Atlantic salmon. JOURNAL OF FISH DISEASES 2024; 47:e13880. [PMID: 37933190 DOI: 10.1111/jfd.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
Lufenuron is a benzoylurea insecticide currently in use to combat sea lice infestation in salmon aquaculture in Chile. With pending approval in Norway, the aim of this work was to study the uptake and toxicity of lufenuron in liver tissue of Atlantic salmon. Juvenile salmon weighing 40 g were given a standard 7-day oral dose, and bioaccumulation and transcriptional responses in the liver were examined 1 day after the end-of-treatment (day 8) and after 1 week of elimination (day 14). Bioaccumulation levels of lufenuron were 29 ± 3 mg/kg at day 8 and 14 ± 1 mg/kg at day 14, indicating relatively rapid clearance. However, residues of lufenuron were still present in the liver after 513 days of depuration. The exposure gave a transient inhibition of transcription in the liver at day 8 (2437 significant DEGs, p-adj < .05), followed by a weaker compensatory response at day 14 (169 significant DEGs). Pathways associated with RNA metabolism such as the sumoylation pathway were most strongly affected at day 8, while the apelin pathway was most profoundly affected at day 14. In conclusion, this study shows that lufenuron easily bioaccumulates and that a standard 7-day oral dose induces a transient inhibition of transcription in liver of salmon.
Collapse
Affiliation(s)
- Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Institute of Marine Research, Bergen, Norway
| | | | | | | |
Collapse
|
3
|
Majdalani P, Levitas A, Krymko H, Slanovic L, Braiman A, Hadad U, Dabsan S, Horev A, Zarivach R, Parvari R. A Missense Variation in PHACTR2 Associates with Impaired Actin Dynamics, Dilated Cardiomyopathy, and Left Ventricular Non-Compaction in Humans. Int J Mol Sci 2023; 24:ijms24021388. [PMID: 36674904 PMCID: PMC9864900 DOI: 10.3390/ijms24021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Dilated cardiomyopathy (DCM) with left ventricular non-compaction (LVNC) is a primary myocardial disease leading to contractile dysfunction, progressive heart failure, and excessive risk of sudden cardiac death. Using whole-exome sequencing to investigate a possible genetic cause of DCM with LVNC in a consanguineous child, a homozygous nucleotide change c.1532G>A causing p.Arg511His in PHACTR2 was found. The missense change can affect the binding of PHACTR2 to actin by eliminating the hydrogen bonds between them. The amino acid change does not change PHACTR2 localization to the cytoplasm. The patient’s fibroblasts showed a decreased globular to fibrillary actin ratio compared to the control fibroblasts. The re-polymerization of fibrillary actin after treatment with cytochalasin D, which disrupts the actin filaments, was slower in the patient’s fibroblasts. Finally, the patient’s fibroblasts bridged a scar gap slower than the control fibroblasts because of slower and indirect movement. This is the first report of a human variation in this PHACTR family member. The knock-out mouse model presented no significant phenotype. Our data underscore the importance of PHACTR2 in regulating the monomeric actin pool, the kinetics of actin polymerization, and cell movement, emphasizing the importance of actin regulation for the normal function of the human heart.
Collapse
Affiliation(s)
- Pierre Majdalani
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Hanna Krymko
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Leonel Slanovic
- Department of Pediatric Cardiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Salam Dabsan
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amir Horev
- Pediatric Dermatology Service, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Raz Zarivach
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Correspondence: ; Tel.: +972-8-647-9967
| |
Collapse
|
4
|
Li B, Sun WX, Zhang WY, Zheng Y, Qiao L, Hu YM, Li WQ, Liu D, Leng B, Liu JR, Jiang XF, Zhang Y. The Transcriptome Characteristics of Severe Asthma From the Prospect of Co-Expressed Gene Modules. Front Genet 2021; 12:765400. [PMID: 34759961 PMCID: PMC8573341 DOI: 10.3389/fgene.2021.765400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Rationale: Severe asthma is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of asthmatic bronchial epithelial cells have provided biological insights and underscored possible pathological mechanisms; however, the molecular basis in severe asthma is still poorly understood. Objective: The objective of this study was to identify the features of asthma and uncover the molecular basis of severe asthma in distinct molecular phenotype. Methods: The k-means clustering and differentially expressed genes (DEGs) were performed in 129 asthma individuals in the Severe Asthma Research Program. The DEG profiles were analyzed by weighted gene co-expression network analysis (WGCNA), and the expression value of each gene module in each individual was annotated by gene set variation analysis (GSVA). Results: Expression analysis defined five stable asthma subtype (AS): 1) Phagocytosis-Th2, 2) Normal-like, 3) Neutrophils, 4) Mucin-Th2, and 5) Interferon-Th1 and 15 co-expressed gene modules. "Phagocytosis-Th2" enriched for receptor-mediated endocytosis, upregulation of Toll-like receptor signal, and myeloid leukocyte activation. "Normal-like" is most similar to normal samples. "Mucin-Th2" preferentially expressed genes involved in O-glycan biosynthesis and unfolded protein response. "Interferon-Th1" displayed upregulation of genes that regulate networks involved in cell cycle, IFN gamma response, and CD8 TCR. The dysregulation of neural signal, REDOX, apoptosis, and O-glycan process were related to the severity of asthma. In non-TH2 subtype (Neutrophils and Interferon-Th1) with severe asthma individuals, the neural signals and IL26-related co-expression module were dysregulated more significantly compared to that in non-severe asthma. These data infer differences in the molecular evolution of asthma subtypes and identify opportunities for therapeutic development. Conclusions: Asthma is a heterogeneous disease. The co-expression analysis provides new insights into the biological mechanisms related to its phenotypes and the severity.
Collapse
Affiliation(s)
- Bin Li
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, China
- Heilongjiang Longwei Precision Medical Laboratory Center, Harbin, China
| | - Wen-Xuan Sun
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan-Ying Zhang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Longwei Precision Medical Laboratory Center, Harbin, China
| | - Ye Zheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu Qiao
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue-Ming Hu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei-Qiang Li
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Liu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Leng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia-Ren Liu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Longwei Precision Medical Laboratory Center, Harbin, China
| | - Xiao-Feng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Fedoryshchak RO, Přechová M, Butler AM, Lee R, O'Reilly N, Flynn HR, Snijders AP, Eder N, Ultanir S, Mouilleron S, Treisman R. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. eLife 2020; 9:61509. [PMID: 32975518 PMCID: PMC7599070 DOI: 10.7554/elife.61509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin αII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Magdalena Přechová
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abbey M Butler
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rebecca Lee
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicola O'Reilly
- Peptide Chemistry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Noreen Eder
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom.,Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Sila Ultanir
- Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
6
|
Brzeska H, Gonzalez J, Korn ED, Titus MA. Basic-hydrophobic sites are localized in conserved positions inside and outside of PH domains and affect localization of Dictyostelium myosin 1s. Mol Biol Cell 2020; 31:101-117. [PMID: 31774725 PMCID: PMC6960411 DOI: 10.1091/mbc.e19-08-0475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
Myosin 1s have critical roles in linking membranes to the actin cytoskeleton via direct binding to acidic lipids. Lipid binding may occur through PIP3/PIP2-specific PH domains or nonspecific ionic interactions involving basic-hydrophobic (BH) sites but the mechanism of myosin 1s distinctive lipid targeting is poorly understood. Now we show that PH domains occur in all Dictyostelium myosin 1s and that the BH sites of Myo1A, B, C, D, and F are in conserved positions near the β3/β4 loops of their PH domains. In spite of these shared lipid-binding sites, we observe significant differences in myosin 1s highly dynamic localizations. All myosin 1s except Myo1A are present in macropinocytic structures but only Myo1B and Myo1C are enriched at the edges of macropinocytic cups and associate with the actin in actin waves. In contrast, Myo1D, E, and F are enclosed by the actin wave. Mutations of BH sites affect localization of all Dictyostelium myosin 1s. Notably, mutation of the BH site located within the PH domains of PIP3-specific Myo1D and Myo1F completely eradicates membrane binding. Thus, BH sites are important determinants of motor targeting and may have a similar role in the localization of other myosin 1s.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jesus Gonzalez
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D. Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margaret A. Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
7
|
Comparative Analysis of MicroRNA and mRNA Profiles of Sperm with Different Freeze Tolerance Capacities in Boar ( Sus scrofa) and Giant Panda ( Ailuropoda melanoleuca). Biomolecules 2019; 9:biom9090432. [PMID: 31480517 PMCID: PMC6769438 DOI: 10.3390/biom9090432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Post-thawed sperm quality parameters vary across different species after cryopreservation. To date, the molecular mechanism of sperm cryoinjury, freeze-tolerance and other influential factors are largely unknown. In this study, significantly dysregulated microRNAs (miRNAs) and mRNAs in boar and giant panda sperm with different cryo-resistance capacity were evaluated. From the result of miRNA profile of fresh and frozen-thawed giant panda sperm, a total of 899 mature, novel miRNAs were identified, and 284 miRNAs were found to be significantly dysregulated (195 up-regulated and 89 down-regulated). Combined analysis of miRNA profiling of giant panda sperm and our previously published data on boar sperm, 46, 21 and 4 differentially expressed (DE) mRNAs in boar sperm were believed to be related to apoptosis, glycolysis and oxidative phosphorylation, respectively. Meanwhile, 87, 17 and 7 DE mRNAs in giant panda were associated with apoptosis, glycolysis and oxidative phosphorylation, respectively. Gene ontology (GO) analysis of the targets of DE miRNAs showed that they were mainly distributed on membrane related pathway in giant panda sperm, while cell components and cell processes were tied to the targets of DE miRNAs in boar sperm. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DE mRNAs indicated that most of these DE mRNAs were distributed in membrane signal transduction-related pathways in giant panda sperm, while those in boar sperm were mainly distributed in the cytokine-cytokine receptor interaction pathway and inflammatory related pathways. In conclusion, although the different freezing extenders and programs were used, the DE miRNAs and mRNAs involved in apoptosis, energy metabolism, olfactory transduction pathway, inflammatory response and cytokine-cytokine interactions, could be the possible molecular mechanism of sperm cryoinjury and freeze tolerance.
Collapse
|