1
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
2
|
Rondoni G, Roman A, Meslin C, Montagné N, Conti E, Jacquin-Joly E. Antennal Transcriptome Analysis and Identification of Candidate Chemosensory Genes of the Harlequin Ladybird Beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). INSECTS 2021; 12:insects12030209. [PMID: 33801288 PMCID: PMC8002065 DOI: 10.3390/insects12030209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The predatory harlequin ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) has been widely released for classical and augmentative biological control programs of insect herbivores and is now distributed worldwide. Because of its invasive behavior and the threat it can pose to local biodiversity, this ladybird has been adopted as a model species for invasive biocontrol predators. A huge amount of existing literature is available on this species. However, little is known about the mechanisms underlying H. axyridis smell and taste, even though these senses are important in this ladybird for courtship, mating, and for locating suitable habitats for feeding and oviposition. Here we describe the first chemosensory gene repertoire that is expressed in the antennae of male and female H. axyridis. Our findings would likely represent the basis for future functional studies aiming at increasing the efficacy of H. axyridis in biological control or at reducing its populations in those areas where the ladybird has become a matter of concern due to its invasiveness. Abstract In predatory ladybirds (Coleoptera: Coccinellidae), antennae are important for chemosensory reception used during food and mate location, and for finding a suitable oviposition habitat. Based on NextSeq 550 Illumina sequencing, we assembled the antennal transcriptome of mated Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) males and females and described the first chemosensory gene repertoire expressed in this species. We annotated candidate chemosensory sequences encoding 26 odorant receptors (including the coreceptor, Orco), 17 gustatory receptors, 27 ionotropic receptors, 31 odorant-binding proteins, 12 chemosensory proteins, and 4 sensory neuron membrane proteins. Maximum-likelihood phylogenetic analyses allowed to assign candidate H. axyridis chemosensory genes to previously described groups in each of these families. Differential expression analysis between males and females revealed low variability between sexes, possibly reflecting the known absence of relevant sexual dimorphism in the structure of the antennae and in the distribution and abundance of the sensilla. However, we revealed significant differences in expression of three chemosensory genes, namely two male-biased odorant-binding proteins and one male-biased odorant receptor, suggesting their possible involvement in pheromone detection. Our data pave the way for improving the understanding of the molecular basis of chemosensory reception in Coccinellidae.
Collapse
Affiliation(s)
- Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
- Correspondence:
| | - Alessandro Roman
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 16123 Perugia, Italy; (A.R.); (E.C.)
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, 75013 Versailles, France; (C.M.); (N.M.); (E.J.-J.)
| |
Collapse
|
3
|
Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome. Sci Rep 2020; 10:20695. [PMID: 33244016 PMCID: PMC7691339 DOI: 10.1038/s41598-020-77144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
The round-headed pine beetle Dendroctonus adjunctus, whose dispersion and colonization behaviors are linked to a communication system mediated by semiochemicals, is one of the five most critical primary pests in forest ecosystems in Mexico. This study provides the first head transcriptome analysis of D. adjunctus and the identification of the nonreceptor olfactory genes involved in the perception of odors. De novo assembly yielded 44,420 unigenes, and GO annotations were similar to those of antennal transcriptomes of other beetle species, which reflect metabolic processes related to smell and signal transduction. A total of 36 new transcripts of nonreceptor olfactory genes were identified, of which 27 encode OBPs, 7 encode CSPs, and 2 encode SNMP candidates, which were subsequently compared to homologous proteins from other bark beetles and Coleoptera species by searching for sequence motifs and performing phylogenetic analyses. Our study provides information on genes encoding nonreceptor proteins in D. adjunctus and broadens the knowledge of olfactory genes in Coleoptera and bark beetle species, and will help to understand colonization and aggregation behaviors for the development of tools that complement management strategies.
Collapse
|
4
|
Identification of candidate chemosensory genes of Ophraella communa LeSage (Coleoptera: Chrysomelidae) based on antennal transcriptome analysis. Sci Rep 2019; 9:15551. [PMID: 31664149 PMCID: PMC6820725 DOI: 10.1038/s41598-019-52149-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022] Open
Abstract
Antennal olfaction plays a key role in insect survival, which mediates important behaviors like host search, mate choice, and oviposition site selection. As an oligophagous insect, olfaction is extremely important for Ophraella communa to locate host plants. However, information on the olfactory genes has been lacking in O. communa. Using next generation sequencing, we assembled the antennal transcriptome of O. communa and first reported the major chemosensory genes necessary for olfaction in this species. In this study, a total 105 candidate chemosensory genes were identified in O. communa antennae, including 25 odorant-binding proteins (OBPs), 11 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 30 odorant receptors (ORs), 18 ionotropic receptors (IRs), and 17 gustatory receptors (GRs). We also identified full-length sequences of the highly conserved ORco and IR8a/25a family in O. communa. In addition, the expression profile of 15 ORs and four OBPs were validated by quantitative real-time polymerase chain reaction (qPCR). We found that OcomOR2/4/19 and OcomOBP19/20 had a biased expression in male antennae, and OcomOR8 had a biased expression in the female antennae. This large number of chemosensory genes handled by homology analysis and qPCR results will provide the first insights into molecular basis for the olfactory systems of O. communa as well as advance our understanding of olfactory mechanisms in Coleoptera.
Collapse
|
5
|
González-González A, Rubio-Meléndez ME, Ballesteros GI, Ramírez CC, Palma-Millanao R. Sex- and tissue-specific expression of odorant-binding proteins and chemosensory proteins in adults of the scarab beetle Hylamorpha elegans (Burmeister) (Coleoptera: Scarabaeidae). PeerJ 2019; 7:e7054. [PMID: 31223529 PMCID: PMC6571001 DOI: 10.7717/peerj.7054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, we addressed the sex- and tissue-specific expression patterns of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Hylamorpha elegans (Burmeister), an important native scarab beetle pest species from Chile. Similar to other members of its family, this scarab beetle exhibit habits that make difficult to control the pest by conventional methods. Hence, alternative ways to manage the pest populations based on chemical communication and signaling (such as disrupting mating or host finding process) are highly desirable. However, developing pest-control methods based on chemical communication requires to understand the molecular basis for pheromone recognition/chemical perception in this species. Thus, with the aim of discovering olfaction-related genes, we obtained the first reference transcriptome assembly of H. elegans. We used different tissues of adult beetles from males and females: antennae and maxillary palps, which are well known for embedded sensory organs. Then, the expression of predicted odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) was analyzed by qRT-PCR. In total, 165 transcripts related to chemoperception were predicted. Of these, 16 OBPs, including one pheromone-binding protein (PBP), and four CSPs were successfully amplified by qRT-PCR. All of these genes were differentially expressed in the sensory tissues with respect to the tibial tissue that was used as a control. The single predicted PBP found was highly expressed in the antennal tissues, particularly in males, while several OBPs and one CSP showed male-biased expression patterns, suggesting that these proteins may participate in sexual recognition process. In addition, a single CSP was expressed at higher levels in female palps than in any other studied condition, suggesting that this CSP would participate in oviposition process. Finally, all four CSPs exhibited palp-biased expression while mixed results were obtained for the expression of the OBPs, which were more abundant in the palps than in the antennae. These results suggest that these chemoperception proteins would be interesting novel targets for control of H. elegans, thus providing a theoretical basis for further studies involving new pest control methods.
Collapse
Affiliation(s)
- Angélica González-González
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María E Rubio-Meléndez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Gabriel I Ballesteros
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Claudio C Ramírez
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Rubén Palma-Millanao
- Centre in Molecular and Functional Ecology, Universidad de Talca, Talca, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
7
|
Using Next-Generation Sequencing to Detect Differential Expression Genes in Bradysia odoriphaga after Exposure to Insecticides. Int J Mol Sci 2017; 18:ijms18112445. [PMID: 29149030 PMCID: PMC5713412 DOI: 10.3390/ijms18112445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022] Open
Abstract
Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive. Insecticides are used widely and frequently to control B. odoriphaga in China. However, the performance of the insecticides chlorpyrifos and clothianidin in controlling the Chinese chive maggot is quite different. Using next generation sequencing technology, different expression unigenes (DEUs) in B. odoriphaga were detected after treatment with chlorpyrifos and clothianidin for 6 and 48 h in comparison with control. The number of DEUs ranged between 703 and 1161 after insecticide treatment. In these DEUs, 370–863 unigenes can be classified into 41–46 categories of gene ontology (GO), and 354–658 DEUs can be mapped into 987–1623 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expressions of DEUs related to insecticide-metabolism-related genes were analyzed. The cytochrome P450-like unigene group was the largest group in DEUs. Most glutathione S-transferase-like unigenes were down-regulated and most sodium channel-like unigenes were up-regulated after insecticide treatment. Finally, 14 insecticide-metabolism-related unigenes were chosen to confirm the relative expression in each treatment by quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results of qRT-PCR and RNA Sequencing (RNA-Seq) are fairly well-established. Our results demonstrate that a next-generation sequencing tool facilitates the identification of insecticide-metabolism-related genes and the illustration of the insecticide mechanisms of chlorpyrifos and clothianidin.
Collapse
|
8
|
Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius. Sci Rep 2017; 7:11073. [PMID: 28894232 PMCID: PMC5593998 DOI: 10.1038/s41598-017-11456-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
The sweetpotato weevil, Cylas formicarius (Fabricius), is a serious pest of sweetpotato. Olfaction-based approaches, such as use of synthetic sex pheromones to monitor populations and the bait-and-kill method to eliminate males, have been applied successfully for population management of C. formicarius. However, the molecular basis of olfaction in C. formicarius remains unknown. In this study, we produced antennal transcriptomes from males and females of C. formicarius using high-throughput sequencing to identify gene families associated with odorant detection. A total of 54 odorant receptors (ORs), 11 gustatory receptors (GRs), 15 ionotropic receptors (IRs), 3 sensory neuron membrane proteins (SNMPs), 33 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSPs) were identified. Tissue-specific expression patterns revealed that all 54 ORs and 11 antennal IRs, one SNMP, and three OBPs were primarily expressed in antennae, suggesting their putative roles in olfaction. Sex-specific expression patterns of these antenna-predominant genes suggest that they have potential functions in sexual behaviors. This study provides a framework for understanding olfaction in coleopterans as well as future strategies for controlling the sweetpotato weevil pest.
Collapse
|
9
|
Bin SY, Qu MQ, Li KM, Peng ZQ, Wu ZZ, Lin JT. Antennal and abdominal transcriptomes reveal chemosensory gene families in the coconut hispine beetle, Brontispa longissima. Sci Rep 2017; 7:2809. [PMID: 28584273 PMCID: PMC5459851 DOI: 10.1038/s41598-017-03263-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Antennal and abdominal transcriptomes of males and females of the coconut hispine beetle Brontispa longissima were sequenced to identify and compare the expression patterns of genes involved in odorant reception and detection. Representative proteins from the chemosensory gene families likely essential for insect olfaction were identified. These include 48 odorant receptors (ORs), 19 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs), 34 odorant binding proteins (OBPs) and 16 chemosensory proteins (CSPs). Phylogenetic analysis revealed the evolutionary relationship of these proteins with homologs from Coleopterans or other insects, and led to the identification of putative aggregation pheromone receptors in B. longissima. Comparative expression analysis performed by calculating FPKM values were also validated using quantitative real time-PCR (qPCR). The results revealed that all ORs and antennal IRs, two IR co-receptors (BlonIR8a and BlonIR25a) and one SNMP (BlonSNMP1a) were predominantly expressed in antennae when compared to abdomens, and approximately half of the OBPs (19) and CSPs (7) were enriched in antennae. These findings for the first time reveal the identification of key molecular components in B. longissima olfaction and provide a valuable resource for future functional analyses of olfaction, and identification of potential targets to control this quarantine pest.
Collapse
Affiliation(s)
- Shu-Ying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Meng-Qiu Qu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Ke-Ming Li
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, PR China.,Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zheng-Qiang Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570101, PR China
| | - Zhong-Zhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Jin-Tian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|
10
|
Benton MA, Kenny NJ, Conrads KH, Roth S, Lynch JA. Deep, Staged Transcriptomic Resources for the Novel Coleopteran Models Atrachya menetriesi and Callosobruchus maculatus. PLoS One 2016; 11:e0167431. [PMID: 27907180 PMCID: PMC5132259 DOI: 10.1371/journal.pone.0167431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies.
Collapse
Affiliation(s)
- Matthew A. Benton
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Nathan J. Kenny
- Simon F.S. Li School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai H. Conrads
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
- * E-mail: (SR); (JAL)
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (SR); (JAL)
| |
Collapse
|
11
|
Wu Z, Bin S, He H, Wang Z, Li M, Lin J. Differential Expression Analysis of Chemoreception Genes in the Striped Flea Beetle Phyllotreta striolata Using a Transcriptomic Approach. PLoS One 2016; 11:e0153067. [PMID: 27064483 PMCID: PMC4827873 DOI: 10.1371/journal.pone.0153067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/23/2016] [Indexed: 11/20/2022] Open
Abstract
Olfactory transduction is a process by which olfactory sensory neurons (OSNs) transform odor information into neuronal electrical signals. This process begins with the binding of odor molecules to receptor proteins on olfactory receptor neuron (ORN) dendrites. The major molecular components involved in olfaction include odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and odorant-degrading enzymes (ODEs). More importantly, as potential molecular targets, chemosensory proteins are used to identify novel attractants or repellants for environmental-friendly pest management. In this study we analyzed the transcriptome of the flea beetle, Phyllotreta striolata (Coleoptera, Chrysomelidae), a serious pest of Brassicaceae crops, to better understand the molecular mechanisms of olfactory recognition in this pest. The analysis of transcriptomes from the antennae and terminal abdomens of specimens of both sexes identified transcripts from several key molecular components of chemoreception including 73 ORs, 36 GRs, 49 IRs, 2 SNMPs, 32 OBPs, 8 CSPs, and four candidate odorant degrading enzymes (ODEs): 143 cytochrome P450s (CYPs), 68 esterases (ESTs), 27 glutathione S-transferases (GSTs) and 8 UDP-glycosyltransferases (UGTs). Bioinformatic analyses indicated that a large number of chemosensory genes were up-regulated in the antennae. This was consistent with a potential role in olfaction. To validate the differential abundance analyses, the expression of 19 genes encoding various ORs, CSPs, and OBPs was assessed via qRT-PCR between non-chemosensory tissue and antennae. Consistent with the bioinformatic analyses, transcripts for all of the genes in the qRT-PCR subset were elevated in antennae. These findings provide the first insights into the molecular basis of chemoreception in the striped flea beetle.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Shuying Bin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Hualiang He
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Zhengbing Wang
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Mei Li
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Jintian Lin
- Institute for Management of Invasive Alien Species, 314 Yingdong teaching building, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
- * E-mail:
| |
Collapse
|
12
|
Wang Y, Chen Q, Zhao H, Ren B. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis. PLoS One 2016; 11:e0147144. [PMID: 26800515 PMCID: PMC4723088 DOI: 10.1371/journal.pone.0147144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7/9/10, AquaOR17/24/32 and AquaIR4 were highly expressed in the antenna of males, suggesting that these genes were related to sex-specific behaviors, and expression trends that were male specific were observed for most candidate olfactory genes, which supported the existence of a female-produced sex pheromone in A. quadriimpressum. All of these results could provide valuable information and guidance for future functional studies on these genes and provide better molecular knowledge regarding the olfactory system in A. quadriimpressum.
Collapse
Affiliation(s)
- Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- * E-mail:
| |
Collapse
|
13
|
González-González A, Palma-Millanao R, Yáñez O, Rojas M, Mutis A, Venthur H, Quiroz A, Ramírez CC. Virtual Screening of Plant Volatile Compounds Reveals a High Affinity of Hylamorpha elegans (Coleoptera: Scarabaeidae) Odorant-Binding Proteins for Sesquiterpenes From Its Native Host. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew008. [PMID: 27012867 PMCID: PMC4806717 DOI: 10.1093/jisesa/iew008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/24/2016] [Indexed: 05/14/2023]
Abstract
Hylamorpha elegans(Burmeister) is a native Chilean scarab beetle considered to be a relevant agricultural pest to pasture and cereal and small fruit crops. Because of their cryptic habits, control with conventional methods is difficult; therefore, alternative and environmentally friendly control strategies are highly desirable. The study of proteins that participate in the recognition of odorants, such as odorant-binding proteins (OBPs), offers interesting opportunities to identify new compounds with the potential to modify pest behavior and computational screening of compounds, which is commonly used in drug discovery, may help to accelerate the discovery of new semiochemicals. Here, we report the discovery of four OBPs inH. elegans as well as six new volatiles released by its native host Nothofagus obliqua(Mirbel). Molecular docking performed between OBPs and new and previously reported volatiles from N. oblique revealed the best binding energy values for sesquiterpenic compounds. Despite remarkable divergence at the amino acid level, three of the four OBPs evaluated exhibited the best interaction energy for the same ligands. Molecular dynamics investigation reinforced the importance of sesquiterpenes, showing that hydrophobic residues of the OBPs interacted most frequently with the tested ligands, and binding free energy calculations demonstrated van der Waals and hydrophobic interactions to be the most important. Altogether, the results suggest that sesquiterpenes are interesting candidates for in vitro and in vivo assays to assess their potential application in pest management strategies.
Collapse
Affiliation(s)
- Angélica González-González
- Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile (; ; ),
| | - Rubén Palma-Millanao
- Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile (; ; ),
| | - Osvaldo Yáñez
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 275, Santiago, Chile
| | - Maximiliano Rojas
- Instituto de Ciencias Biológicas, Universidad de Talca, Dos Norte 685, 3465548 Talca, Chile , and
| | - Ana Mutis
- Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile (; ; )
| | - Herbert Venthur
- Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile (; ; )
| | - Andrés Quiroz
- Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile (; ; )
| | - Claudio C Ramírez
- Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile (; ; )
| |
Collapse
|
14
|
Patnaik BB, Hwang HJ, Kang SW, Park SY, Wang TH, Park EB, Chung JM, Song DK, Kim C, Kim S, Lee JB, Jeong HC, Park HS, Han YS, Lee YS. Transcriptome Characterization for Non-Model Endangered Lycaenids, Protantigius superans and Spindasis takanosis, Using Illumina HiSeq 2500 Sequencing. Int J Mol Sci 2015; 16:29948-70. [PMID: 26694362 PMCID: PMC4691156 DOI: 10.3390/ijms161226213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
The Lycaenidae butterflies, Protantigius superans and Spindasis takanosis, are endangered insects in Korea known for their symbiotic association with ants. However, necessary genomic and transcriptomics data are lacking in these species, limiting conservation efforts. In this study, the P. superans and S. takanosis transcriptomes were deciphered using Illumina HiSeq 2500 sequencing. The P. superans and S. takanosis transcriptome data included a total of 254,340,693 and 245,110,582 clean reads assembled into 159,074 and 170,449 contigs and 107,950 and 121,140 unigenes, respectively. BLASTX hits (E-value of 1.0 × 10−5) against the known protein databases annotated a total of 46,754 and 51,908 transcripts for P. superans and S. takanosis. Approximately 41.25% and 38.68% of the unigenes for P. superans and S. takanosis found homologous sequences in Protostome DB (PANM-DB). BLAST2GO analysis confirmed 18,611 unigenes representing Gene Ontology (GO) terms and a total of 5259 unigenes assigned to 116 pathways for P. superans. For S. takanosis, a total of 6697 unigenes were assigned to 119 pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Additionally, 382,164 and 390,516 Simple Sequence Repeats (SSRs) were compiled from the unigenes of P. superans and S. takanosis, respectively. This is the first report to record new genes and their utilization for conservation of lycaenid species population and as a reference information for closely related species.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha 751024, India.
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Tae Hun Wang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Eun Bi Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do 54528, Korea.
| | - Heon Cheon Jeong
- Hampyeong County Insect Institute, Hampyeong County Agricultural Technology Center, 90, Hakgyohwasan-gil, Hakgyo-myeon, Hampyeong-gun, Jeollanan-do 57158, Korea.
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD. 621-6 Banseok-dong, Yuseong-gu, Daejeon 34069, Korea.
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| |
Collapse
|
15
|
Li K, Yang X, Xu G, Cao Y, Lu B, Peng Z. Identification of putative odorant binding protein genes in Asecodes hispinarum, a parasitoid of coconut leaf beetle (Brontispa longissima) by antennal RNA-Seq analysis. Biochem Biophys Res Commun 2015; 467:514-20. [PMID: 26454175 DOI: 10.1016/j.bbrc.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023]
Abstract
Asecodes hispinarum (Hymenoptera: Eulophidae) is an endoparasitoid and an efficient biological control agent which attacks larvae of Brontispa longissima, a serious insect pest of Palmae plants in China. Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. No previous study has reported on OBPs in A. hispinarum. In this study, we conducted the large-scale identification of OBP genes from the antennae of A. hispinarum by using transcriptome sequencing. Approximately 28.4 million total raw reads and about 27.3 million total clean reads were obtained, and then 46,363 unigenes were assembled. Of these unigenes, a total of 21,263 can be annotated in the NCBI non-redundant database. Among the annotated unigenes, 16,623 of them can be assigned to GO (Gene Ontology). Furthermore, we identified 8 putative OBP genes, and a phylogenetic tree analysis was performed to characterize the 8 OBP genes. In addition, the expression of the 8 OBP genes in different A. hispinarum body tissues was analyzed by real-time quantitative polymerase chain reaction (qRT-PCR). The results indicated that the 8 OBP genes were expressed accordingly to sexes and tissues, but all highly expressed in antennae. The finding of this study will lay the foundation for unraveling molecular mechanisms of A. hispinarum chemoperception.
Collapse
Affiliation(s)
- Keming Li
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China; Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China.
| | - Xiangbing Yang
- Texas A&M Agrilife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA.
| | - Guiying Xu
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China.
| | - Yang Cao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Baoqian Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China.
| | - Zhengqiang Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China.
| |
Collapse
|
16
|
Gu XC, Zhang YN, Kang K, Dong SL, Zhang LW. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB), Dendroctonus valens. PLoS One 2015; 10:e0125159. [PMID: 25938508 PMCID: PMC4418697 DOI: 10.1371/journal.pone.0125159] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. RESULTS We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. CONCLUSION The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction.
Collapse
Affiliation(s)
- Xiao-Cui Gu
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Correction: De novo sequencing, assembly and characterization of antennal transcriptome of Anomala corpulenta Motschulsky (Coleoptera: Rutelidae). PLoS One 2015; 10:e0127303. [PMID: 25928371 PMCID: PMC4415764 DOI: 10.1371/journal.pone.0127303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|