1
|
Schweiger B, Kievit FM. Glioblastoma induced blood-brain barrier dysfunction via a paracrine mechanism that increases claudin-1 expression. Exp Brain Res 2025; 243:70. [PMID: 39960547 DOI: 10.1007/s00221-025-07018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 03/08/2025]
Abstract
Blood-brain barrier (BBB) disruption is a well-known phenomenon in glioblastoma (GBM). However, the mechanism driving BBB dysfunction in previously established vasculature at the invasive edge of GBM is still unknown. In this study, we aimed to determine if GBM paracrine signaling is sufficient to induce BBB dysfunction and identify changes in the tight junctions of the BBB. An in vivo U-87 MG xenograft model and an in vitro primary brain endothelial cell BBB model were established for barrier dysfunction monitoring. Immunofluorescent staining revealed significantly higher claudin-1 expression and significantly lower claudin-5 expression in the tumor vs. normal brain tissue of our in vivo model (p < 0.01). Additionally, claudin-1 expression co-localized with brain cell type markers for endothelium, pericytes, and microglia. In vitro exposure of brain microvascular endothelial cells to GBM conditioned media resulted in a significant decrease in transendothelial electrical resistance as well as delocalization of claudin-5 from the tight junctions. These results suggest GBM cells secrete factors capable of inducing changes in the tight junction proteins of the BBB and decreasing barrier integrity. Future studies will aim to identify the mechanism in which these changes occur.
Collapse
Affiliation(s)
- Brittany Schweiger
- Department of Biological Systems Engineering, University of Nebraska, 4240 Fair St., 268 Morrison Center, Lincoln, NE, 68583, USA
| | - Forrest M Kievit
- Department of Biological Systems Engineering, University of Nebraska, 4240 Fair St., 268 Morrison Center, Lincoln, NE, 68583, USA.
| |
Collapse
|
2
|
Yoshida K, Chambers JK, Uchida K. The relationships of platelet-derived growth factor, microvascular proliferation, and tumor cell proliferation in canine high-grade oligodendrogliomas: Immunohistochemistry of 45 tumors and an AFOB-01 xenograft mouse model. Vet Pathol 2024; 61:732-742. [PMID: 38577818 DOI: 10.1177/03009858241241793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
High-grade oligodendroglioma (HGOG) is the most common type of glioma in dogs and expresses platelet-derived growth factor receptor-α (PDGFR-α). Microvascular proliferation is often observed in HGOG. Therefore, the present study investigated the functional relationships between PDGFR-α, microvascular proliferation, and tumor cell proliferation in canine HGOG. The expression of PDGFR-α and PDGF-subunit A (PDGF-A) in tumor cells, as well as endothelial cells and pericytes of tumor-associated microvascular proliferations, in 45 canine HGOGs were examined immunohistochemically. Microvascular proliferation was observed in 24/45 cases (53%). PDGFR-α expression in tumor cells and microvascular proliferations was observed in 45/45 (100%) and 2/24 cases (8%), respectively. Furthermore, PDGF-A expression in tumor cells and microvascular proliferations was detected in 13/45 (29%) and 24/24 cases (100%), respectively. In vitro, stimulation of the canine HGOG cell line AOFB-01 with PDGF-A showed that the doubling time of AOFB-01 cells was significantly shorter with PDGF-A than without PDGF-A. Crenolanib (a PDGFR inhibitor) inhibited AOFB-01 cell proliferation. In vivo, the AOFB-01 xenograft mouse model was treated with crenolanib. Tumor xenografts were smaller in crenolanib-treated mice than in untreated control mice. PDGFR-α expression in tumor cells and PDGF-A expression in microvascular proliferations and tumor cells suggest autocrine and paracrine effects of PDGF-A in canine HGOG. The results of in vitro assays indicate that canine HGOG expresses functional PDGFR-α, which responds to PDGF-A. Therefore, PDGF-A produced by microvascular proliferations and tumor cells may promote the proliferation of PDGFR-α-expressing tumor cells in canine HGOG. PDGFR-α signaling has potential as a therapeutic target.
Collapse
|
3
|
Ramírez E, Jara N, Ferrada L, Salazar K, Martínez F, Oviedo MJ, Tereszczuk J, Ramírez-Carbonell S, Vollmann-Zwerenz A, Hau P, Nualart F. Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxid Redox Signal 2022; 37:538-559. [PMID: 35166128 DOI: 10.1089/ars.2021.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.
Collapse
Affiliation(s)
- Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Joanna Tereszczuk
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Sebastián Ramírez-Carbonell
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
4
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
5
|
Ippolitov D, Arreza L, Munir MN, Hombach-Klonisch S. Brain Microvascular Pericytes—More than Bystanders in Breast Cancer Brain Metastasis. Cells 2022; 11:cells11081263. [PMID: 35455945 PMCID: PMC9028330 DOI: 10.3390/cells11081263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Brain tissue contains the highest number of perivascular pericytes compared to other organs. Pericytes are known to regulate brain perfusion and to play an important role within the neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell type a prime candidate to aid physiological adaptations but also propose pericytes as important modulators in diverse pathologies in the brain. This review highlights known phenotypes of pericytes in the brain, discusses the diverse markers for brain pericytes, and reviews current in vitro and in vivo experimental models to study pericyte function. Our current knowledge of pericyte phenotypes as it relates to metastatic growth patterns in breast cancer brain metastasis is presented as an example for the crosstalk between pericytes, endothelial cells, and metastatic cells. Future challenges lie in establishing methods for real-time monitoring of pericyte crosstalk to understand causal events in the brain metastatic process.
Collapse
Affiliation(s)
- Danyyl Ippolitov
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Leanne Arreza
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Maliha Nuzhat Munir
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (D.I.); (L.A.); (M.N.M.)
- Department of Pathology, University of Manitoba, Winnipeg, MB R3E 0Z2, Canada
- Correspondence:
| |
Collapse
|
6
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, García MDP, Díaz-Flores L, González-Marrero I, Ávila J, Martín-Vasallo P. Disproportion in Pericyte/Endothelial Cell Proliferation and Mechanisms of Intussusceptive Angiogenesis Participate in Bizarre Vessel Formation in Glioblastoma. Cells 2021; 10:cells10102625. [PMID: 34685606 PMCID: PMC8534221 DOI: 10.3390/cells10102625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor in the brain. In addition to the vascular pattern with thin-walled vessels and findings of sprouting angiogenesis, GBM presents a bizarre microvasculature (BM) formed by vascular clusters, vascular garlands, and glomeruloid bodies. The mechanisms in BM morphogenesis are not well known. Our objective was to assess the role of pericyte/endothelial proliferation and intussusceptive angiogenic mechanisms in the formation of the BM. For this purpose, we studied specimens of 66 GBM cases using immunochemistry and confocal microscopy. In the BM, the results showed (a) transitional forms between the BM patterns, mostly with prominent pericytes covering all the abluminal endothelial cell (EC) surface of the vessels, (b) a proliferation index high in the prominent pericytes and low in ECs (47.85 times higher in pericytes than in ECs), (c) intravascular pillars (hallmark of intussusceptive angiogenesis) formed by transcapillary interendothelial bridges, endothelial contacts of opposite vessel walls, and vessel loops, and (d) the persistence of these findings in complex glomeruloid bodies. In conclusion, disproportion in pericyte/EC proliferation and mechanisms of intussusceptive angiogenesis participate in BM formation. The contributions have morphogenic and clinical interest since pericytes and intussusceptive angiogenesis can condition antiangiogenic therapy in GBM.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain;
| | - María-del-Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Ibrahim González-Marrero
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (L.D.-F.); (R.G.); (M.G.-G.); (L.D.-F.J.); (I.G.-M.)
| | - Julio Ávila
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain;
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38206 Tenerife, Spain
| | - Pablo Martín-Vasallo
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain;
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38206 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-318358; Fax: +34-922-319279
| |
Collapse
|
7
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
8
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
9
|
Antonioli L, Fornai M, Pellegrini C, D'Antongiovanni V, Turiello R, Morello S, Haskó G, Blandizzi C. Adenosine Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:145-167. [PMID: 33123998 DOI: 10.1007/978-3-030-47189-7_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine, deriving from ATP released by dying cancer cells and then degradated in the tumor environment by CD39/CD73 enzyme axis, is linked to the generation of an immunosuppressed niche favoring the onset of neoplasia. Signals delivered by extracellular adenosine are detected and transduced by G-protein-coupled cell surface receptors, classified into four subtypes: A1, A2A, A2B, and A3. A critical role of this nucleoside is emerging in the modulation of several immune and nonimmune cells defining the tumor microenvironment, providing novel insights about the development of novel therapeutic strategies aimed at undermining the immune-privileged sites where cancer cells grow and proliferate.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Roberta Turiello
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,PhD Program in Drug discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Inhibitory effect of Siwei Xiaoliuyin on glioma angiogenesis in nude mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:243-252. [PMID: 32448610 DOI: 10.1016/bs.irn.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Application of Siwei Xiaoliuyin in glioma mice. Explore the effect of Siwei Xiaoliuyin on angiogenesis of nude mice glioma and its mechanism. METHODS Establish human glioma cell line U87 tumor model. Mice were randomized to the saline group, the conventional dose of Siwei Xiaoliuyin, high dose group of Siwei Xiaoliuyin, TMZ group, combination therapy group, record the tumor volume. Using the method of Weidner counted the microvessel density. ELISA enzyme-linked adsorption method to detect the content of nude mice serum VEGF and ES. The difference was statistically significant (P<0.05). RESULTS The tumor volume and MVD of conventional dose group, large dose group, Siwei Xiaoliuyin combined temozolomide group was smaller than the blank group,the difference was statistically significant (P<0.05). VEGF levels in three groups of nude mice were lower than the blank group and ES content is higher than blank group, the difference was statistically significant (P<0.05). CONCLUSION Siwei Xiaoliuyin can inhibit glioma angiogenesis. Its mechanism of glioma angiogenesis inhibition may be through regulation VEGF and down-regulation of endostatin expression of vascular endothelial growth factor achieved. Down-regulation of endostatin expression of vascular endothelial growth factor achieved.
Collapse
|
11
|
Mitrofanova L, Hazratov A, Galkovsky B, Gorshkov A, Bobkov D, Gulyaev D, Shlyakhto E. Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma: Telocytes, pericytes, and mixed immunophenotypes. Oncotarget 2020; 11:322-346. [PMID: 32064038 PMCID: PMC6996916 DOI: 10.18632/oncotarget.27340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
Telocytes (Tcs) and pericytes (Pcs) are two types of perivascular interstitial cell known to be widespread in various organs and tissues, including the brain. We postulated that Tcs and Pcs may be involved in glioblastoma (GBM) neovascularization.
Collapse
Affiliation(s)
- Lubov Mitrofanova
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia
| | - Anton Hazratov
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia
| | - Boris Galkovsky
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia
| | - Andrey Gorshkov
- Almazov National Medical Research Centre, Pathomorphology Research Laboratory, St. Petersburg, Russia.,Smorodintsev Research Institute of Influenza, Laboratory of Intracellular Signaling and Transport, St. Petersburg, Russia
| | - Danila Bobkov
- Smorodintsev Research Institute of Influenza, Laboratory of Intracellular Signaling and Transport, St. Petersburg, Russia.,Institute of Cytology of the Russian Academy of Science, Laboratory of Cell Biology in Culture, St. Petersburg, Russia
| | - Dmitry Gulyaev
- Almazov National Medical Research Centre, Research Department of Neurosurgery, St. Petersburg, Russia
| | - Evgeny Shlyakhto
- Almazov National Medical Research Centre, General Director, St. Petersburg, Russia
| |
Collapse
|
12
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
13
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Microvascularity detection and quantification in glioma: a novel deep-learning-based framework. J Transl Med 2019; 99:1515-1526. [PMID: 31201368 DOI: 10.1038/s41374-019-0272-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023] Open
Abstract
Microvascularity is highly correlated with the grading and subtyping of gliomas, making this one of its most important histological features. Accurate quantitative analysis of microvessels is helpful for the development of a targeted therapy for antiangiogenesis. The deep-learning algorithm is by far the most effective segmentation and detection model and enables location and recognition of complex microvascular networks in large images obtained from hematoxylin and eosin (H&E) stained specimens. We proposed an automated deep-learning-based method to detect and quantify the microvascularity in glioma and applied it to comprehensive clinical analyses. A total of 350 glioma patients were enrolled in our study, for which digitalized imaging of H&E stained slides were reviewed, molecular diagnosis was performed and follow-up was investigated. The microvascular features were compared according to their histologic types, molecular types, and patients' prognosis. The results show that the proposed method can quantify microvascular characteristics automatically and effectively. Significant increases of microvascular density and microvascular area were observed in glioblastomas (95% p < 0.001 in density, 170% p < 0.001 in area) in comparison with other histologic types; increases were also observed in cases with TERT-mut only (68% p < 0.001 in density, 54% p < 0.001 in area) compared with other molecular types. Survival analysis showed that microvascular features can be used to cluster cases into two groups with different survival periods (hazard ratio [HR] 2.843, log-rank <0.001), which indicates the quantified microvascular features may potentially be alternative signatures for revealing patients' prognosis. This deep-learning-based method may be a useful tool in routine clinical practice for precise diagnosis and antiangiogenic treatment.
Collapse
|
15
|
Beppu T, Sato Y, Yamada N, Terasaki K, Sasaki T, Sugai T, Ogasawara K. Impacts on Histological Features and 11C-Methyl-L-methionine Uptake After "One-Shot" Administration with Bevacizumab Before Surgery in Newly Diagnosed Glioblastoma. Transl Oncol 2019; 12:1480-1487. [PMID: 31446307 PMCID: PMC6717056 DOI: 10.1016/j.tranon.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND: Bevacizumab (BEV), an antiangiogenic agent, induces dramatic normalization of the tumor vasculature in glioblastoma. This study aimed to clarify how one-time administration of BEV changes histological features in glioblastoma and how histological changes affect the uptake of 11C-methyl-L-methionine (11C-met) as an amino-acid tracer. MATERIALS AND METHODS: Subjects were 18 patients with newly diagnosed glioblastoma who were assigned to two groups: BEV group, single intravenous administration of BEV before surgical tumor removal; and control group, surgical tumor removal alone. After surgery, we compared the densities of tumor cells and microvessels, and microvascular structures including vascular pericytes and L-type amino acid transporter-1 (LAT1) between the BEV and control groups. Correlations between 11C-met uptake on positron emission tomography before surgery, microvascular density, and LAT1 expression were assessed in each group. RESULTS: BEV induced significant reductions in microvascular density, while tumor cell density and proliferation were retained in the BEV group. Percentages of vessels with pericytes and vascular endothelium with LAT1 expression were lower in the BEV group than in controls. Uptake of 11C-met correlated significantly with microvascular density in the BEV group but not with LAT1expression. CONCLUSIONS: The present study showed that even one course of BEV administration induced reductions in microvessels, vascular pericytes, and LAT1 expression in glioblastomas. One course of BEV therapy also reduced 11C-met uptake, which might have been largely attributed to reductions in microvessels rather than reductions in LAT1 expression.
Collapse
Affiliation(s)
- Takaaki Beppu
- Department of Neurosurgery, Iwate Medical University, Japan.
| | - Yuichi Sato
- Department of Neurosurgery, Iwate Medical University, Japan
| | - Noriyuki Yamada
- Department of Clinical Pathology, Iwate Medical University, Japan
| | | | | | - Tamotsu Sugai
- Department of Clinical Pathology, Iwate Medical University, Japan
| | | |
Collapse
|
16
|
Isocitrate dehydrogenase1 mutation reduces the pericyte coverage of microvessels in astrocytic tumours. J Neurooncol 2019; 143:187-196. [PMID: 31004262 DOI: 10.1007/s11060-019-03156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Tumour-associated angiogenesis is associated with the malignancy and poor prognosis of glioma. Isocitrate dehydrogenase (IDH) mutations are present in the majority of lower-grade (WHO grade II and III) and secondary glioblastomas, but their roles in tumour angiogenesis remain unclear. METHODS Using magnetic resonance imaging (MRI), the cerebral blood flow (CBF) of IDH-mutated glioma was measured and compared with the IDH-wildtype glioma. The densities of microvessels in IDH-mutated and wildtype astrocytoma and glioblastoma were assessed by immunohistochemical (IHC) staining with CD34, and the pericytes were labelled with α-smooth muscle antigen (α-SMA), neural-glial antigen 2 (NG2) and PDGF receptor-β (PDGFR-β), respectively. Furthermore, glia-specific mutant IDH1 knock-in mice were generated to evaluate the roles of mutant IDH1 on brain vascular architectures. The transcriptions of the angiogenesis-related genes were assessed in TCGA datasets, including ANGPT1, PDGFB and VEGFA. The expressions of these genes were further determined by western blot in U87-MG cells expressing a mutant IDH1 or treated with 2-HG. RESULTS The MRI results indicated that CBF was reduced in the IDH-mutated gliomas. The IHC staining showed that the pericyte coverages of microvessels were significantly decreased, but the microvessel densities (MVDs) were only slightly decreased in IDH-mutated glioma. The mutant IDH1 knock-in also impeded the pericyte coverage of brain microvessels in mice. Moreover, the TCGA database showed the mRNA levels of angiogenesis factors, including ANGPT1, PDGFB and VEGFA, were downregulated, and their promoters were also highly hyper-methylated in IDH-mutated gliomas. In addition, both mutant IDH1 and D-2-HG could downregulate the expression of these genes in U87-MG cells. CONCLUSIONS Our results suggested that IDH mutations could reduce the pericyte coverage of microvessels in astrocytic tumours by inhibiting the expression of angiogenesis factors. As vascular pericytes play an essential role in maintaining functional blood vessels to support tumour growth, our findings imply a potential avenue of therapeutic strategy for IDH-mutated gliomas.
Collapse
|
17
|
Hakim JS, Rodysill BR, Chen BK, Schmeichel AM, Yaszemski MJ, Windebank AJ, Madigan NN. Combinatorial tissue engineering partially restores function after spinal cord injury. J Tissue Eng Regen Med 2019; 13:857-873. [PMID: 30808065 DOI: 10.1002/term.2840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Hydrogel scaffolds provide a beneficial microenvironment in transected rat spinal cord. A combinatorial biomaterials-based strategy provided a microenvironment that facilitated regeneration while reducing foreign body reaction to the three-dimensional spinal cord construct. We used poly lactic-co-glycolic acid microspheres to provide sustained release of rapamycin from Schwann cell (SC)-loaded, positively charged oligo-polyethylene glycol fumarate scaffolds. The biological activity and dose-release characteristics of rapamycin from microspheres alone and from microspheres embedded in the scaffold were determined in vitro. Three dose formulations of rapamycin were compared with controls in 53 rats. We observed a dose-dependent reduction in the fibrotic reaction to the scaffold and improved functional recovery over 6 weeks. Recovery was replicated in a second cohort of 28 animals that included retransection injury. Immunohistochemical and stereological analysis demonstrated that blood vessel number, surface area, vessel diameter, basement membrane collagen, and microvessel phenotype within the regenerated tissue was dependent on the presence of SCs and rapamycin. TRITC-dextran injection demonstrated enhanced perfusion into scaffold channels. Rapamycin also increased the number of descending regenerated axons, as assessed by Fast Blue retrograde axonal tracing. These results demonstrate that normalization of the neovasculature was associated with enhanced axonal regeneration and improved function after spinal cord transection.
Collapse
Affiliation(s)
- Jeffrey S Hakim
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
18
|
De Pascalis I, Morgante L, Pacioni S, D'Alessandris QG, Giannetti S, Martini M, Ricci-Vitiani L, Malinverno M, Dejana E, Larocca LM, Pallini R. Endothelial trans-differentiation in glioblastoma recurring after radiotherapy. Mod Pathol 2018; 31:1361-1366. [PMID: 29713042 DOI: 10.1038/s41379-018-0046-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/09/2023]
Abstract
We hypothesized that in glioblastoma recurring after radiotherapy, a condition whereby the brain endothelium undergoes radiation-induced senescence, tumor cells with endothelial phenotype may be relevant for tumor neovascularization. Matched glioblastoma samples obtained at primary surgery and at surgery for tumor recurrence after radiotherapy, all expressing epidermal growth factor receptor variant III (EGFRvIII), were assessed by a technique that combines fluorescent in situ hybridization (FISH) for the EGFR/CEP7 chromosomal probe with immunostaining for endothelial cells (CD31) and activated pericytes (α Smooth Muscle Actin). Five EGFRvIII-expressing paired primary/recurrent glioblastoma samples, in which the tumor cells showed EGFR/CEP7 amplification, were then assessed by CD31 and α Smooth Muscle Actin immunofluorescence. In glomeruloid bodies, the ratio between CD31+ cells with amplified EGFR/CEP7 signal and the total CD31+ cells was 0.23 ± 0.09 (mean ± sem) and 0.63 ± 0.07 in primary tumors and in recurrent ones, respectively (p < 0.002, Student-t test). In capillaries, the ratio of CD31+ cells with amplified EGFR/CEP7 over the total CD31+ cells lining the capillary lumen was 0.21 ± 0.06 (mean ± sem) and 0.42 ± 0.07 at primary surgery and at recurrence, respectively (p < 0.005, Student-t test). Expression of α Smooth Muscle Actin by cells with EGFR/CEP7 amplification was not observed. Then, in glioblastoma recurring after radiotherapy, where the brain endothelium suffers from radiation-induced cell senescence, tumor-derived endothelium plays a role in neo-vascularization.
Collapse
Affiliation(s)
- Ivana De Pascalis
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liliana Morgante
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Institute of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Malinverno
- New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro, Institute of Molecular Oncology Fondazione, Milan, Italy
| | - Elisabetta Dejana
- New Strategies to Inhibit Tumor Angiogenesis Program Fondazione Italiana per la Ricerca sul Cancro, Institute of Molecular Oncology Fondazione, Milan, Italy
| | - Luigi M Larocca
- Institute of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
19
|
Di N, Yao C, Cheng W, Ren Y, Qu J, Wang B, Yao Z. Correlation of dynamic contrast-enhanced MRI derived volume transfer constant with histological angiogenic markers in high-grade gliomas. J Med Imaging Radiat Oncol 2018; 62:464-470. [PMID: 29330968 DOI: 10.1111/1754-9485.12701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION To ascertain if the volume transfer constant (Ktrans ) derived from T1 dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlates with the immunohistological markers of angiogenesis in high-grade gliomas. METHODS Fifty-one image-guided biopsy specimens in 34 patients with newly presenting high-grade gliomas (grade III = 16; grade IV = 18) underwent preoperative imaging (conventional imaging and T1 DCE-MRI). We correlated vascular endothelial growth factor (VEGF) expression and the microvessel density (MVD) of MRI-guided biopsy specimens with the corresponding DCE-derived Ktrans . Histological sections were stained with VEGF and CD34, and examined under light microscopy. These histological and molecular markers of angiogenesis were correlated with the Ktrans of the region of interest corresponding to the biopsy specimen. RESULTS The Ktrans showed a significant positive correlation with VEGF expression (ρ = 0.582, P = 0.001) but not with MVD stained with CD34 antibody (ρ = 0.328, P = 0.072). CONCLUSION The Ktrans derived from DCE-MRI can reflect the VEGF expression of high-grade gliomas but not the MVD.
Collapse
Affiliation(s)
- Ningning Di
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - Chenjun Yao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China
| | - Wenna Cheng
- Department of Pharmacy, Binzhou Medical University Affiliated Hospital, Binzhou, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | | | - Bin Wang
- Department of Medical Imaging and Nuclear Medicine, Binzhou Medical University, Yantai, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
20
|
Assessment of Micro-vessel Density in Brain Gliomaby CD105 Expression. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:205-211. [PMID: 30697291 PMCID: PMC6339494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/05/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND & OBJECTIVE Micro-vascular proliferation is an important histological feature of brain glioma with more vascular proliferation is present in higher grades of glioma. CD 105 is expressed in new actively proliferating and immature endothelial cells in tumor environment and appears to be capable to distinguish between malignant neo-vasculature and normal vessels. METHODS This study was designed to evaluate the Micro-Vessel Density(MVD) in different grades of brain glioma based on CD 105 expression byImmunohistochemistry method to determine whether it can be a helpful marker for rumor grading or not.Paraffin blocks of formalin fixed samples of brain astrocyticglioma were retrieved and IHC was performed using anti-CD105 monoclonal mouse antibody. RESULTS Total number of 48cases of low and high grade astrocyticgliomas were evaluated.We noted that there was a positive correlation between MVD evaluated by CD105 and tumor grade, meaning that expression was significantly greater in tumors with higher grade (P=0.019). CONCLUSION We concluded that MVD quantified by CD 105 has positive correlation with tumor grade. Also we think that expression of CD 105 specially in low-grade glioma can serve as a basis for selective treatment option in combination with current standard care.
Collapse
|
21
|
Jackson S, ElAli A, Virgintino D, Gilbert MR. Blood-brain barrier pericyte importance in malignant gliomas: what we can learn from stroke and Alzheimer's disease. Neuro Oncol 2017; 19:1173-1182. [PMID: 28541444 PMCID: PMC5570196 DOI: 10.1093/neuonc/nox058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pericyte, a constitutive component of the central nervous system, is a poorly understood cell type that envelops the endothelial cell with the intended purpose of regulating vascular flow and endothelial cell permeability. Previous studies of pericyte function have been limited to a small number of disease processes such as ischemic stroke and Alzheimer's disease. Recently, publications have postulated a link between glioma stem cell differentiation and pericyte function. These studies suggest that there may be an important interaction of pericytes with tumor cells and other components of the tumor microenvironment in malignant primary glial neoplasms, most notably glioblastoma. This potential cellular interaction underscores the need to pursue more investigations of pericytes in malignant brain tumor biology. In this review, we summarize the functional roles of pericytes, particularly focusing on changes in pericyte biology during response to immune cells, inflammation, and hypoxic conditions. The information presented is based on the available data from studies of pericyte function in other central nervous system diseases but will serve as a foundation for research investigations to further understand the role of pericytes in malignant gliomas.
Collapse
Affiliation(s)
- Sadhana Jackson
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Ayman ElAli
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Mark R Gilbert
- National Cancer Institute, Neuro-oncology Branch, Bethesda, Maryland; Research Center of CHU de Québec-Université Laval, Neuroscience Axis, Quebec, Canada; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
22
|
Chen J, Mao S, Li H, Zheng M, Yi L, Lin JM, Lin ZX. The pathological structure of the perivascular niche in different microvascular patterns of glioblastoma. PLoS One 2017; 12:e0182183. [PMID: 28771552 PMCID: PMC5542434 DOI: 10.1371/journal.pone.0182183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023] Open
Abstract
The perivascular niche is critical for intercellular communication between resident cell types in glioblastoma (GBM), and it plays a vital role in maintaining the glioma stem cell (GSC) microenvironment. It is shown in abundant research that different microvascular patterns exist in GBM; and it can be implied that different microvascular patterns are associated with different pathological structures in the perivascular niche. However, the pathological structure of the perivascular niche is still not clear. Here, we investigated the distribution and biological characteristics of different microvascular pattern niches (MVPNs) in GBM by detecting the expression of CD34, CD133, Nestin, α-SMA, GFAP and CD14 in the perivascular niche using multiple -fluorescence. The four basic microvascular patterns are microvascular sprouting (MS), vascular cluster (VC), vascular garland (VG), and glomeruloid vascular proliferation (GVP). By analyzing the proportion of the area of each marker in four types of formations, the results indicated that the expression of CD34, CD133 and Nestin in MS and VC was significantly lower than that in VG and GVP (P<0.05). Furthermore, the results showed that α-SMA expression different in the MS, VC, VG and GVP (P<0.05). However, the expression of GFAP and CD14 in each type of formation exhibited no significant difference (P>0.05). According to the area distributions of different markers, we mapped four precise simulation diagrams to provide an effective foundation for the accurate simulation of glioblastoma in vitro.
Collapse
Affiliation(s)
- Jintao Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Mingcheng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Linglu Yi
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- * E-mail: (JML); (ZXL)
| | - Zhi-xiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
- * E-mail: (JML); (ZXL)
| |
Collapse
|
23
|
Liu J, Zhou J, Li J, Zhang L, Zhang P, Liu B. Evaluation of rat C6 malignant glioma using spectral computed tomography. Exp Ther Med 2017; 14:1037-1044. [PMID: 28810555 PMCID: PMC5525900 DOI: 10.3892/etm.2017.4613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
To investigate the use of multi-parameter spectral computed tomography (CT) for the evaluation of rat C6 glioma, 15 male Wistar rats were seeded with C6 glioma cells into the right basal ganglia and scanned 12 days later using spectral CT. Brain sections corresponding to scanned regions were immunostained for proliferation marker protein Ki67 (Ki67). Pearson's correlation coefficients between spectral CT parameters and Ki67 expression were determined. Thirteen rats survived 12 days and developed tumors. Optimal contrast-to-noise ratio achieved was 65 keV. Brain regions containing liquefactive necrosis, solid tumor, peripheral tumor and normal tissue differed significantly with regard to the spectral curve slope (0.24±0.46, 1.81±1.09, 0.8±0.43 and 0.11±0.27, respectively; P<0.01), CT value (27.2±4.51, 103.18±35.48, 65.19±13.72 and 38.07±7.36, respectively; P<0.01) and iodine concentration (2.41±3.86, 16.05±9.75, 6.76±3.66 and 1.06±2.35, respectively; P<0.0001). The percentage of Ki67-positive cells correlated with the CT value (r=0.903; P<0.001), spectral curve slope (r=0.821; P<0.001) and iodine concentration (r=0.813; P<0.001). Spectral CT can detect microstructural changes within malignant gliomas and potentially provide important information regarding tumor proliferation and the extent of the invasion.
Collapse
Affiliation(s)
- Jianli Liu
- The School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jie Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lingyan Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Peili Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Bin Liu
- The School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
24
|
CECR1-mediated cross talk between macrophages and vascular mural cells promotes neovascularization in malignant glioma. Oncogene 2017; 36:5356-5368. [PMID: 28534507 PMCID: PMC5611481 DOI: 10.1038/onc.2017.145] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/06/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Glioblastomas (glioblastoma multiforme, GBM) are most malignant brain tumors characterized by profound vascularization. The activation of macrophages strongly contributes to tumor angiogenesis during GBM development. Previously, we showed that extracellular adenosine deaminase protein Cat Eye Syndrome Critical Region Protein 1 (CECR1) is highly expressed by M2-like macrophages in GBM where it defines macrophage M2 polarization and contributes to tumor expansion. In this study, the effect of CECR1 in macrophages on tumor angiogenesis was investigated. Immunohistochemical evaluation of GBM tissue samples showed that the expression of CECR1 correlates with microvascular density in the tumors, confirming data from the TCGA set. In a three-dimensional co-culture system consisting of human pericytes, human umbilical vein endothelial cells and THP1-derived macrophages, CECR1 knockdown by siRNA and CECR1 stimulation of macrophages inhibited and promoted new vessel formation, respectively. Loss and gain of function studies demonstrated that PDGFB mRNA and protein levels in macrophages are modulated by CECR1. The proangiogenic properties of CECR1 in macrophages were partially mediated via paracrine activation of pericytes by PDGFB–PDGFRβ signaling. CECR1–PDGFB–PDGFRβ cross-activation between macrophages and pericytes promoted pericyte migration, shown by transwell migration assay, and enhanced expression and deposition of periostin, a matrix component with proangiogenic properties. CECR1 function in (M2-like) macrophages mediates cross talk between macrophages and pericytes in GBM via paracrine PDGFB–PDGFRβ signaling, promoting pericyte recruitment and migration, and tumor angiogenesis. Therefore, CECR1 offers a new portent target for anti-angiogenic therapy in GBM via immune modulation.
Collapse
|
25
|
Strumia M, Reichardt W, Staszewski O, Heiland DH, Weyerbrock A, Mader I, Bock M. Glioma vessel abnormality quantification using time-of-flight MR angiography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:765-75. [PMID: 27097906 DOI: 10.1007/s10334-016-0558-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To differentiate between abnormal tumor vessels and regular brain vasculature using new quantitative measures in time-of-flight (TOF) MR angiography (MRA) data. MATERIALS AND METHODS In this work time-of-flight (TOF) MR angiography data are acquired in 11 glioma patients to quantify vessel abnormality. Brain vessels are first segmented with a new algorithm, efficient monte-carlo image-analysis for the location of vascular entity (EMILOVE), and are then characterized in three brain regions: tumor, normal-appearing contralateral brain, and the total brain volume without the tumor. For characterization local vessel orientation angles and the dot product between local orientation vectors are calculated and averaged in the 3 regions. Additionally, correlation with histological and genetic markers is performed. RESULTS Both the local vessel orientation angles and the dot product show a statistically significant difference (p < 0.005) between tumor vessels and normal brain vasculature. Furthermore, the connection to both histology and the gene expression of the tumor can be found-here, the measures were compared to the proliferation marker Ki-67 [MIB] and genome-wide expression analysis. The results in a subgroup indicate that the dot product measure may be correlated with activated genetic pathways. CONCLUSION It is possible to define a measure of vessel abnormality based on local vessel orientation angles which can differentiate between normal brain vasculature and glioblastoma vessels.
Collapse
Affiliation(s)
- Maddalena Strumia
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany.,University Medical Center Freiburg, Radiology-Medical Physics, Breisacher Str. 60a, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Wilfried Reichardt
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany.,University Medical Center Freiburg, Radiology-Medical Physics, Breisacher Str. 60a, 79106, Freiburg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ori Staszewski
- University Medical Center Freiburg, Neuropathology, Breisacher Str. 64, Freiburg, Germany
| | - Dieter Henrik Heiland
- University Medical Center Freiburg, Neurosurgery, Breisacher Str. 64, Freiburg, Germany
| | - Astrid Weyerbrock
- University Medical Center Freiburg, Neurosurgery, Breisacher Str. 64, Freiburg, Germany
| | - Irina Mader
- University Medical Center Freiburg, Neuroradiology, Breisacher Str. 64, Freiburg, Germany
| | - Michael Bock
- University Medical Center Freiburg, Radiology-Medical Physics, Breisacher Str. 60a, 79106, Freiburg, Germany.
| |
Collapse
|
26
|
Okamoto S, Nitta M, Maruyama T, Sawada T, Komori T, Okada Y, Muragaki Y. Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol 2016; 33:129-36. [DOI: 10.1007/s10014-016-0248-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
|
27
|
Jia ZZ, Gu HM, Zhou XJ, Shi JL, Li MD, Zhou GF, Wu XH. The assessment of immature microvascular density in brain gliomas with dynamic contrast-enhanced magnetic resonance imaging. Eur J Radiol 2015; 84:1805-9. [PMID: 26066470 DOI: 10.1016/j.ejrad.2015.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE This study was designed to quantitatively evaluate the immature microvascular density (MVD) of brain gliomas using the volume transfer constant (K(trans)) and volume of extravascular extracellular space per unit volume of tissue (Ve) from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) noninvasively. MATERIALS AND METHODS Fifty-seven patients (35 males, 22 females; age range, 14-70, mean age 46±12 years old) with brain glioma were included in this study. The maximal values of K(trans) and Ve of all patients with brain glioma (grade II 24, III 7 and IV 26) were obtained. The CD105-microvascular density (CD105-MVD) of each tumor was measured in surgical specimen. The differences of K(trans), Ve and CD105-MVD between the different grades of gliomas were analyzed using the Mann-Whitney U-test. The Pearman correlation coefficient was determined between K(trans), Ve and CD105-MVD. A P-value of less than 0.05 was considered statistically significant. RESULTS The differences in K(trans), Ve and CD105-MVD were statistically significant between low-grade glioma (LGG) and high-grade glioma (HGG) (P=0.001, P<0.001, P<0.001). The K(trans), Ve and CD105-MVD of grade II were significantly lower than those of grade III and IV. K(trans) and Ve were positively correlated with CD105-MVD in HGG (P<0.001, P<0.001). CONCLUSIONS Our results suggest DCE-MRI plays an important part in noninvasively evaluating the immature MVD of brain gliomas.
Collapse
Affiliation(s)
- Zhong Zheng Jia
- Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu, PR China.
| | - Hong Mei Gu
- Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu, PR China.
| | - Xue Jun Zhou
- Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu, PR China.
| | - Jin Long Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, PR China.
| | - Min Da Li
- Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu, PR China.
| | - Guo Feng Zhou
- Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu, PR China.
| | - Xian Hua Wu
- Department of Radiology, Affiliated Hospital of Nantong University, 20 Xisi Road Nantong, 226001 Jiangsu, PR China.
| |
Collapse
|
28
|
Onishi M, Ichikawa T, Kurozumi K, Inoue S, Maruo T, Otani Y, Fujii K, Ishida J, Shimazu Y, Yoshida K, Michiue H, Antonio Chiocca E, Date I. Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol 2015; 32:184-94. [PMID: 25697644 DOI: 10.1007/s10014-015-0216-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
We have established a pair of animal models (J3T-1 and J3T-2) with different invasive and angiogenic phenotypes, and demonstrated that annexin A2 is expressed at higher levels in J3T-1 than J3T-2 cells. The function of annexin A2 in relation to angiogenesis and invasion was investigated using these models. Stable silencing or overexpression of annexin A2 in J3T-1 and J3T-2 cells (J3T-1shA and J3T-2A cells) was established and used. Thirty human glioblastoma samples were evaluated for expression of annexin A2, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). Immunohistochemical and quantitative reverse-transcription polymerase chain reaction analyses revealed higher expression of annexin A2, VEGF and PDGF in J3T-1 and J3T-2A cells. Cultured J3T-1 and J3T-2A cells exhibited higher adhesive ability to endothelial cells. Histopathological analysis of animal brain tumors revealed that J3T-1 and J3T-2A tumors displayed marked angiogenesis and invasion along the neovasculature, whereas J3T-2 and J3T-1shA tumors exhibited diffuse, infiltrative invasion without angiogenesis. Positive expression of annexin A2 was observed in tumor cells surrounding dilated vessels in 25/30 human glioblastoma specimens. Our results reveal that the phenotype of glioma invasion is closely related to angiogenesis. We identify annexin A2 as a factor regulating angiogenesis and invasion of malignant gliomas.
Collapse
Affiliation(s)
- Manabu Onishi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|