1
|
Lee S, West C, Opulente DA, Harrison MC, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A, LaBella AL. Genomic factors limiting the diversity of Saccharomycotina plant pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640420. [PMID: 40060456 PMCID: PMC11888420 DOI: 10.1101/2025.02.27.640420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The Saccharomycotina fungi have evolved to inhabit a vast diversity of habitats over their 400-million-year evolution. There are, however, only a few known fungal pathogens of plants in this subphylum, primarily belonging to the genera Eremothecium and Geotrichum. We compared the genomes of 12 plant-pathogenic Saccharomycotina strains to 360 plant-associated strains to identify features unique to the phytopathogens. Characterization of the oxylipin synthesis genes, a compound believed to be involved in Eremothecium pathogenicity, did not reveal any differences in gene presence within or between the plant-pathogenic and plant-associated strains. A reverse-ecological approach, however, revealed that plant pathogens lack several metabolic enzymes known to assist other phytopathogens in overcoming plant defenses. This includes L-rhamnose metabolism, formamidase and nitrilase genes. This result suggests that the Saccharomycotina plant pathogens are limited to infecting ripening fruits as they are without the necessary enzymes to degrade common phytohormones and secondary metabolites produced by plants.
Collapse
Affiliation(s)
- Sun Lee
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
| | - Caroline West
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
| | - Dana A Opulente
- Biology Department, Villanova University, Villanova, PA 19085, U.S.A
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, U.S.A
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, U.S.A
| | - John F Wolters
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, U.S.A
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, U.S.A
| | - Xing-Xing Shen
- Centre for Evolutionary and Organismal Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, U.S.A
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, U.S.A
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, U.S.A
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, U.S.A
| | - Abigail Leavitt LaBella
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC 28081, U.S.A
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, U.S.A
| |
Collapse
|
2
|
Jusuf S, Zhan Y, Zhang M, Alexander NJ, Viens A, Mansour MK, Cheng JX. Blue Light Deactivation of Catalase Suppresses Candida Hyphae Development Through Lipogenesis Inhibition. Photochem Photobiol 2023; 99:936-946. [PMID: 36117418 DOI: 10.1111/php.13719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Hyphae formation is a key step for fungal penetration into epithelial cells and escaping from macrophages or neutrophils. We found that 405 nm light-induced catalase deactivation results in the inhibition of hyphae growth in Candida albicans. The treatment is capable of inhibiting hyphae growth across multiple hyphae-producing Candida species. Metabolic studies on light-treated C. albicans reveal that light treatment results in a strong reduction in both lipid and protein metabolism. A significant decrease in unsaturated and saturated fatty acids was detected through mass spectroscopy, indicating that the suppression of hyphae through light-induced catalase deactivation may occur through inhibition of lipid metabolism. Initial in vivo tests indicate that blue light treatment can suppress the hyphae forming capabilities of C. albicans within murine abrasion infections. Together, these findings open new avenues for the treatment of Candida fungal infections by targeting their dimorphism.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA
| | | | - Adam Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA
- Department of Electrical & Computer Engineering, Boston University, Boston, MA
- Photonics Center, Boston University, Boston, MA
| |
Collapse
|
3
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lubbers RJM, Dilokpimol A, Visser J, de Vries RP. Aspergillus niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Appl Microbiol Biotechnol 2021; 105:4199-4211. [PMID: 33950281 PMCID: PMC8140964 DOI: 10.1007/s00253-021-11311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Abstract Aromatic compounds are important molecules which are widely applied in many industries and are mainly produced from nonrenewable sources. Renewable sources such as plant biomass are interesting alternatives for the production of aromatic compounds. Ferulic acid and p-coumaric acid, a precursor for vanillin and p-vinyl phenol, respectively, can be released from plant biomass by the fungus Aspergillus niger. The degradation of hydroxycinnamic acids such as caffeic acid, ferulic acid, and p-coumaric acid has been observed in many fungi. In A. niger, multiple metabolic pathways were suggested for the degradation of hydroxycinnamic acids. However, no genes were identified for these hydroxycinnamic acid metabolic pathways. In this study, several pathway genes were identified using whole-genome transcriptomic data of A. niger grown on different hydroxycinnamic acids. The genes are involved in the CoA-dependent β-oxidative pathway in fungi. This pathway is well known for the degradation of fatty acids, but not for hydroxycinnamic acids. However, in plants, it has been shown that hydroxycinnamic acids are degraded through this pathway. We identified genes encoding hydroxycinnamate-CoA synthase (hcsA), multifunctional β-oxidation hydratase/dehydrogenase (foxA), 3-ketoacyl CoA thiolase (katA), and four thioesterases (theA-D) of A. niger, which were highly induced by all three tested hydroxycinnamic acids. Deletion mutants revealed that these genes were indeed involved in the degradation of several hydroxycinnamic acids. In addition, foxA and theB are also involved in the degradation of fatty acids. HcsA, FoxA, and KatA contained a peroxisomal targeting signal and are therefore predicted to be localized in peroxisomes. Key points • Metabolism of hydroxycinnamic acid was investigated in Aspergillus niger • Using transcriptome data, multiple CoA-dependent β-oxidative genes were identified. • Both foxA and theB are involved in hydroxycinnamate but also fatty acid metabolism. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11311-0.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - J Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty Acids in Mucor circinelloides. Genes (Basel) 2020; 11:genes11080890. [PMID: 32764225 PMCID: PMC7464202 DOI: 10.3390/genes11080890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Concerns about global warming, fossil-fuel depletion, food security, and human health have promoted metabolic engineers to develop tools/strategies to overproduce microbial functional oils directly from renewable resources. Medium-chain fatty acids (MCFAs, C8–C12) have been shown to be important sources due to their diverse biotechnological importance, providing benefits ranging from functional lipids to uses in bio-fuel production. However, oleaginous microbes do not carry native pathways for the production of MCFAs, and therefore, diverse approaches have been adapted to compensate for the requirements of industrial demand. Mucor circinelloides is a promising organism for lipid production (15–36% cell dry weight; CDW) and the investigation of mechanisms of lipid accumulation; however, it mostly produces long-chain fatty acids (LCFAs). To address this challenge, we genetically modified strain M. circinelloides MU758, first by integrating heterologous acyl-ACP thioesterase (TE) into fatty acid synthase (FAS) complex and subsequently by modifying the β-oxidation pathway by disrupting the acyl-CoA oxidase (ACOX) and/or acyl-CoA thioesterase (ACOT) genes with a preference for medium-chain acyl-CoAs, to elevate the yield of MCFAs. The resultant mutant strains (M-1, M-2, and M-3, respectively) showed a significant increase in lipid production in comparison to the wild-type strain (WT). MCFAs in M-1 (47.45%) was sharply increased compared to the wild type strain (2.25%), and it was further increased in M-2 (60.09%) suggesting a negative role of ACOX in MCFAs production. However, MCFAs in M-3 were much decreased compared to M-1,suggesting a positive role of ACOT in MCFAs production. The M-2 strain showed maximum lipid productivity (~1800 milligram per liter per day or mg/L.d) and MCFAs productivity (~1100 mg/L.d). Taken together, this study elaborates on how the combination of two multidimensional approaches, TE gene over-expression and modification of the β-oxidation pathway via substantial knockout of specific ACOX gene, significantly increased the production of MCFAs. This synergistic approach ultimately offers a novel opportunity for synthetic/industrial biologists to increase the content of MCFAs.
Collapse
|
6
|
Structure-function insights into elusive Mycobacterium tuberculosis protein Rv1916. Int J Biol Macromol 2019; 141:927-936. [PMID: 31505209 DOI: 10.1016/j.ijbiomac.2019.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide. Long duration of TB therapy, results in the persistence and development of drug resistant strains of causative organism Mycobacterium tuberculosis (Mtb). Novel drug targets against persistent Mtb is an immediate need for overcoming this global menace. Isocitrate lyase (ICL), the first enzyme of glyoxylate pathway, is essential for persistent Mtb and absent in humans, hence a propitious target for drug development. Pathogenic Mtb H37Rv, have two types of ICLs - ICL1 encoded by icl (Rv0467) is well characterized and homologous to eubacterial enzyme whereas ICL2 encoded by aceA is more related to eukaryotic isocitrate lyase. To compound it, the aceA gene is split into two ORFs namely rv1915/aceAa and rv1916/aceAb. No translational product has been reported for the later and therefore, in vivo existence of Rv1916/ICL2b is debatable. This study reports recombinant production of Rv1916 in heterologous host E. coli BL21 (DE3) for structure function studies. The studies categorically demonstrate that akin to Mtb ICL1, recombinant Rv1916 also possess dual ICL and methylisocitrate lyase (MICL) activities in vitro. Based on in silico analysis, a putative function linked to secondary metabolite synthesis is assigned to unique mycobacterial domain IV.
Collapse
|
7
|
Werner N, Zibek S. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts. World J Microbiol Biotechnol 2017; 33:194. [PMID: 28983758 DOI: 10.1007/s11274-017-2360-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023]
Abstract
Long-chain α,ω-dicarboxylic acids (DCAs) are versatile chemical intermediates of industrial importance used as building blocks for the production of polymers, lubricants, or adhesives. The majority of industrial long-chain DCAs is produced from petro-chemical resources. An alternative is their biotechnological production from renewable materials like plant oil fatty acids by microbial fermentation using oleogenious yeasts. Oleogenious yeasts are natural long-chain DCA producers, which have to be genetically engineered for high-yield DCA production. Although, some commercialized fermentation processes using engineered yeasts are reported, bio-based long-chain DCAs are still far from being a mass product. Further progress in bioprocess engineering and rational strain design is necessary to advance their further commercialization. The present article reviews the basic strategies, as well as novel approaches in the strain design of oleogenious yeasts, such as the combination of traditional metabolic engineering with system biology strategies for high-yield long-chain DCA production. Therefore a detailed overview of the involved metabolic processes for the biochemical long-chain DCA synthesis is given.
Collapse
Affiliation(s)
- Nicole Werner
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| |
Collapse
|
8
|
Blancard C, Salin B. Plunge Freezing: A Tool for the Ultrastructural and Immunolocalization Studies of Suspension Cells in Transmission Electron Microscopy. J Vis Exp 2017. [PMID: 28518127 DOI: 10.3791/54874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transmission Electron Microscopy (TEM) is an extraordinary tool for studying cell ultrastructure, in order to localize proteins and visualize macromolecular complexes at very high resolution. However, to get as close as possible to the native state, perfect sample preservation is required. Conventional electron microscopy (EM) fixation with aldehydes, for instance, does not provide good ultrastructural preservation. The slow penetration of fixatives induces cell reorganization and loss of various cell components. Therefore, conventional EM fixation does not allow for an instantaneous stabilization and preservation of structures and antigenicity. The best choice for examining intracellular events is to use cryofixation followed by the freeze-substitution fixation method that keeps cells in their native state. High-pressure freezing/freeze-substitution, which preserves the integrity of cellular ultrastructure, is the most commonly used method, but requires expensive equipment. Here, an easy-to-use and low-cost freeze fixation method followed by freeze-substitution for suspension cell cultures is presented.
Collapse
Affiliation(s)
- Corinne Blancard
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique, UMR 5095, Université de Bordeaux
| | - Bénédicte Salin
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique, UMR 5095, Université de Bordeaux;
| |
Collapse
|
9
|
Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids. Biotechnol Lett 2016; 39:429-438. [DOI: 10.1007/s10529-016-2264-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022]
|
10
|
Roles of Peroxisomes in the Rice Blast Fungus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9343417. [PMID: 27610388 PMCID: PMC5004026 DOI: 10.1155/2016/9343417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity.
Collapse
|
11
|
Dulermo R, Gamboa-Meléndez H, Ledesma-Amaro R, Thevenieau F, Nicaud JM. Yarrowia lipolytica AAL genes are involved in peroxisomal fatty acid activation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:555-65. [PMID: 27067366 DOI: 10.1016/j.bbalip.2016.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/07/2023]
Abstract
In yeast, β-oxidation of fatty acids (FAs) essentially takes place in peroxisomes, and FA activation must precede FA oxidation. In Saccharomyces cerevisiae, a single fatty-acyl–CoA-synthetase, ScFaa2p, mediates peroxisomal FA activation. We have previously shown that this reaction also exists in the oleaginous yeast Yarrowia lipolytica; however, the protein involved in this process remains unknown. Here, we found that proteins, named Aal proteins (Acyl/Aryl-CoA-ligases), resembling the 4-coumarate–CoA-ligase-like enzymes found in plants are involved in peroxisomal FA activation in Y. lipolytica; Y. lipolytica has 10 AAL genes, eight of which are upregulated by oleate. All the Aal proteins contain a PTS1-type peroxisomal targeting sequence (A/SKL), suggesting a peroxisomal localization. The function of the Aal proteins was analyzed using the faa1Δant1Δ mutant strain, which demonstrates neither cytoplasmic FA activation (direct result of FAA1 deletion) nor peroxisomal FA activation (indirect result of ANT1 deletion, a gene coding an ATP transporter). This strain is thus highly sensitive to external FA levels and unable to store external FAs in lipid bodies (LBs). Whereas the overexpression of (cytoplasmic) AAL1ΔPTS1 was able to partially complement the growth defect observed in the faa1Δant1Δ mutant on short-, medium- and long-chain FA media, the presence of Aal2p to Aal10p only allowed growth on the short-chain FA medium. Additionally, partial LB formation was observed in the oleate medium for strains overexpressing Aal1ΔPTS1p, Aal4ΔPTS1p, Aal7ΔPTS1p, and Aal8ΔPTS1p. Finally, an analysis of the FA content of cells grown in the oleate medium suggested that Aal4p and Aal6p present substrate specificity for C16:1 and/or C18:0.
Collapse
Affiliation(s)
- Rémi Dulermo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Heber Gamboa-Meléndez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - France Thevenieau
- SOFIPROTEOL, Direction Innovation, 11 rue de Monceau, Paris F-75378, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Novak M, Lah L, Šala M, Stojan J, Bohlmann J, Komel R. Oleic acid metabolism via a conserved cytochrome P450 system-mediated ω-hydroxylation in the bark beetle-associated fungus Grosmannia clavigera. PLoS One 2015; 10:e0120119. [PMID: 25794012 PMCID: PMC4368105 DOI: 10.1371/journal.pone.0120119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/22/2015] [Indexed: 12/27/2022] Open
Abstract
The bark beetle-associated fungus Grosmannia clavigera participates in the large-scale destruction of pine forests. In the tree, it must tolerate saturating levels of toxic conifer defense chemicals (e.g. monoterpenes). The fungus can metabolize some of these compounds through the ß-oxidation pathway and use them as a source of carbon. It also uses carbon from pine triglycerides, where oleic acid is the most common fatty acid. High levels of free fatty acids, however, are toxic and can cause additional stress during host colonization. Fatty acids induce expression of neighboring genes encoding a cytochrome P450 (CYP630B18) and its redox partner, cytochrome P450 reductase (CPR2). The aim of this work was to study the function of this novel P450 system. Using LC/MS, we biochemically characterized CYP630 as a highly specific oleic acid ω-hydroxylase. We explain oleic acid specificity using protein interaction modeling. Our results underscore the importance of ω-oxidation when the main ß-oxidation pathway may be overwhelmed by other substrates such as host terpenoid compounds. Because this CYP-CPR gene cluster is evolutionarily conserved, our work has implications for metabolism studies in other fungi.
Collapse
Affiliation(s)
- Metka Novak
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ljerka Lah
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- * E-mail: (LL); (RK)
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Radovan Komel
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- * E-mail: (LL); (RK)
| |
Collapse
|