1
|
Smykal V, Tobita H, Dolezel D. Evolution of circadian clock and light-input pathway genes in Hemiptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104298. [PMID: 40058530 DOI: 10.1016/j.ibmb.2025.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Circadian clocks are timekeeping mechanisms that help organisms anticipate periodic alterations of day and night. These clocks are widespread, and in the case of animals, they rely on genetically related components. At the molecular level, the animal circadian clock consists of several interconnected transcription-translation feedback loops. Although the clock setup is generally conserved, some important differences exist even among various insect groups. Therefore, we decided to identify in silico all major clock components and closely related genes in Hemiptera. Our analyses indicate several lineage-specific alterations of the clock setup in Hemiptera, derived from gene losses observed in the complete gene set identified in the outgroup, Thysanoptera, which thus presents the insect lineage with a complete clock setup. Nilaparvata and Fulgoroidea, in general, lost the (6-4)-photolyase, while all Hemiptera lost FBXL3, and several lineage-specific losses of dCRY and jetlag were identified. Importantly, we identified non-canonical splicing variants of period and m-cry genes, which might provide another regulatory mechanism for clock functioning. Lastly, we performed a detailed reconstruction of Hemiptera's light input pathway genetic repertoire and explored the horizontal gene transfer of cryptochrome-DASH from plant to Bemisia. Altogether, this inventory reveals important trends in clock gene evolution and provides a reference for clock research in Hemiptera, including several lineages of important pest species.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| | - Hisashi Tobita
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic
| | - David Dolezel
- Biology Centre of the Czech Academy of Sciences, České Budějovice, 37005, Czech Republic.
| |
Collapse
|
2
|
Yang X, Liu M, Jiang K, Wang B, Wang L. Metabolomics and transcriptomics analysis reveals the enhancement of growth, anti-oxidative stress and immunity by (-)-epigallocatechin-3-gallate in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110025. [PMID: 39547270 DOI: 10.1016/j.fsi.2024.110025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
(-)-epigallocatechin-3-gallate (EGCG), the main active component of tea polyphenols, has been less studied in Litopenaeus vannamei. Therefore, the potential benefits of EGCG on L. vannamei were explored in this experiment. L. vannamei were fed diets containing EGCG (0, 0.5, and 1.0 g/kg). At the end of the 60-day farming experiment, metabolomics, transcriptomics, quantitative real-time PCR assays, and tissue sections were used to assess and explore the effects of EGCG on growth, antioxidant capacity, and immunity. It was found that the best growth and genes expressions related to antioxidant, anti-stress, apoptosis, and immunity were observed in the group with 0.5 g/kg EGCG. The analysis of hepatopancreatic metabolomics and transcriptomics results revealed bumper differential metabolites and differentially expressed genes (DEGs) associated with nutrient metabolism, digestion, immunity, and environmental adaptation. Many metabolites with anti-inflammatory, antibacterial, antiviral, and antioxidant activities have been identified. A large number of DEGs were enriched in apoptosis, Rap1 signaling pathway, HIF-1 signaling pathway, hippo signaling pathway, chemokine signaling pathway, and signaling pathways related to amino acid and lipid metabolism. In conclusion, dietary 0.5 g/kg EGCG was beneficial for growth, resistance to oxidative stress, and immunity in L. vannamei. The improvement of the properties was attributed to the modulation of signaling pathways, metabolites abundance and genes expressions related to the above properties by EGCG.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mei Liu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Takeuchi K, Tomioka K. OpsinLW2 serves as a circadian photoreceptor in the entrainment of circadian locomotor rhythm of a firebrat. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104636. [PMID: 38609008 DOI: 10.1016/j.jinsphys.2024.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Photic entrainment is an essential function of the circadian clock, which enables organisms to set the appropriate timing of daily behavioral and physiological events. Recent studies have shown that the mechanisms of the circadian clock and photic entrainment vary among insect species. This study aimed to elucidate the circadian photoreceptors necessary for photic entrainment in firebrats Thermobia domestica, one of the most primitive apterygote insects. A homology search of publicly available RNA sequence (RNA-seq) data from T. domestica exhibited a cryptochrome 2 (cry2) gene and three opsin genes, opsin long wavelength 1 (opLW1), opLW2, and opUV, as candidate circadian photoreceptors. We examined the possible involvement of these genes in photic entrainment of firebrat locomotor rhythms. Firebrats had the highest entrainability to the light-dark cycle of green light. Treatment with dsRNA of the candidate genes strongly downregulated the respective targeted genes, and in the case of opsin genes, other untargeted genes were occasionally downregulated to various degrees. Under constant light, most control firebrats became arrhythmic, whereas a fraction of those treated with double RNAi of the two opLWs remained rhythmic. Behavioral experiments revealed that the transient cycles necessary for re-entrainment to shifted light cycles were lengthened when opLW2 expression was reduced. These results suggest that opLW2 is involved in the photic entrainment of circadian rhythm in firebrats.
Collapse
Affiliation(s)
- Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
4
|
Smykal V, Chodakova L, Hejnikova M, Briedikova K, Wu BCH, Vaneckova H, Chen P, Janovska A, Kyjakova P, Vacha M, Dolezel D. Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock. PLoS Genet 2023; 19:e1010924. [PMID: 37683015 PMCID: PMC10511111 DOI: 10.1371/journal.pgen.1010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Lenka Chodakova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Marketa Hejnikova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | | | - Bulah Chia-Hsiang Wu
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hana Vaneckova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ping Chen
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Anna Janovska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavlina Kyjakova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Vacha
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Dolezel
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
5
|
Raghavan V, Eichele G, Larink O, Karin EL, Söding J. RNA sequencing indicates widespread conservation of circadian clocks in marine zooplankton. NAR Genom Bioinform 2023; 5:lqad007. [PMID: 36814456 PMCID: PMC9939569 DOI: 10.1093/nargab/lqad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are important eukaryotic constituents of marine ecosystems characterized by limited motility in the water. These metazoans predominantly occupy intermediate trophic levels and energetically link primary producers to higher trophic levels. Through processes including diel vertical migration (DVM) and production of sinking pellets they also contribute to the biological carbon pump which regulates atmospheric CO2 levels. Despite their prominent role in marine ecosystems, and perhaps, because of their staggering diversity, much remains to be discovered about zooplankton biology. In particular, the circadian clock, which is known to affect important processes such as DVM has been characterized only in a handful of zooplankton species. We present annotated de novo assembled transcriptomes from a diverse, representative cohort of 17 marine zooplankton representing six phyla and eight classes. These transcriptomes represent the first sequencing data for a number of these species. Subsequently, using translated proteomes derived from this data, we demonstrate in silico the presence of orthologs to most core circadian clock proteins from model metazoans in all sequenced species. Our findings, bolstered by sequence searches against publicly available data, indicate that the molecular machinery underpinning endogenous circadian clocks is widespread and potentially well conserved across marine zooplankton taxa.
Collapse
Affiliation(s)
| | | | - Otto Larink
- Evolutionary Biology, Zoological Institute, Technical University Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Eli Levy Karin
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | | |
Collapse
|
6
|
Reynolds M, de Oliveira L, Vosburg C, Paris T, Massimino C, Norus J, Ortiz Y, Espino M, Davis N, Masse R, Neiman A, Holcomb R, Gervais K, Kemp M, Hoang M, Shippy TD, Hosmani PS, Flores-Gonzalez M, Pelz-Stelinski K, Qureshi JA, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of putative circadian rhythm-associated genes in Diaphorina citri (Hemiptera: Liviidae). GIGABYTE 2022; 2022:gigabyte48. [PMID: 36824532 PMCID: PMC9662589 DOI: 10.46471/gigabyte.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
The circadian rhythm involves multiple genes that generate an internal molecular clock, allowing organisms to anticipate environmental conditions produced by the Earth's rotation on its axis. Here, we present the results of the manual curation of 27 genes that are associated with circadian rhythm in the genome of Diaphorina citri, the Asian citrus psyllid. This insect is the vector for the bacterial pathogen Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease (Huanglongbing). This disease severely affects citrus industries and has drastically decreased crop yields worldwide. Based on cry1 and cry2 identified in the psyllid genome, D. citri likely possesses a circadian model similar to the lepidopteran butterfly, Danaus plexippus. Manual annotation will improve the quality of circadian rhythm gene models, allowing the future development of molecular therapeutics, such as RNA interference or antisense technologies, to target these genes to disrupt the psyllid biology.
Collapse
Affiliation(s)
- Max Reynolds
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomson Paris
- Entomology and Nematology Department, University of Florida, North Florida Research and Education Center, Research Road, Quincy 32351, Florida, USA
| | | | - Jordan Norus
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Yasmin Ortiz
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Nina Davis
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Ron Masse
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Alan Neiman
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | - Kylie Gervais
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Melissa Kemp
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Maria Hoang
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Kirsten Pelz-Stelinski
- Department of Entomology and Nematology, University of Florida, Lake Alfred, FL 33850, USA
| | - Jawwad A. Qureshi
- Indian River Research and Education Center, University of Florida, IFAS, 2199 South Rock Road, Fort Pierce, FL 34945-3138, USA
- Southwest Florida Research and Education Center, University of Florida, IFAS, 2685 State Road 29 North, Immokalee, FL 34142, USA
| | | | - Wayne B. Hunter
- USDA-ARS, US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Taylor E, Heyland A. Evolution of non-genomic nuclear receptor function. Mol Cell Endocrinol 2022; 539:111468. [PMID: 34610359 DOI: 10.1016/j.mce.2021.111468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Nuclear receptors (NRs) are responsible for the regulation of diverse developmental and physiological systems in metazoans. NR actions can be the result of genomic and non-genomic mechanisms depending on whether they act inside or outside of the nucleus respectively. While the actions of both mechanisms have been shown to be crucial to NR functions, non-genomic actions are considered less frequently than genomic actions. Furthermore, hypotheses on the origin and evolution of non-genomic NR signaling pathways are rarely discussed in the literature. Here we summarize non-genomic NR signaling mechanisms in the context of NR protein family evolution and animal phyla. We find that NRs across groups and phyla act via calcium flux as well as protein phosphorylation cascades (MAPK/PI3K/PKC). We hypothesize and discuss a possible synapomorphy of NRs in the NR1 and NR3 families, including the thyroid hormone receptor, vitamin D receptor, ecdysone receptor, retinoic acid receptor, steroid receptors, and others. In conclusion, we propose that the advent of non-genomic NR signaling may have been a driving force behind the expansion of NR diversity in Cnidarians, Placozoans, and Bilaterians.
Collapse
Affiliation(s)
- Elias Taylor
- University of Guelph, College of Biological Sciences, Integrative Biology, Guelph, ON N1G-2W1, Canada.
| | - Andreas Heyland
- University of Guelph, College of Biological Sciences, Integrative Biology, Guelph, ON N1G-2W1, Canada.
| |
Collapse
|
8
|
Bai Y, Lv YN, Zeng M, Jia PY, Lu HN, Zhu YB, Li S, Cui YY, Luan YX. Selection of Reference Genes for Normalization of Gene Expression in Thermobia domestica (Insecta: Zygentoma: Lepismatidae). Genes (Basel) 2020; 12:genes12010021. [PMID: 33375665 PMCID: PMC7823838 DOI: 10.3390/genes12010021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Zygentoma occupies a key evolutionary position for understanding the evolution of insect metamorphosis but has received little attention in terms of genetic analysis. To develop functional genomic studies in this insect, we evaluated five candidate internal reference genes for quantitative RT-PCR (qPCR) studies from Thermobia domestica, a representative species of Zygentoma, including Actin 5C (Actin5C), Elongation factor-1 alpha (EF1A), Ribosome protein S26 (RPS26), Ribosome protein L32 (RPL32), and Superoxide dismutase 2 (SOD2), at different developmental stages, in various body parts, and under dsRNA microinjection and starvation stresses, using four algorithms (delta Ct, geNorm, NormFinder and BestKeeper) and a comparative algorithm (RefFinder). Specific suitable reference genes were recommended across specific experimental conditions, and the combination of RPS26 and RPL32 was appropriate for all tested samples. Employing our selected reference gene combination, we investigated the gene expression pattern of Myoglianin (Myo), a crucial gene-regulating insect metamorphosis, in ametabolous T. domestica, and demonstrated the efficiency of RNA interference (RNAi) in firebrat nymphs. This study provides a basis for reliable quantitative studies of genes and greatly benefits evolutionary and functional genomics studies in Zygentoma.
Collapse
|
9
|
Tomiyama Y, Shinohara T, Matsuka M, Bando T, Mito T, Tomioka K. The role of clockwork orange in the circadian clock of the cricket Gryllus bimaculatus. ZOOLOGICAL LETTERS 2020; 6:12. [PMID: 33292692 PMCID: PMC7659126 DOI: 10.1186/s40851-020-00166-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The circadian clock generates rhythms of approximately 24 h through periodic expression of the clock genes. In insects, the major clock genes period (per) and timeless (tim) are rhythmically expressed upon their transactivation by CLOCK/CYCLE, with peak levels in the early night. In Drosophila, clockwork orange (cwo) is known to inhibit the transcription of per and tim during the daytime to enhance the amplitude of the rhythm, but its function in other insects is largely unknown. In this study, we investigated the role of cwo in the clock mechanism of the cricket Gryllus bimaculatus. The results of quantitative RT-PCR showed that under a light/dark (LD) cycle, cwo is rhythmically expressed in the optic lobe (lamina-medulla complex) and peaks during the night. When cwo was knocked down via RNA interference (RNAi), some crickets lost their locomotor rhythm, while others maintained a rhythm but exhibited a longer free-running period under constant darkness (DD). In cwoRNAi crickets, all clock genes except for cryptochrome 2 (cry2) showed arrhythmic expression under DD; under LD, some of the clock genes showed higher mRNA levels, and tim showed rhythmic expression with a delayed phase. Based on these results, we propose that cwo plays an important role in the cricket circadian clock.
Collapse
Affiliation(s)
- Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, 700-8558 Japan
| | - Taro Mito
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513 Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
10
|
Guo Z, Qin J, Zhou X, Zhang Y. Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int J Mol Sci 2018; 19:ijms19113691. [PMID: 30469390 PMCID: PMC6274879 DOI: 10.3390/ijms19113691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions. Consequently, considering the importance of versatile TFs in orchestrating diverse insect physiological processes, this review will assist a growing number of entomologists to interrogate this understudied field, and to propel the progress of their contributions to pest control and even human health.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Kutaragi Y, Tokuoka A, Tomiyama Y, Nose M, Watanabe T, Bando T, Moriyama Y, Tomioka K. A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes. ZOOLOGICAL LETTERS 2018; 4:26. [PMID: 30250749 PMCID: PMC6145112 DOI: 10.1186/s40851-018-0109-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Entrainment to the environmental light cycle is an essential property of the circadian clock. Although the compound eye is known to be the major photoreceptor necessary for entrainment in many insects, the molecular mechanisms of photic entrainment remain to be explored. RESULTS We found that cryptochromes (crys) and c-fos mediate photic entrainment of the circadian clock in a hemimetabolous insect, the cricket Gryllus bimaculatus. We examined the effects of RNA interference (RNAi)-mediated knockdown of the cry genes, Gb'cry1 and Gb'cry2, on photic entrainment, and light-induced resetting of the circadian locomotor rhythm. Gb'cry2 RNAi accelerated entrainment for delay shifts, while Gb'cry1/ Gb'cry2 double RNAi resulted in significant lengthening of transient cycles in both advance and delay shifts, and even in entrainment failure in some crickets. Double RNAi also strongly suppressed light induced resetting. The Gb'cry-mediated phase shift or resetting of the rhythm was preceded by light-induced Gb'c-fosB expression. We also found that Gb'c-fosB, Gb'cry2 and Gb'period (Gb'per) were likely co-expressed in some optic lobe neurons. CONCLUSION Based on these results, we propose a novel model for photic entrainment of the insect circadian clock, which relies on the light information perceived by the compound eye.
Collapse
Affiliation(s)
- Yuki Kutaragi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Atsushi Tokuoka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0811 Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama, 700-8558 Japan
| | - Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Matsushima 577, Kurashiki, 701-0192 Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
12
|
Cheng D, Cheng T, Yang X, Zhang Q, Fu J, Feng T, Gong J, Xia Q. The genome-wide transcriptional regulatory landscape of ecdysone in the silkworm. Epigenetics Chromatin 2018; 11:48. [PMID: 30149809 PMCID: PMC6109983 DOI: 10.1186/s13072-018-0216-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/10/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The silkworm, Bombyx mori, a typical representative of metamorphic insects, is of great agricultural and economic importance. The steroid hormone ecdysone (20-hydroxyecdysone, 20E) is the central regulator of insect developmental transitions, and its nuclear receptors are crucial for numerous biological processes, including reproduction, metabolism, and immunity. However, genome-wide DNA regulatory elements and the ecdysone receptor (EcR) that control these programs of gene expression are not well defined. RESULTS In this study, we investigated the alterations in three types of histone modification in silkworm embryonic cells treated with 20E by chromatin immunoprecipitation sequencing (ChIP-seq). We identified enhancers using histone modifications and derived genome-wide ecdysone-dependent enhancer activity maps in the silkworm. We found enhancers enriched for monomethylation of histone H3 Lys4 (H3K4me1) that showed dynamic changes in acetylation of histone H3 Lys27 (H3K27ac) after 20E treatment and functioned to regulate the transcription of specific genes. EcR regulated transcription by binding not only to proximal promoters but also to the distal enhancers of target genes. Moreover, only 52.65% EcR peaks contained ecdysone response element (EcRE) motif, suggesting that EcR regulates the expression of target genes not only by binding directly to EcRE, but also by binding with other transcription factor. CONCLUSIONS Our findings provide novel insights into the complex regulatory landscape of hormone-responsive cell activity and a basis for understanding the complex transcriptional regulatory processes of ecdysone.
Collapse
Affiliation(s)
- Dong Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400715, China.
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Quan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Jianfeng Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Tieshan Feng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Jiao Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing, 400715, China
| |
Collapse
|
13
|
Li CJ, Yun XP, Yu XJ, Li B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. INSECT SCIENCE 2018; 25:418-428. [PMID: 28101904 DOI: 10.1111/1744-7917.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/18/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Circadian rhythms are endogenous oscillations with a period of about 24 h driven by a circadian clock. So far, variable oscillators have been found in insects. To explore the circadian clock of Tribolium castaneum, we cloned the clock gene timeless (Tctimeless). Its open reading frame is 3240 bp in length and consists of 10 exons. Tctimeless is highly expressed in the late pupal stage. Tissue-specific expression analysis in late adult stages revealed high expression of Tctimeless in the head, epidermis, fat body and accessory glands. Silencing of Tctimeless by RNA interference (RNAi) at the late larval stages caused a failure to initiate eclosion. Tctimeless knockdown in late pupal stages led to a gender-independent decline in egg production and progeny survival. As a core clock gene, Tctimeless exhibited one expression peak in the middle of the circadian day. Knockdown of Tctimeless disrupted daily expression patterns of Tccycle, Tcclock, Tcperiod and itself, while Tctimeless and Tcperiod expression patterns over the circadian day were also perturbed when Tccycle or Tcclock is suppressed by RNAi. This study identified a complex transcriptional relationship among circadian clock genes in T. castaneum.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao-Pei Yun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Juan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
Chapman EC, O’Dell AR, Meligi NM, Parsons DR, Rotchell JM. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol Int 2017; 34:1300-1314. [DOI: 10.1080/07420528.2017.1363224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emma C. Chapman
- School of Environmental Sciences, University of Hull, Hull, UK
| | | | - Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | | | | |
Collapse
|
15
|
Tokuoka A, Itoh TQ, Hori S, Uryu O, Danbara Y, Nose M, Bando T, Tanimura T, Tomioka K. cryptochrome genes form an oscillatory loop independent of the per/ tim loop in the circadian clockwork of the cricket Gryllus bimaculatus. ZOOLOGICAL LETTERS 2017; 3:5. [PMID: 28405468 PMCID: PMC5383941 DOI: 10.1186/s40851-017-0066-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Animals exhibit circadian rhythms with a period of approximately 24 h in various physiological functions, including locomotor activity. This rhythm is controlled by an endogenous oscillatory mechanism, or circadian clock, which consists of cyclically expressed clock genes and their product proteins. cryptochrome (cry) genes are thought to be involved in the clock mechanism, and their functions have been examined extensively in holometabolous insects, but in hemimetabolous insects their role is less well understood. RESULTS In the present study, the role of cry genes was investigated using RNAi technology in a hemimetabolous insect, the cricket Gryllus bimaculatus. Using a molecular cloning approach, we obtained cDNAs for two cry genes: Drosophila-type cry1 (Gb'cry1) and mammalian-type cry2 (Gb'cry2). Gb'cry2 has six splicing variants, most of which showed rhythmic mRNA expression. Gb'cry1RNAi treatment had only a limited effect at the behavioral and molecular levels, while Gb'cry2RNAi had a significant effect on behavioral rhythms and molecular oscillatory machinery, alone or in combination with Gb'cry1RNAi. In Gb'cry1/Gb'cry2 double-RNAi crickets, most clock genes showed arrhythmic expression, except for timeless, which retained clear rhythmic expression. Molecular analysis revealed that some combination of Gb'cry1 and Gb'cry2 variants suppressed CLK/CYC transcriptional activity in cultured cells. CONCLUSION Based on these results, we propose a new model of the cricket's circadian clock, including a molecular oscillatory loop for Gb'cry2, which can operate independent of the Gb'per/Gb'tim loop.
Collapse
Affiliation(s)
- Atsushi Tokuoka
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Taichi Q. Itoh
- Graduate School of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Shinryo Hori
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Outa Uryu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Yoshiki Danbara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Motoki Nose
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| | - Tetsuya Bando
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558 Japan
| | - Teiichi Tanimura
- Graduate School of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan
| |
Collapse
|
16
|
Ng FS, Sengupta S, Huang Y, Yu AM, You S, Roberts MA, Iyer LK, Yang Y, Jackson FR. TRAP-seq Profiling and RNAi-Based Genetic Screens Identify Conserved Glial Genes Required for Adult Drosophila Behavior. Front Mol Neurosci 2016; 9:146. [PMID: 28066175 PMCID: PMC5177635 DOI: 10.3389/fnmol.2016.00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia-different classes of glial cells-have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior.
Collapse
Affiliation(s)
- Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Amy M Yu
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Mary A Roberts
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Lakshmanan K Iyer
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - Yongjie Yang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| | - F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
17
|
Miyazaki Y, Watari Y, Tanaka K, Goto SG. Temperature cycle amplitude alters the adult eclosion time and expression pattern of the circadian clock gene period in the onion fly. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:54-59. [PMID: 26776097 DOI: 10.1016/j.jinsphys.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Soil temperature cycles are considered to play an important role in the entrainment of circadian clocks of underground insects. However, because of the low conductivity of soil, temperature cycles are gradually dampened and the phase of the temperature cycle is delayed with increasing soil depth. The onion fly, Delia antiqua, pupates at various soil depths, and its eclosion is timed by a circadian clock. This fly is able to compensate for the depth-dependent phase delay of temperature change by advancing the eclosion time with decreasing amplitude of the temperature cycle. Therefore, pupae can eclose at the appropriate time irrespective of their location at any depth. However, the mechanism that regulates eclosion time in response to temperature amplitude is still unknown. To understand whether this mechanism involves the circadian clock or further downstream physiological processes, we examined the expression patterns of period (per), a circadian clock gene, of D. antiqua under temperature cycles that were square wave cycles of 12-h warm phase (W) and 12-h cool phase (C) with the temperature difference of 8 °C (WC 29:21 °C) and 1 °C (WC 25.5:24.5 °C). The phase of oscillation in per expression was found to commence 3.5h earlier under WC 25.5:24.5 °C as compared to WC 29:21 °C. This difference was in close agreement with the eclosion time difference between the two temperature cycles, suggesting that the mechanism that responds to the temperature amplitude involves the circadian clock.
Collapse
Affiliation(s)
- Yosuke Miyazaki
- Faculty of Clinical Education, Ashiya University, Hyogo 659-8511, Japan.
| | - Yasuhiko Watari
- Faculty of Clinical Education, Ashiya University, Hyogo 659-8511, Japan.
| | - Kazuhiro Tanaka
- General Education Division, Miyagi Gakuin Women's University, Miyagi 981-8557, Japan.
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| |
Collapse
|
18
|
Guo WC, Liu XP, Fu KY, Shi JF, Lü FG, Li GQ. Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say). INSECT MOLECULAR BIOLOGY 2016; 25:44-57. [PMID: 26542892 DOI: 10.1111/imb.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development. In this study, three Leptinotarsa decemlineata Ecdysone-induced protein 75 (LdE75) cDNAs (LdE75A, B and C) were cloned from L. decemlineata. The three LdE75 isoforms were highly expressed just before or right after each moult. Within the fourth larval instar, they showed a small rise and a big peak 40 and 80 h after ecdysis. The expression peaks of the three LdE75s coincided with the peaks of circulating 20E levels. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdE75 expression in the day 1 final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene, Shade (LdSHD), repressed the expression of LdE75. Moreover, Hal upregulated the expression of the three LdE75s in LdSHD-silenced larvae. Thus, 20E pulses activate the transcription of LdE75s. Furthermore, ingesting dsE75-1 and dsE75-2 from a common fragment of the three isoforms successfully knocked down these LdE75s, and caused developmental arrest. Finally, knocking down LdE75s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered the 20E titre and affected the expression of two 20E-response genes. Silencing LdE75s also induced the expression of a JH biosynthesis gene, increased JH titre and activated the transcription of a JH early-inducible gene. Thus, Ld E75s are required for larval-pupal metamorphosis and act mainly by modulating 20E and JH titres and mediating their signalling pathways.
Collapse
Affiliation(s)
- W-C Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - X-P Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-F Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F-G Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Uryu O, Ameku T, Niwa R. Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. ZOOLOGICAL LETTERS 2015; 1:32. [PMID: 26605077 PMCID: PMC4657291 DOI: 10.1186/s40851-015-0031-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/27/2015] [Indexed: 05/26/2023]
Abstract
Steroid hormones are one of the major bioactive molecules responsible for the coordinated regulation of biological processes in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, including 20-hydroxyecdysone. A great deal of research has investigated the roles played by ecdysteroids during insect development, especially the regulatory role in inducing molting and metamorphosis. However, little attention has been paid to the roles of these hormones in post-developmental processes, despite their undisputed presence in the adult insect body. Recently, molecular genetics of the fruit fly Drosophila melanogaster has revealed that ecdysteroid biosynthesis and signaling are indeed active in adult insects, and involved in diverse processes, including oogenesis, stress resistance, longevity, and neuronal activity. In this review, we focus on very recent progress in the understanding of two adult biological events that require ecdysteroid biosynthesis and/or signaling in Drosophila at the molecular level: germline development and the circadian clock.
Collapse
Affiliation(s)
- Outa Uryu
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Tomotsune Ameku
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Ryusuke Niwa
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
20
|
Guo WC, Liu XP, Fu KY, Shi JF, Lü FG, Li GQ. Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:23-33. [PMID: 26005119 DOI: 10.1016/j.ibmb.2015.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Our previous results revealed that RNA interference-aided knockdown of Leptinotarsa decemlineata FTZ-F1 (LdFTZ-F1) reduced 20E titer, and impaired pupation. In this study, we characterized a putative LdHR3 gene, an early-late 20E-response gene upstream of LdFTZ-F1. Within the first, second and third larval instars, three expression peaks of LdHR3 occurred just before the molt. In the fourth (final) larval instar 80 h after ecdysis and prepupal stage 3 days after burying into soil, two LdHR3 peaks occurred. The LdHR3 expression peaks coincide with the peaks of circulating 20E level. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdHR3 expression in the final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene Ldshd repressed the expression. Moreover, Hal rescued the transcript levels in the Ldshd-silenced larvae. Thus, 20E peaks activate the expression of LdHR3. Furthermore, ingesting dsRNA against LdHR3 successfully knocked down the target gene, and impaired pupation. Finally, knockdown of LdHR3 upregulated the transcription of three ecdysteroidogenesis genes (Ldphm, Lddib and Ldshd), increased 20E titer, and activated the expression of two 20E-response genes (LdEcR and LdFTZ-F1). Thus, LdHR3 functions in regulation of pupation in the Colorado potato beetle.
Collapse
Affiliation(s)
- Wen-Chao Guo
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Xin-Ping Liu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ji-Feng Shi
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|