1
|
Li G, Dang J, Pan J, Liu J, Peng T, Chen G, Wang R, Hu S, Li X, Hu X. Genome-Wide Analysis of the DC1 Domain Protein Gene Family in Tomatoes under Abiotic Stress. Int J Mol Sci 2023; 24:16994. [PMID: 38069320 PMCID: PMC10707348 DOI: 10.3390/ijms242316994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
DC1 (Divergent C1) domain proteins are a new class of proteins that have been discovered in recent years, which play an important role in plant growth, development, and stress response. In order to better study the distribution and function of DC1 domain proteins in tomatoes, a genome-wide identification was conducted. It was found that there are twenty-one DC1 domain protein genes distributed on nine chromosomes of tomatoes, named SlCHP1-21. Phylogenetic analysis shows that twenty-one SlCHP genes are divided into six subfamilies. Most of the SlCHP genes in tomatoes have no or very short introns. All SlCHP proteins, with the exception of SlCHP8 and SlCHP17, contain variable amounts of C1 domain. Analysis of the SlCHP gene promoter sequence revealed multiple cis-elements responsive to plant stress. qRT-CR analysis showed that most members of SlCHP gene expressed in the roots. The SlCHP11, 13, 16, 17, and SlCHP20 genes showed specific responses to high temperature, low temperature, salt, and drought stress. In addition, the subcellular localization and interaction proteins of SlCHP were analyzed and predicted. Together, these results provides a theoretical basis for further exploration of the function and mechanism of the SlCHP gene in tomatoes.
Collapse
Affiliation(s)
- Guobin Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| | - Jiaqi Pan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
| | - Tieli Peng
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| | - Guo Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
| | - Rongqun Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| | - Xiaojing Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (G.L.); (J.D.); (J.P.); (J.L.); (T.P.); (G.C.); (R.W.); (S.H.); (X.L.)
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling 712100, China
| |
Collapse
|
2
|
Brownfield L. Pollen Helps Reveal a Role for DC1 Domain Proteins. PLANT & CELL PHYSIOLOGY 2023; 63:1761-1763. [PMID: 36255096 DOI: 10.1093/pcp/pcac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Lynette Brownfield
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Arias LA, D'Ippolito S, Frik J, Amigo NL, Marchetti F, Casalongué CA, Pagnussat GC, Fiol DF. The DC1 Domain Protein BINUCLEATE POLLEN is Required for POLLEN Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1994-2007. [PMID: 36001044 DOI: 10.1093/pcp/pcac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The development of the male gametophyte is a tightly regulated process that requires the precise control of cell division and gene expression. A relevant aspect to understand the events underlying pollen development regulation constitutes the identification and characterization of the genes required for this process. In this work, we showed that the DC1 domain protein BINUCLEATE POLLEN (BNP) is essential for pollen development and germination. Pollen grains carrying a defective BNP alleles failed to complete mitosis II and exhibited impaired pollen germination. By yeast two-hybrid analysis and bimolecular fluorescence complementation assays, we identified a set of BNP-interacting proteins. Among confirmed interactors, we found the NAC family transcriptional regulators Vascular Plant One-Zinc Finger 1 (VOZ1) and VOZ2. VOZ1 localization changes during pollen development, moving to the vegetative nucleus at the tricellular stage. We observed that this relocalization requires BNP; in the absence of BNP in pollen from bnp/BNP plants, VOZ1 nuclear localization is impaired. As the voz1voz2 double mutants showed the same developmental defect observed in bnp pollen grains, we propose that BNP requirement to complete microgametogenesis could be linked to its interaction with VOZ1/2 proteins. BNP could have the role of a scaffold protein, recruiting VOZ1/2 to the endosomal system into assemblies that are required for their further translocation to the nucleus, where they act as transcriptional regulators.
Collapse
Affiliation(s)
- Leonardo A Arias
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Sebastián D'Ippolito
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Jésica Frik
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Natalia L Amigo
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Fernanda Marchetti
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Claudia A Casalongué
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Gabriela C Pagnussat
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Diego F Fiol
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| |
Collapse
|
4
|
Binodh AK, Thankappan S, Ravichandran A, Mitra D, Alagarsamy S, Panneerselvam P, Senapati A, Sami R, Al-Mushhin AAM, Aljahani AH, Alyamani A, Alqurashi M. Synergistic Modulation of Seed Metabolites and Enzymatic Antioxidants Tweaks Moisture Stress Tolerance in Non-Cultivated Traditional Rice Genotypes during Germination. PLANTS 2022; 11:plants11060775. [PMID: 35336657 PMCID: PMC8955497 DOI: 10.3390/plants11060775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (−) 1.0 MPa, (−) 1.25 MPa and (−) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (−) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Asish Kanakaraj Binodh
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Sugitha Thankappan
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, India;
| | - Anupriya Ravichandran
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Killikulam 628252, India;
| | - Debasis Mitra
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
| | - Senthil Alagarsamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Ansuman Senapati
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Amal Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (M.A.)
| | - Mohammed Alqurashi
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (M.A.)
| |
Collapse
|
5
|
Masuda K, Fujita N, Yang HW, Ushijima K, Kubo Y, Tao R, Akagi T. Molecular Mechanism Underlying Derepressed Male Production in Hexaploid Persimmon. FRONTIERS IN PLANT SCIENCE 2020; 11:567249. [PMID: 33414795 PMCID: PMC7783364 DOI: 10.3389/fpls.2020.567249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Sex expression in plants is often flexible and contributes to the maintenance of genetic diversity within a species. In diploid persimmons (the genus Diospyros), the sexuality is controlled by the Y chromosome-encoded small-RNA gene, OGI, and its autosomal counterpart, MeGI. Hexaploid Oriental persimmon (Diospyros kaki) evolved more flexible sex expression, where genetically male individuals carrying OGI can produce both male and female flowers (monoecy). This is due to (semi-)inactivation of OGI by the Kali-SINE retrotransposon insertion on the promoter region and the resultant DNA methylations. Instead, flower sex determination in Oriental persimmon is also dependent on DNA methylation states of MeGI. Here, we focused on a cultivar, Kumemaru, which shows stable male flower production. Our results demonstrated that cv. Kumemaru carries OGI with Kali-SINE, which was highly methylated as well as in other monoecious cultivars; nevertheless, OGI gene could have a basal expression level. Transcriptomic analysis between cv. Kumemaru and 14 cultivars that predominantly produce female flowers showed differentially expressed genes (DEGs) specific to cv. Kumemaru, which is mainly involved in stress responses. Co-expression gene networks focusing on the DEGs also suggested the involvement of stress signals, mainly via gibberellin (GA), salicylic acid (SA), and especially jasmonic acid (JA) signal pathways. We also identified potential regulators of this co-expression module, represented by the TCP4 transcription factor. Furthermore, we attempted to identify cv. Kumemaru-specific transcript polymorphisms potentially contributing to derepressed OGI expression by cataloging subsequences (k-mers) in the transcriptomic reads from cv. Kumemaru and the other 14 female cultivars. Overall, although the direct genetic factor to activate OGI remains to be solved, our results implied the involvement of stress signals in the release of silenced OGI and the resultant continuous male production.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Naoko Fujita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Epigenetic Variation at a Genomic Locus Affecting Biomass Accumulation under Low Nitrogen in Arabidopsis thaliana. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitrogen (N) is a macronutrient determining crop yield. The application of N fertilisers can substantially increase the yield, but excess use also causes the nitrate pollution of water resources and increases production costs. Increasing N use efficiency (NUE) in crop plants is an important step to implement low-input agricultural systems. We used Arabidopsis thaliana as model system to investigate the natural genetic diversity in traits related to NUE. Natural variation was used to study adaptive growth patterns and changes in gene expression associated with limited nitrate availability. A genome-wide association study revealed an association of eight SNP markers on Chromosome 1 with shoot growth under limited N. The identified linkage disequilibrium (LD) interval includes the DNA sequences of three cysteine/histidine-rich C1 domain proteins in tandem orientation. These genes differ in promoter structure, methylation pattern and expression level among accessions, correlating with growth performance under N deficiency. Our results suggest the involvement of epigenetic regulation in the expression of NUE-related traits.
Collapse
|
7
|
D'Ippólito S, Arias LA, Casalongué CA, Pagnussat GC, Fiol DF. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:261-275. [PMID: 28107777 DOI: 10.1111/tpj.13486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Leonardo Agustín Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| |
Collapse
|
8
|
Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.01.010] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|