1
|
Comparison of the Rostral Epidural Rete Mirabile and the Patterns of Its Blood Supply in Selected Suiformes and Hippopotamuses. Animals (Basel) 2023; 13:ani13040644. [PMID: 36830431 PMCID: PMC9951680 DOI: 10.3390/ani13040644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The rostral epidural rete mirabile (rete mirabile epidurale rostrale) is built of considerable small arterial vessels that anastomose with each other. This structure is formed as a result of the division of a large arterial vessel into many small arteries. Furthermore, on the other side of the rete mirabile, these small arteries are joined together to form one large artery, through which blood flows out of the rete mirabile. This system participates in decreasing the temperature of the brain and thus protects the body from thermal stress. Moreover, it influences body-water balance and has a crucial role in the retrograde transfer of neuropeptides. The goal of this study was to describe the rostral epidural rete mirabile and pathways that provide blood to this structure as well as compare it in selected Suiformes and hippopotamuses. The study was performed on desert warthogs (Phacochoerus aethiopicus), Eurasian wild boars (Sus scrofa), collared peccaries (Pecari tajacu), pygmy hippopotamuses (Choeropsis liberiensis), and common hippopotamuses (Hippopotamus amphibius). Preparations were made using the latex method and corrosion cast. An elongated shape characterizes its anatomy with a much wider rostral part than caudal part in the Eurasian wild boars, desert warthogs, and collared peccaries. The main source of blood was the branch to the rostral epidural rete mirabile branched off from the internal carotid artery. Moreover, blood enters the rete by the caudal branch and rostral branch to the rostral epidural rete mirabile. In hippopotamuses, the major source of blood was the rostral branches to the rostral epidural rete mirabile.
Collapse
|
2
|
Hong JM, Choi ES, Park SY. Selective Brain Cooling: A New Horizon of Neuroprotection. Front Neurol 2022; 13:873165. [PMID: 35795804 PMCID: PMC9251464 DOI: 10.3389/fneur.2022.873165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (TH), which prevents irreversible neuronal necrosis and ischemic brain damage, has been proven effective for preventing ischemia-reperfusion injury in post-cardiac arrest syndrome and neonatal encephalopathy in both animal studies and clinical trials. However, lowering the whole-body temperature below 34°C can lead to severe systemic complications such as cardiac, hematologic, immunologic, and metabolic side effects. Although the brain accounts for only 2% of the total body weight, it consumes 20% of the body's total energy at rest and requires a continuous supply of glucose and oxygen to maintain function and structural integrity. As such, theoretically, temperature-controlled selective brain cooling (SBC) may be more beneficial for brain ischemia than systemic pan-ischemia. Various SBC methods have been introduced to selectively cool the brain while minimizing systemic TH-related complications. However, technical setbacks of conventional SBCs, such as insufficient cooling power and relatively expensive coolant and/or irritating effects on skin or mucosal interfaces, limit its application to various clinical settings. This review aimed to integrate current literature on SBC modalities with promising therapeutic potential. Further, future directions were discussed by exploring studies on interesting coping skills in response to environmental or stress-induced hyperthermia among wild animals, including mammals and birds.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- *Correspondence: Ji Man Hong
| | - Eun Sil Choi
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
3
|
Graczyk S, Zdun M. The structure of the rostral epidural rete mirabile in selected representatives of the Cervidae and Bovidae families. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Szymon Graczyk
- Institute of Veterinary Medicine Nicolaus Copernicus University in Toruń Toruń Poland
| | - Maciej Zdun
- Institute of Veterinary Medicine Nicolaus Copernicus University in Toruń Toruń Poland
| |
Collapse
|
4
|
Fuller A, Mitchell D, Maloney SK, Hetem RS, Fonsêca VFC, Meyer LCR, van de Ven TMFN, Snelling EP. How dryland mammals will respond to climate change: the effects of body size, heat load and a lack of food and water. J Exp Biol 2021; 224:224/Suppl_1/jeb238113. [PMID: 33627465 DOI: 10.1242/jeb.238113] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mammals in drylands are facing not only increasing heat loads but also reduced water and food availability as a result of climate change. Insufficient water results in suppression of evaporative cooling and therefore increases in body core temperature on hot days, while lack of food reduces the capacity to maintain body core temperature on cold nights. Both food and water shortage will narrow the prescriptive zone, the ambient temperature range over which body core temperature is held relatively constant, which will lead to increased risk of physiological malfunction and death. Behavioural modifications, such as shifting activity between night and day or seeking thermally buffered microclimates, may allow individuals to remain within the prescriptive zone, but can incur costs, such as reduced foraging or increased competition or predation, with consequences for fitness. Body size will play a major role in predicting response patterns, but identifying all the factors that will contribute to how well dryland mammals facing water and food shortage will cope with increasing heat loads requires a better understanding of the sensitivities and responses of mammals exposed to the direct and indirect effects of climate change.
Collapse
Affiliation(s)
- Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa .,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,School of Human Sciences, Faculty of Science, University of Western Australia, Crawley 6009, WA, Australia
| | - Shane K Maloney
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,School of Human Sciences, Faculty of Science, University of Western Australia, Crawley 6009, WA, Australia
| | - Robyn S Hetem
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Vinicius F C Fonsêca
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,Innovation Group of Biometeorology and Animal Welfare (INOBIO-MANERA), Universidade Federal da Paraíba, Areia, 58397000, Brazil
| | - Leith C R Meyer
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Tanja M F N van de Ven
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Edward P Snelling
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa.,Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
5
|
McKinley MJ, Martelli D, Pennington GL, Trevaks D, McAllen RM. Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis. Physiology (Bethesda) 2019; 33:170-181. [PMID: 29616878 DOI: 10.1152/physiol.00037.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammals are characterized by a stable core body temperature. When maintenance of core temperature is challenged by ambient or internal heat loads, mammals increase blood flow to the skin, sweat and/or pant, or salivate. These thermoregulatory responses enable evaporative cooling at moist surfaces to dissipate body heat. If water losses incurred during evaporative cooling are not replaced, body fluid homeostasis is challenged. This article reviews the way mammals balance thermoregulation and osmoregulation.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia.,Department of Physiology, University of Melbourne , Parkville , Australia
| | - Davide Martelli
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia.,University of Bologna, Bologna , Italy
| | - Glenn L Pennington
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia
| | - David Trevaks
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia
| | - Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia
| |
Collapse
|
6
|
O'Brien HD. From Anomalous Arteries to Selective Brain Cooling: Parallel Evolution of the Artiodactyl Carotid Rete. Anat Rec (Hoboken) 2018; 303:308-317. [PMID: 30421534 DOI: 10.1002/ar.23987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 11/05/2022]
Abstract
Terrestrial artiodactyls (even-toed ungulates) inhabit some of the world's most extreme environments, including arid deserts and high elevations. As medium-to-large-bodied mammals, artiodactyls have a suite of specialized physiologies to facilitate occupation of regions unavailable to other large mammals. One such physiology is selective brain cooling, wherein reduction of brain temperature below core body temperature has been demonstrated to reduce evaporative water loss. This physiology is enabled by an arterial heat-exchanger called the carotid rete. The ubiquity of the carotid rete throughout the clade, as well as its evolutionary history, is currently uninvestigated. Here, I use osteological correlates to survey clade-wide presence and morphology of the carotid rete, prior to conducting a preliminary evolutionary analysis. Nearly all living artiodactyls possess a carotid rete and are capable of selective brain cooling; however, major arteries supplying the rete are derived from different embryonic aortic arches on a suborder-specific basis. Ancestral character estimation infers this pattern of variation to be the result of independent evolutionary processes, suggesting carotid rete homoplasy arising via parallelism. This is a surprising finding given the role this structure plays in driving a physiology that has been implicated in mitigating artiodactylan responses to extreme environmental conditions. Future studies should incorporate extinct species represented in the fossil record to better parse between parallel and convergent mechanisms, as well as to better understand the relationship between the carotid rete, selective brain cooling, and survivorship of climate perturbation. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:308-317, 2020. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Haley D O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| |
Collapse
|
7
|
Bila WC, Mariano RMDS, Silva VR, Dos Santos MESM, Lamounier JA, Ferriolli E, Galdino AS. Applications of deuterium oxide in human health. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2017; 53:327-343. [PMID: 28165769 DOI: 10.1080/10256016.2017.1281806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The main aim goal of this review was to gather information about recent publications related to deuterium oxide (D2O), and its use as a scientific tool related to human health. Searches were made in electronic databases Pubmed, Scielo, Lilacs, Medline and Cochrane. Moreover, the following patent databases were consulted: EPO (Espacenet patent search), USPTO (United States Patent and Trademark Office) and Google Patents, which cover researches worldwide related to innovations using D2O.
Collapse
Affiliation(s)
- Wendell Costa Bila
- a Graduate Programme in Health Sciences , Federal University of São João Del Rei-West Centre Campus , Divinópolis , Brazil
| | - Reysla Maria da Silveira Mariano
- b Graduate Programme in Biochemistry and Molecular Biology , Federal University of São João del Rei , Divinópolis , Brazil
- c Graduate Program in Biotechnology , Federal University of São João del Rei , Divinópolis , Brazil
| | - Valmin Ramos Silva
- d Faculty of Medicine, School of Sciences of Santa Casa de Misericórdia of Vitória , Nossa Senhora da Glória Children's Hospital , Vitória , Brazil
| | | | - Joel Alves Lamounier
- a Graduate Programme in Health Sciences , Federal University of São João Del Rei-West Centre Campus , Divinópolis , Brazil
| | - Eduardo Ferriolli
- e Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , Brazil
| | - Alexsandro Sobreira Galdino
- b Graduate Programme in Biochemistry and Molecular Biology , Federal University of São João del Rei , Divinópolis , Brazil
- c Graduate Program in Biotechnology , Federal University of São João del Rei , Divinópolis , Brazil
| |
Collapse
|
8
|
Nelson DP, Warburton NM, Prideaux GJ. The anterior nasal region in the Red Kangaroo
(Macropus rufus)
suggests adaptation for thermoregulation and water conservation. J Zool (1987) 2017. [DOI: 10.1111/jzo.12492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- D. P. Nelson
- School of Biological Sciences Flinders University Adelaide SA Australia
| | - N. M. Warburton
- School of Veterinary and Life Sciences Murdoch University Murdoch WA Australia
| | - G. J. Prideaux
- School of Biological Sciences Flinders University Adelaide SA Australia
| |
Collapse
|
9
|
O'Brien HD. Cranial arterial patterns of the alpaca (Camelidae: Vicugna pacos). ROYAL SOCIETY OPEN SCIENCE 2017; 4:160967. [PMID: 28405385 PMCID: PMC5383842 DOI: 10.1098/rsos.160967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
Artiodactyl cranial arterial patterns deviate significantly from the standard mammalian pattern, most notably in the possession of a structure called the carotid rete (CR)-a subdural arterial meshwork that is housed within the cavernous venous sinus, replacing the internal carotid artery (ICA). This relationship between the CR and the cavernous sinus facilitates a suite of unique physiologies, including selective brain cooling. The CR has been studied in a number of artiodactyls; however, to my knowledge, only a single study to date documents a subset of the cranial arteries of New World camelids (llamas, alpacas, vicugñas and guanacoes). This study is the first complete description of the cranial arteries of a New World camelid species, the alpaca (Vicugna pacos), and the first description of near-parturition cranial arterial morphology within New World camelids. This study finds that the carotid arterial system is conserved between developmental stages in the alpaca, and differs significantly from the pattern emphasized in other long-necked ruminant artiodactyls in that a patent, homologous ICA persists through the animal's life.
Collapse
Affiliation(s)
- Haley D. O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| |
Collapse
|
10
|
Strauss WM, Hetem RS, Mitchell D, Maloney SK, O'Brien HD, Meyer LCR, Fuller A. Body water conservation through selective brain cooling by the carotid rete: a physiological feature for surviving climate change? CONSERVATION PHYSIOLOGY 2017; 5:cow078. [PMID: 29383253 PMCID: PMC5778374 DOI: 10.1093/conphys/cow078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 06/07/2023]
Abstract
Some mammals have the ability to lower their hypothalamic temperature below that of carotid arterial blood temperature, a process termed selective brain cooling. Although the requisite anatomical structure that facilitates this physiological process, the carotid rete, is present in members of the Cetartiodactyla, Felidae and Canidae, the carotid rete is particularly well developed in the artiodactyls, e.g. antelopes, cattle, sheep and goats. First described in the domestic cat, the seemingly obvious function initially attributed to selective brain cooling was that of protecting the brain from thermal damage. However, hyperthermia is not a prerequisite for selective brain cooling, and selective brain cooling can be exhibited at all times of the day, even when carotid arterial blood temperature is relatively low. More recently, it has been shown that selective brain cooling functions primarily as a water-conservation mechanism, allowing artiodactyls to save more than half of their daily water requirements. Here, we argue that the evolutionary success of the artiodactyls may, in part, be attributed to the evolution of the carotid rete and the resulting ability to conserve body water during past environmental conditions, and we suggest that this group of mammals may therefore have a selective advantage in the hotter and drier conditions associated with current anthropogenic climate change. A better understanding of how selective brain cooling provides physiological plasticity to mammals in changing environments will improve our ability to predict their responses and to implement appropriate conservation measures.
Collapse
Affiliation(s)
- W. Maartin Strauss
- Brain Function Research Group, School of Physiology, Faculty of Heath Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Department of Environmental Science, University of South Africa, Johannesburg, 1709, South Africa
| | - Robyn S. Hetem
- Brain Function Research Group, School of Physiology, Faculty of Heath Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, Faculty of Heath Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Perth, WA 6009, Australia
| | - Shane K. Maloney
- Brain Function Research Group, School of Physiology, Faculty of Heath Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Perth, WA 6009, Australia
| | - Haley D. O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Oklahoma, OK 74107, USA
| | - Leith C. R. Meyer
- Brain Function Research Group, School of Physiology, Faculty of Heath Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Heath Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, 0110, South Africa
| |
Collapse
|
11
|
Giuliani E, Magnoni S, Fei M, Addis A, Zanasi R, Stocchetti N, Barbieri A. A Novel Cooling Device for Targeted Brain Temperature Control and Therapeutic Hypothermia: Feasibility Study in an Animal Model. Neurocrit Care 2016; 25:464-472. [PMID: 26927280 PMCID: PMC5138276 DOI: 10.1007/s12028-016-0257-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Therapeutic hypothermia (i.e., temperature management) is an effective option for improving survival and neurological outcome after cardiac arrest and is potentially useful for the care of the critically ill neurological patient. We analyzed the feasibility of a device to control the temperature of the brain by controlling the temperature of the blood flowing through the neck. Methods A lumped parameter dynamic model, with one-dimensional heat transfer, was used to predict cooling effects and to test experimental hypotheses. The cooling system consisted of a flexible collar and was tested on 4 adult sheep, in which brain and body temperatures were invasively monitored for the duration of the experiment. Results Model-based simulations predicted a lowering of the temperature of the brain and the body following the onset of cooling, with a rate of 0.4 °C/h for the brain and 0.2 °C/h for the body. The experimental findings showed comparable cooling rates in the two body compartments, with temperature reductions of 0.6 (0.2) °C/h for the brain and 0.6 (0.2) °C/h for the body. For a 70 kg adult human subject, we predict a temperature reduction of 0.64 °C/h for the brain and 0.43 °C/h for the body. Conclusions This work demonstrates the feasibility of using a non-invasive method to induce brain hypothermia using a portable collar. This device demonstrated an optimal safety profile and represents a potentially useful method for the administration of mild hypothermia and temperature control (i.e., treatment of hyperpyrexia) in cardiac arrest and critically ill neurologic patients. Electronic supplementary material The online version of this article (doi:10.1007/s12028-016-0257-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Giuliani
- Neuron Guard S.r.l., Via L. Castelvetro 15, 41124, Modena, Italy.
| | - S Magnoni
- Department of Anesthesiology and Intensive Care, Ospedale Fondazione IRCCS, Ca' Granda, Milan, Italy
| | - M Fei
- Neuron Guard S.r.l., Via L. Castelvetro 15, 41124, Modena, Italy
| | - A Addis
- CRABCC, Biotechnology Research Center for Cardiothoracic Applications, Rivolta d'Adda, CR, Italy
| | - R Zanasi
- Department of Engineering, University of Modena and Reggio Emilia, Modena, Italy
| | - N Stocchetti
- Department of Anesthesiology and Intensive Care, Ospedale Fondazione IRCCS, Ca' Granda, Milan, Italy.,Milan University, Milan, Italy
| | - A Barbieri
- Department of Anesthesiology and Intensive Care, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Strauss WM, Hetem RS, Mitchell D, Maloney SK, Meyer LCR, Fuller A. Three African antelope species with varying water dependencies exhibit similar selective brain cooling. J Comp Physiol B 2016; 186:527-40. [DOI: 10.1007/s00360-016-0968-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/27/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
|