1
|
Deng X, Mo Y, Zhu X. Deciphering Müller cell heterogeneity signatures in diabetic retinopathy across species: an integrative single-cell analysis. Eur J Med Res 2024; 29:265. [PMID: 38698486 PMCID: PMC11067085 DOI: 10.1186/s40001-024-01847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Diabetic retinopathy (DR), a leading cause of visual impairment, demands a profound comprehension of its cellular mechanisms to formulate effective therapeutic strategies. Our study presentes a comprehensive single-cell analysis elucidating the intricate landscape of Müller cells within DR, emphasizing their nuanced involvement. Utilizing scRNA-seq data from both Sprague-Dawley rat models and human patients, we delineated distinct Müller cell clusters and their corresponding gene expression profiles. These findings were further validated through differential gene expression analysis utilizing human transcriptomic data. Notably, certain Müller cell clusters displayed upregulation of the Rho gene, implying a phagocytic response to damaged photoreceptors within the DR microenvironment. This phenomenon was consistently observed across species. Additionally, the co-expression patterns of RHO and PDE6G within Müller cell clusters provided compelling evidence supporting their potential role in maintaining retinal integrity during DR. Our results offer novel insights into the cellular dynamics of DR and underscore Müller cells as promising therapeutic targets for preserving vision in retinal disorders induced by diabetes.
Collapse
Affiliation(s)
- Xiyuan Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Mo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuying Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Liu Y, Liu X, Chen X, Yang Z, Chen J, Zhu W, Li Y, Wen Y, Deng C, Gu C, Lv J, Ju R, Zhuo Y, Su W. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc Natl Acad Sci U S A 2024; 121:e2311028121. [PMID: 38657052 PMCID: PMC11067450 DOI: 10.1073/pnas.2311028121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Increased cellular senescence burden contributes in part to age-related organ dysfunction and pathologies. In our study, using mouse models of natural aging, we observed structural and functional decline in the aged retina, which was accompanied by the accumulation of senescent cells and senescence-associated secretory phenotype factors. We further validated the senolytic and senomorphic properties of procyanidin C1 (PCC1) both in vitro and in vivo, the long-term treatment of which ameliorated age-related retinal impairment. Through high-throughput single-cell RNA sequencing (scRNA-seq), we comprehensively characterized the retinal landscape after PCC1 administration and deciphered the molecular basis underlying the senescence burden increment and elimination. By exploring the scRNA-seq database of age-related retinal disorders, we revealed the role of cellular senescence and the therapeutic potential of PCC1 in these pathologies. Overall, these results indicate the therapeutic effects of PCC1 on the aged retina and its potential use for treating age-related retinal disorders.
Collapse
Affiliation(s)
- Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianqi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Weining Zhu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, People’s Republic of China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou510060, People’s Republic of China
| |
Collapse
|
3
|
Zhang L, Xia D, Wang C, Gao F, Hu L, Li J, Jin L. Pleiotrophin attenuates the senescence of dental pulp stem cells. Oral Dis 2023; 29:195-205. [PMID: 34110666 DOI: 10.1111/odi.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Pleiotrophin (PTN), a secreted extracellular matrix-associated protein, plays an important role in regulating the osteo/dentinogenic differentiation potential of dental pulp stem cells (DPSCs). Our previous study has demonstrated that PTN expression in young DPSCs was is 10-fold higher than that in aged DPSCs. However, the role of PTN on the in maintaining the stemness of senescent DPSCs remains unclear. The present study aimed to investigate the effect of PTN on senescent DPSCs in vitro. MATERIALS AND METHODS Dental pulp stem cells were isolated from human third molars. PTN was knocked down using short hairpin RNAs to study the role of PTN on the senescence of DPSCs. DPSCs with aging performance were obtained by a replicative senescence cell model was obtained by the long-term culture of DPSCs to the 15th passage in vitro (P15). We then investigated the effect of PTN on senescent DPSCs (P15 DPSCs). Real-time RT-PCR, western blotting, alizarin red staining, quantitative calcium analysis, SA-β-Gal staining, CFSE, and cell-counting kit-8 (CCK8) assays were used to study cellular senescence and function. RESULTS The depletion of PTN increased the ratio of SA-β-gal-positive cells, upregulated the expression of p16, and down-regulated the expression of TERT and p-p38. Furthermore, 50 pg/ml of PTN recombinant protein rescued these changes the altered ratio of SA-β-gal-positive cells, decreased the expression of p16, enhanced TERT and p-p38 expression, as well as telomere activity, caused by PTN depletion and long-term culture. The15th passage cells displayed typical aging characteristic, including high ratio of SA-β-gal-positive cells, increased aging-related gene expression, decreased proliferation rate, high level of Cyclin D expression, and impaired osteo/dentinogenic differentiation potential. However, 50 pg/ml of PTN recombinant protein could partially reverse these alteration rescue these changes. CONCLUSIONS The present study demonstrated that PTN could protect DPSCs from senescence by improving the proliferation and osteo/dentinogenic differentiation ability, probably through the p38 MAPK pathway.
Collapse
Affiliation(s)
- Lili Zhang
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dengsheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chao Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Feifei Gao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Lei Hu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Li
- Department of Oral and Maxillofacial Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.,Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
4
|
Chen L, Perera ND, Karoukis AJ, Feathers KL, Ali RR, Thompson DA, Fahim AT. Oxidative stress differentially impacts apical and basolateral secretion of angiogenic factors from human iPSC-derived retinal pigment epithelium cells. Sci Rep 2022; 12:12694. [PMID: 35882889 PMCID: PMC9325713 DOI: 10.1038/s41598-022-16701-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a polarized monolayer that secretes growth factors and cytokines towards the retina apically and the choroid basolaterally. Numerous RPE secreted proteins have been linked to the pathogenesis of age-related macular degeneration (AMD). The purpose of this study was to determine the differential apical and basolateral secretome of RPE cells, and the effects of oxidative stress on directional secretion of proteins linked to AMD and angiogenesis. Tandem mass tag spectrometry was used to profile proteins in human iPSC-RPE apical and basolateral conditioned media. Changes in secretion after oxidative stress induced by H2O2 or tert-butyl hydroperoxide (tBH) were investigated by ELISA and western analysis. Out of 926 differentially secreted proteins, 890 (96%) were more apical. Oxidative stress altered the secretion of multiple factors implicated in AMD and neovascularization and promoted a pro-angiogenic microenvironment by increasing the secretion of pro-angiogenic molecules (VEGF, PTN, and CRYAB) and decreasing the secretion of anti-angiogenic molecules (PEDF and CFH). Apical secretion was impacted more than basolateral for PEDF, CRYAB and CFH, while basolateral secretion was impacted more for VEGF, which may have implications for choroidal neovascularization. This study lays a foundation for investigations of dysfunctional RPE polarized protein secretion in AMD and other chorioretinal degenerative disorders.
Collapse
Affiliation(s)
- Lisheng Chen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - N Dayanthi Perera
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Athanasios J Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Kecia L Feathers
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
- KCL Centre for Cell and Gene Therapy, London, WC2R 2LS, England, UK
| | - Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
5
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye (Lond) 2022:10.1038/s41433-022-02127-x. [PMID: 35672457 DOI: 10.1038/s41433-022-02127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a major complication of diabetes mellitus, where in its most advanced form ischemic changes lead to the development of retinal neovascularization, termed proliferative diabetic retinopathy (PDR). While the development of PDR is often associated with angiogenic and inflammatory cytokines, studies differ on which cytokines are implicated in disease pathogenesis and on the strength of these associations. We therefore conducted a systematic review and meta-analysis to quantitatively assess the existing body of data on intraocular cytokines as biomarkers in PDR. METHODS A comprehensive search of the literature without year limitation was conducted to January 18, 2021, which identified 341 studies assessing vitreous or aqueous cytokine levels in PDR, accounting for 10379 eyes with PDR and 6269 eyes from healthy controls. Effect sizes were calculated as standardized mean differences (SMD) of cytokine concentrations between PDR and control patients. RESULTS Concentrations (SMD, 95% confidence interval, and p-value) of aqueous IL-1β, IL-6, IL-8, MCP-1, TNF-α, and VEGF, and vitreous IL-2, IL-4, IL-6, IL-8, angiopoietin-2, eotaxin, erythropoietin, GM-CSF, GRO, HMGB-1, IFN-γ, IGF, IP-10, MCP-1, MIP-1, MMP-9, PDGF-AA, PlGF, sCD40L, SDF-1, sICAM-1, sVEGFR, TIMP, TNF-α, and VEGF were significantly higher in patients with PDR when compared to healthy nondiabetic controls. For all other cytokines no differences, failed sensitivity analyses or insufficient data were found. CONCLUSIONS This extensive list of cytokines speaks to the complexity of PDR pathogenesis, and informs future investigations into disease pathogenesis, prognosis, and management.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Kensington Vision and Research Centre, Toronto, ON, Canada.
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON, Canada.
| |
Collapse
|
6
|
Xiao Q, Sun YY, Lu ZJ, Li SS, Su R, Chen WL, Ran LL, Zhang S, Deng K, Yu WZ, Chen W. Protective effects of safranal on diabetic retinopathy in human microvascular endothelial cells and related pathways analyzed with transcriptome sequencing. Front Endocrinol (Lausanne) 2022; 13:945446. [PMID: 36465659 PMCID: PMC9708741 DOI: 10.3389/fendo.2022.945446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
AIM To determine the effect of safranal on diabetic retinopathy in vitro and its possible mechanisms. METHODS We used human retinal microvascular endothelial cells (HRMECs) to test the influence of safranal in vitro. High glucose damage was established and an safranal was tested at various concentrations for its potential to reduce cell viability using the MTT assay. We also employed apoptosis detection, cell cycle detection, a transwell test, and a tube formation assay to look into safranal's inhibitory effects on high glucose damage at various doses. Furthermore, mRNA transcriptome sequencing was performed. mRNA expression levels in a high glucose damage model, a high glucose damage model treated with safranal, and a blank control were compared to find the possible signaling pathway. Western blotting was used to confirm the expressions of several molecules and the levels of phosphorylation in each for the newly discovered pathway. RESULTS Cell proliferation was inhibited under a high glucose condition but could be protected by safranal at different concentrations (P<0.001). Flow cytometry results suggested safranal also protected cells from apoptosis (P=0.006). A transwell test demonstrated reduced invasiveness of safranal-treated cells in a high glucose condition (P<0.001). In a tube formation investigation, there were noticeably more new branches in the high gloucose group compared to a high glucose treated with safranal group (P<0.001). In mRNA expression patterns on transcriptome sequencing, the MAPK signaling pathway showed an expression ratio. With western blotting, the phosphorylation level of p38-AKT was elevated under a high glucose condition but could be inhibited by safranal. The expression of molecules associated with cell adhesion, including E-cadherin, N-cadherin, Snail, Twist, and fibronectin also changed significantly after safranal treatment under a high glucose condition. CONCLUSION Safranal can protect diabetic retinopathy in vitro, and the p38-AKT signaling pathway was found to be involved in the pathogenesis of diabetic retinopathy and could be inhibited by safranal. This pathway may play a role by influencing cell migration and adhesion.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
- *Correspondence: Qin Xiao,
| | - Yao-Yao Sun
- Department of Ophthalmology, Peking University People’s Hospital, Beijing, China
- Eye diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health science center, Beijing, China
| | - Zhan-Jun Lu
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Shan-shan Li
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Riguga Su
- College of Clinical (Mongolian) Medicine, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wen-Lin Chen
- College of Clinical (Mongolian) Medicine, Inner Mongolia University for Nationalities, Tongliao, China
| | - Lin-Lin Ran
- College of Clinical (Mongolian) Medicine, Inner Mongolia University for Nationalities, Tongliao, China
| | - Surina Zhang
- Department of Hematology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Kaixin Deng
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - Wen-Zhen Yu
- Department of Ophthalmology, Peking University People’s Hospital, Beijing, China
- Eye diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health science center, Beijing, China
| | - Wenqian Chen
- Department of Ophthalmology, Peking University People’s Hospital, Beijing, China
- Eye diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health science center, Beijing, China
| |
Collapse
|
7
|
Qin-Xiao, Sun YY, Lu ZJ, Zhang TZ, Li SS, Hua T, Suriguga, Chen WL, Ran LL, Yu WZ, Yang F, Burenbatu. Inhibitory effects of safranal on laser-induced choroidal neovascularization and human choroidal microvascular endothelial cells and related pathways analyzed with transcriptome sequencing. Int J Ophthalmol 2021; 14:981-989. [PMID: 34282381 DOI: 10.18240/ijo.2021.07.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To determine the effects of safranal on choroidal neovascularization (CNV) and oxidative stress damage of human choroidal microvascular endothelial cells (HCVECs) and its possible mechanisms. METHODS Forty-five rats were used as a laser-induced CNV model for testing the efficacy and safety of safranal (0.5 mg/kg·d, intraperitoneally) on CNV. CNV leakage on fluorescein angiography (FA) and CNV thickness on histology was compared. HCVECs were used for a H2O2-induced oxidative stress model to test the effect of safranal in vitro. MTT essay was carried to test the inhibition rate of safranal on cell viability at different concentrations. Tube formation was used to test protective effect of safranal on angiogenesis at different concentrations. mRNA transcriptome sequencing was performed to find the possible signal pathway. The expressions of different molecules and their phosphorylation level were validated by Western blotting. RESULTS On FA, the average CNV leakage area was 0.73±0.49 and 0.31±0.11 mm2 (P=0.012) in the control and safranal-treated group respectively. The average CNV thickness was 127.4±18.75 and 100.6±17.34 µm (P=0.001) in control and safranal-treated group. Under the condition of oxidative stress, cell proliferation was inhibited by safranal and inhibition rates were 7.4%-35.4% at the different concentrations. For tube formation study, the number of new branches was 364 in control group and 35, 42, and 17 in 20, 40, and 80 µg/mL safranal groups respectively (P<0.01). From the KEGG pathway bubble graph, the PI3K-AKT signaling pathway showed a high gene ratio. The protein expression was elevated of insulin receptor substrate (IRS) and the phosphorylation level of PI3K, phosphoinositide-dependent protein kinase 1/2 (PDK1/2), AKT and Bcl-2 associated death promoter (BAD) was also elevated under oxidative stress condition but inhibited by safranal. CONCLUSION Safranal can inhibit CNV both in vivo and in vitro, and the IRS-PI3K-PDK1/2-AKT-BAD signaling pathway is involved in the pathogenesis of CNV.
Collapse
Affiliation(s)
- Qin-Xiao
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028007, Inner Mongolia Autonomous Region, China
| | - Yao-Yao Sun
- Department of Ophthalmology, Peking University People's Hospital, Beijing100044, China
| | - Zhan-Jun Lu
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028007, Inner Mongolia Autonomous Region, China
| | - Tian-Zi Zhang
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028007, Inner Mongolia Autonomous Region, China
| | - Shan-Shan Li
- Department of Ophthalmology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028007, Inner Mongolia Autonomous Region, China
| | - Ting Hua
- College of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Suriguga
- College of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Wen-Lin Chen
- College of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Lin-Lin Ran
- College of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Wen-Zhen Yu
- Department of Ophthalmology, Peking University People's Hospital, Beijing100044, China
| | - Fei Yang
- Department of Ophthalmology, Peking University International Hospital, Beijing 100026, China
| | - Burenbatu
- Department of Hematology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028007, Inner Mongolia Autonomous Region, China
| |
Collapse
|
8
|
Soerensen M, Debrabant B, Halekoh U, Møller JE, Hassager C, Frydland M, Hjelmborg J, Beck HC, Rasmussen LM. Does diabetes modify the effect of heparin on plasma proteins? - A proteomic search for plasma protein biomarkers for diabetes-related endothelial dysfunction. J Diabetes Complications 2021; 35:107906. [PMID: 33785251 DOI: 10.1016/j.jdiacomp.2021.107906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/11/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
AIM Heparin administration affects the concentrations of many plasma proteins through their displacement from the endothelial glycocalyx. A differentiated protein response in diabetes will therefore, at least partly, reflect glycocalyx changes. This study aims at identifying biomarkers of endothelial dysfunction in diabetes by statistical exploration of plasma proteome data for interactions between diabetes status and heparin treatment. METHODS Diabetes-by-heparin interactions in relation to protein levels were inspected by regression modelling in plasma proteome data from 497 patients admitted for acute angiography. Analyses were conducted separately for all 273 proteins and as set-based analyses of 44 heparin-relevant proteins identified by gene ontology analysis and 42 heparin-influenced proteins previously reported. RESULTS Seventy-five patients had diabetes and 361 received heparin before hospitalization. The proteome-wide analysis displayed no proteins with diabetes-heparin interaction to pass correction for multiple testing. The overall set-based analyses revealed significant association for both protein sets (p-values<2*10-4), while constraining on opposite directions of effect in diabetics and none-diabetics was insignificant (p-values = 0.11 and 0.17). CONCLUSIONS Our plasma proteome-wide interaction approach supports that diabetes influences heparin effects on protein levels, however the direction of effects and individual proteins could not be definitively pinpointed, likely reflecting a complex protein-basis for glycocalyx dysfunction in diabetes.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark; Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Birgit Debrabant
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Ulrich Halekoh
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Jacob Eifer Møller
- Department of Clinical Cardiology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Martin Frydland
- Department of Cardiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9B, 5000 Odense C, Denmark.
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Lars Melholt Rasmussen
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark.
| |
Collapse
|
9
|
Niu R, Nie ZT, Liu L, Chang YW, Shen JQ, Chen Q, Dong LJ, Hu BJ. Follistatin-like protein 1 functions as a potential target of gene therapy in proliferative diabetic retinopathy. Aging (Albany NY) 2021; 13:8643-8664. [PMID: 33714952 PMCID: PMC8034962 DOI: 10.18632/aging.202678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022]
Abstract
The degree of retinal fibrosis increased in proliferative diabetic retinopathy (PDR) patients after administration of anti-Vascular endothelial growth factor (VEGF) injections. Previous studies showed that the balance between connective tissue growth factor (CTGF) and VEGF plays an important role. Therefore, in a high-glucose state, an anti-VEGF and CTGFshRNA dual-target model was used to simulate clinical dual-target treatment in PDR patients, and RNA sequencing (RNA-Seq) technology was used for whole transcriptome sequencing. A hypoxia model was constructed to verify the sequencing results at the cellular level, and the vitreous humor and proliferative membranes were collected from patients for verification. All sequencing results included Follistatin-like protein 1 (FSTL1) and extracellular matrix (ECM) receptor pathway, indicated that anti-VEGF therapy may upregulate FSTL1 expression, while dual-target treatment downregulated FSTL1. Thus, we further studied the function of FSTL1 on the expression of VEGF and ECM factors by both overexpressing and silencing FSTL1. In conclusion, our results suggested that FSTL1 may be involved in the pathogenesis of PDR and is related to fibrosis caused by the anti-VEGF treatment, thus providing a potential target for gene therapy in PDR.
Collapse
Affiliation(s)
- Rui Niu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ze-Tong Nie
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yu-Wen Chang
- Hetian District People's Hospital, Xinjiang, China
| | | | - Qiong Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Li-Jie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bo-Jie Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
10
|
Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Kb D, Mirzaei M, You Y, Graham SL, Gupta V. Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging Dis 2020; 11:946-966. [PMID: 32765956 PMCID: PMC7390532 DOI: 10.14336/ad.2019.0923] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Cell cycle dysregulation has been implicated in the pathogenesis of neurodegenerative disorders. Specialised function obligates neuronal cells to subsist in a quiescent state of cell cycle once differentiated and therefore the circumstances and mechanisms underlying aberrant cell cycle activation in post-mitotic neurons in physiological and disease conditions remains an intriguing area of research. There is a strict requirement of concurrence to cell cycle regulation for neurons to ensure intracellular biochemical conformity as well as interrelationship with other cells within neural tissues. This review deliberates on various mechanisms underlying cell cycle regulation in neuronal cells and underscores potential implications of their non-compliance in neural pathology. Recent research suggests that successful duplication of genetic material without subsequent induction of mitosis induces inherent molecular flaws that eventually assert as apoptotic changes. The consequences of anomalous cell cycle activation and subsequent apoptosis are demonstrated by the increased presence of molecular stress response and apoptotic markers. This review delineates cell cycle events under normal physiological conditions and deficits amalgamated by alterations in protein levels and signalling pathways associated with cell-division are analysed. Cell cycle regulators essentially, cyclins, CDKs, cip/kip family of inhibitors, caspases, bax and p53 have been identified to be involved in impaired cell cycle regulation and associated with neural pathology. The pharmacological modulators of cell cycle that are shown to impart protection in various animal models of neurological deficits are summarised. Greater understanding of the molecular mechanisms that are indispensable to cell cycle regulation in neurons in health and disease conditions will facilitate targeted drug development for neuroprotection.
Collapse
Affiliation(s)
- Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Veer Gupta
- 2School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Nitin Chitranshi
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yogita Dheer
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Devaraj Kb
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- 3Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Darche M, Cossutta M, Caruana L, Houppe C, Gilles ME, Habert D, Guilloneau X, Vignaud L, Paques M, Courty J, Cascone I. Antagonist of nucleolin, N6L, inhibits neovascularization in mouse models of retinopathies. FASEB J 2020; 34:5851-5862. [PMID: 32141122 DOI: 10.1096/fj.201901876r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Retinal vascular diseases (RVD) have been identified as a major cause of blindness worldwide. These pathologies, including the wet form of age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy are currently treated by intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents. However, repeated intravitreal injections can lead to ocular complications and resistance to these treatments. Thus, there is a need to find new targeted therapies. Nucleolin regulates the endothelial cell (EC) activation and angiogenesis. In previous studies, we designed a pseudopeptide, N6L, that binds the nucleolin and blocks the tumor angiogenesis. In this study, the effect of N6L was investigated in two experimental models of retinopathies including oxygen-induced retinopathy (OIR) and choroidal neovascularization (CNV). We found that in mouse OIR, intraperitoneal injection of N6L is delivered to activated ECs and induced a 50% reduction of pathological neovascularization. The anti-angiogenic effect of N6L has been tested in CNV model in which the systemic injection of N6L induced a 33% reduction of angiogenesis. This effect is comparable to those obtained with VEGF-trap, a standard of care drug for RVD. Interestingly, with preventive and curative treatments, neoangiogenesis is inhibited by 59%. Our results have potential interest in the development of new therapies targeting other molecules than VEGF for RVD.
Collapse
Affiliation(s)
- Marie Darche
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
- Clinical Investigation Center 1423, Centre Hospitalier National des Quinze-Vingts, Institut Hospitalo-Universitaire ForeSight, Sorbonne Université, Paris, France
| | - Mélissande Cossutta
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Laure Caruana
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Claire Houppe
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | | | - Damien Habert
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Xavier Guilloneau
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Lucile Vignaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Michel Paques
- Clinical Investigation Center 1423, Centre Hospitalier National des Quinze-Vingts, Institut Hospitalo-Universitaire ForeSight, Sorbonne Université, Paris, France
| | - José Courty
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| | - Ilaria Cascone
- CRRET Laboratory, CNRS ERL 9215, University of Paris-Est Créteil, Créteil, France
| |
Collapse
|
12
|
Yu HF, Tao R, Yang ZQ, Wang K, Yue ZP, Guo B. Ptn functions downstream of C/EBPβ to mediate the effects of cAMP on uterine stromal cell differentiation through targeting Hand2 in response to progesterone. J Cell Physiol 2017; 233:1612-1626. [PMID: 28657144 DOI: 10.1002/jcp.26067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Abstract
Ptn is a pleiotropic growth factor involving in the regulation of cellular proliferation and differentiation, but its biological function in uterine decidualization remains unknown. Here, we showed that Ptn was highly expressed in the decidual cells, and could induce the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1 which were two well-established differentiation markers for decidualization, suggesting an important role of Ptn in decidualization. In the uterine stromal cells, progesterone stimulated the expression of Ptn accompanied with an accumulation of intracellular cAMP level. Silencing of Ptn impeded the induction of progesterone and cAMP on the differentiation of uterine stromal cells. Administration of PKA inhibitor H89 resulted in a blockage of progesterone on Ptn expression. Further analysis evidenced that regulation of progesterone and cAMP on Ptn was mediated by C/EBPβ. During in vitro decidualization, knockdown of Ptn could weaken the up-regulation of Prl8a2 and Prl3c1 elicited by C/EBPβ overexpression, while constitutive activation of Ptn reversed the repressive effects of C/EBPβ siRNA on the expression of Prl8a2 and Prl3c1. Meanwhile, Ptn might mediate the regulation of C/EBPβ on Hand2 which was a downstream target of Ptn in the differentiation of uterine stromal cells. Attenuation of Ptn or C/EBPβ by specific siRNA blocked the stimulation of Hand2 by progesterone and cAMP. Collectively, Ptn may play a vital role in the progesterone-induced decidualization pathway.
Collapse
Affiliation(s)
- Hai-Fan Yu
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Ran Tao
- College of Medicine, Dalian University, Dalian, P.R. China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Kai Wang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| |
Collapse
|
13
|
Wang W, LeBlanc ME, Chen X, Chen P, Ji Y, Brewer M, Tian H, Spring SR, Webster KA, Li W. Pathogenic role and therapeutic potential of pleiotrophin in mouse models of ocular vascular disease. Angiogenesis 2017; 20:479-492. [PMID: 28447229 DOI: 10.1007/s10456-017-9557-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
Abstract
Angiogenic factors play an important role in the pathogenesis of diabetic retinopathy (DR), neovascular age-related macular degeneration (nAMD) and retinopathy of prematurity (ROP). Pleiotrophin, a well-known angiogenic factor, was recently reported to be upregulated in the vitreous fluid of patients with proliferative DR (PDR). However, its pathogenic role and therapeutic potential in ocular vascular diseases have not been defined in vivo. Here using corneal pocket assays, we demonstrated that pleiotrophin induced angiogenesis in vivo. To investigate the pathological role of pleiotrophin we used neutralizing antibody to block its function in multiple in vivo models of ocular vascular diseases. In a mouse model of DR, intravitreal injection of pleiotrophin-neutralizing antibody alleviated diabetic retinal vascular leakage. In a mouse model of oxygen-induced retinopathy (OIR), which is a surrogate model of ROP and PDR, we demonstrated that intravitreal injection of anti-pleiotrophin antibody prevented OIR-induced pathological retinal neovascularization and aberrant vessel tufts. Finally, pleiotrophin-neutralizing antibody ameliorated laser-induced choroidal neovascularization, a mouse model of nAMD, suggesting that pleiotrophin is involved in choroidal vascular disease. These findings suggest that pleiotrophin plays an important role in the pathogenesis of DR with retinal vascular leakage, ROP with retinal neovascularization and nAMD with choroidal neovascularization. The results also support pleiotrophin as a promising target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Weiwen Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Michelle E LeBlanc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Xiuping Chen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.,Department of Ophthalmology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ping Chen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.,Department of Ophthalmology, Renji Hospital of Jiaotong University, Shanghai, China
| | - Yanli Ji
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.,Department of Ophthalmology, Zhengzhou Eye Hospital, Zhengzhou, Henan, China
| | - Megan Brewer
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Hong Tian
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Samantha R Spring
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Keith A Webster
- Vascular Biology Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Wei Li
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA. .,Vascular Biology Institute, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
14
|
Ding X, Bai Y, Zhu X, Li T, Jin E, Huang L, Yu W, Zhao M. The effects of pleiotrophin in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 2017; 255:873-884. [DOI: 10.1007/s00417-016-3582-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022] Open
|
15
|
Papadimitriou E, Pantazaka E, Castana P, Tsalios T, Polyzos A, Beis D. Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:252-265. [DOI: 10.1016/j.bbcan.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
|
16
|
Poimenidi E, Theodoropoulou C, Koutsioumpa M, Skondra L, Droggiti E, van den Broek M, Koolwijk P, Papadimitriou E. Vascular endothelial growth factor A (VEGF-A) decreases expression and secretion of pleiotrophin in a VEGF receptor-independent manner. Vascul Pharmacol 2016; 80:11-9. [DOI: 10.1016/j.vph.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/05/2016] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
|