1
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Kazana W, Zabłocka A. Brain-derived neurotrophic factor as a potential therapeutic
tool in the treatment of nervous system disorders. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the proper functioning
of the nervous system. It regulates the growth and survival of nerve cells, and is crucial
in processes related to the memory, learning and synaptic plasticity. Abnormalities related
to the distribution and secretion of BDNF protein accompany many diseases of the nervous
system, in the course of which a significant decrease in BDNF level in the brain is observed.
Impairments of BDNF transport may occur, for example, in the event of a single nucleotide
polymorphism in the Bdnf (Val66Met) coding gene or due to the dysfunctions of the proteins
involved in intracellular transport, such as huntingtin (HTT), huntingtin-associated protein
1 (HAP1), carboxypeptidase E (CPE) or sortilin 1 (SORT1). One of the therapeutic goals in the treatment of diseases of the central nervous system may be the regulation of expression and
secretion of BDNF protein by nerve cells. Potential therapeutic strategies are based on direct
injection of the protein into the specific region of the brain, the use of viral vectors expressing
the Bdnf gene, transplantation of BDNF-producing cells, the use of substances of natural
origin that stimulate the cells of the central nervous system for BDNF production, or the
use of molecules activating the main receptor for BDNF – tyrosine receptor kinase B (TrkB).
In addition, an appropriate lifestyle that promotes physical activity helps to increase BDNF
level in the body. This paper summarizes the current knowledge about the biological role of
BDNF protein and proteins involved in intracellular transport of this neurotrophin. Moreover,
it presents contemporary research trends to develop therapeutic methods, leading to an
increase in the level of BDNF protein in the brain.
Collapse
Affiliation(s)
- Wioletta Kazana
- Laboratorium Immunobiologii Mikrobiomu, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| | - Agnieszka Zabłocka
- Laboratorium Immunobiologii Mikrobiomu, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| |
Collapse
|
3
|
Rong D, Lin X, Luo Y, Mok TS, Wang Q, Wang H, Zhang T. Identification of the differentially expressed proteins in nasopharyngeal carcinoma by proteomics. Transl Cancer Res 2020; 9:21-29. [PMID: 35117154 PMCID: PMC8798420 DOI: 10.21037/tcr.2019.11.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
Background We sought to determine the differences with respect to the proteome of nasopharyngeal tissues between patients with nasopharyngeal carcinoma (NPC) and healthy controls by using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATHTM-MS) and ingenuity pathway analysis (IPA). Our primary purpose was to identify specific protein markers that can be applied for diagnosis or treatment of NPC. Methods The CNE-1, CNE-2 and H1299 cell lines were cultured in stable isotope labeling of amino acids in cell culture (SILAC) medium for 10 generations to obtain labeled proteins. Thirty samples of NPC and 30 healthy control nasopharyngeal tissues were collected from the Department of Otolaryngology of the First Affiliated Hospital of Jinan University. Proteome of the nasopharyngeal tissues were analyzed and compared by SWATH-MS to identify differently expressed proteins. Further, extraction of target proteins and biological pathways was performed by IPA. Super-SILAC technique and liquid chromatography-tandem mass spectrometry were used to verify the reliability of the data obtained using SWATH-MS. Results We identified 1,415 differentially expressed proteins between NPC patients and healthy controls. On IPA analysis, EIF2AK2 and MAPK1 proteins were found to be enriched in multiple biological pathways and functional networks. Conclusions The differentially expressed proteins EIF2AK2 and MAPK seem to play an important role in the biological network of NPC or may help discover the specific functional proteins of NPC. Further studies are required to identify the pathways and molecular mechanisms that underlie NPC.
Collapse
Affiliation(s)
- Dongxiu Rong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xiuxian Lin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yanzhang Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tin Seak Mok
- Department of Otorhinolaryngology, Centro Hospitalar Conde de São Januário, Macao SAR 999078, China
| | - Qing Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Haiyan Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tao Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Sheu JJ, Yang LY, Sanotra MR, Wang ST, Lu HT, Kam RSY, Hsu IU, Kao SH, Lee CK, Shieh JCC, Lin YF. Reduction of AHI1 in the serum of Taiwanese with probable Alzheimer's disease. Clin Biochem 2019; 76:24-30. [PMID: 31786207 DOI: 10.1016/j.clinbiochem.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The development of blood-based biomarkers for early diagnosis and treatment of Alzheimer's disease (AD) is desirable. In AD model mouse brain and neuronal cells, Abelson helper integration site-1 (AHI1) protein is reduced. AHI1 facilitates intracellular amyloid precursor protein (APP) translocation to inhibit amyloidogenic pathology of AD, and thus may be an AD biomarker. METHODS This study was conducted among 32 AD patients and 54 healthy control (HC) subjects. AHI1-related protein levels from initially collected serum samples in each group were screened using Western blotting. The protein concentrations of AHI1 and amyloid-β (Aβ), peptide(s) derived from APP, from all serum samples were analyzed using ELISA. RESULTS In AD serum, AHI1 and a large truncated C-terminal APP fragment were significantly reduced. The average concentrations of serum AHI1 and Aβ in AD were significantly lower than those in HC. Notably, AHI1 concentration in HC serum was decreased in an age-dependent manner, while it was consistently low in AD serum and had no correlation with Aβ or mini-mental state examination score. The receiver operating characteristic analysis on all subjects demonstrated an area under curve (AUC) value of 0.7 for AHI1 on AD diagnosis, while the AUC increased to 0.82 on the subjects younger than 77 years old, suggesting a good diagnostic performance of serum AHI1 for AD especially at relatively young age. CONCLUSION An early event of AHI1 reduction in the body of AD patients was observed. Serum AHI1 may be valuable for early diagnosis of AD.
Collapse
Affiliation(s)
- Jau-Jiuan Sheu
- Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Yu Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Sen-Te Wang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsien-Tsung Lu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Rachel Sook Yee Kam
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Expression of AHI1 Rescues Amyloidogenic Pathology in Alzheimer's Disease Model Cells. Mol Neurobiol 2019; 56:7572-7582. [PMID: 31062249 DOI: 10.1007/s12035-019-1587-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/27/2019] [Indexed: 01/03/2023]
Abstract
A hallmark of Alzheimer's disease (AD) pathogenesis is the accumulation of extracellular plaques mainly composed of amyloid-β (Aβ) derived from amyloid precursor protein (APP) cleavage. Recent reports suggest that transport of APP in vesicles with huntingtin-associated protein-1 (HAP1) negatively regulates Aβ production. In neurons, HAP1 forms a stable complex with Abelson helper integration site-1 (AHI1), in which mutations cause neurodevelopmental and psychiatric disorders. HAP1 and AHI1 interact with tropomyosin receptor kinases (Trks), which are also associated with APP and mediate neurotrophic signaling. In this study, we hypothesize that AHI1 participates in APP trafficking and processing to rescue AD pathology. Indeed, AHI1 was significantly reduced in mouse neuroblastoma N2a cells expressing human Swedish and Indiana APP (designed as AD model cells) and in 3xTg-AD mouse brain. The AD model cells as well as Ahi1-knockdown cells expressing wild-type APP-695 exhibited a significant reduction in viability. In addition, the AD model cells were reduced in neurite outgrowth. APP C-terminal fragment-β (CTFβ) and Aβ42 were increased in the AD cell lysates and the culture media, respectively. To investigate the mechanism how AHI1 alters APP activities, we overexpressed human AHI1 in the AD model cells. The results showed that AHI1 interacted with APP physically in mouse brain and transfected N2a cells despite APP genotypes. AHI1 expression facilitated intracellular translocation of APP and inhibited APP amyloidogenic process to reduce the level of APP-CTFβ in the total lysates of AD model cells as well as Aβ in the culture media. Consequently, AHI1-APP interactions enhanced neurotrophic signaling through Erk activation and led to restored cell survival and differentiation.
Collapse
|
6
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
7
|
Tsai YF, Yang DJ, Ngo TH, Shih CH, Wu YF, Lee CK, Phraekanjanavichid V, Yen SF, Kao SH, Lee HM, Huang VS, Shieh JCC, Lin YF. Ganglioside Hp-s1 Analogue Inhibits Amyloidogenic Toxicity in Alzheimer's Disease Model Cells. ACS Chem Neurosci 2019; 10:528-536. [PMID: 30346715 DOI: 10.1021/acschemneuro.8b00406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extracellular deposition of amyloid plaques, which are predominantly composed of amyloid-β (Aβ) peptide derived from amyloid precursor protein (APP) cleavage. APP interacts with tropomyosin receptor kinase A, a neurotrophic receptor associated with gangliosides and mediating neuronal survival and differentiation through the extracellular signal-regulated protein kinase (ERK) pathway. The ganglioside Hp-s1's analogue Hp-s1A exerts neuritogenic activity; however, its effect on AD pathology remains unknown. To test the hypothesis that Hp-s1A is a potential candidate to treat AD, we established the AD-modeled cell line by expressing human Swedish and Indiana APP gene (APP-Swe/Ind) in N2a mouse neuroblastoma cells. The cells were treated with Hp-s1A or monosialoganglioside GM1 for comparison. The AD model cells expressing APP-Swe/Ind exhibited a significant reduction in viability, as well as neurite outgrowth rate, in comparison to the control cells expressing APP-695. APP C-terminal fragment-β (CTFβ) and Aβ42 were increased in the AD cell lysates and the culture media, respectively. With the treatment of either Hp-s1A or GM1 at 1 μM, the AD model cells showed a significant increase in viability; however, only Hp-s1A reduced CTFβ levels in these cells. Further analysis of the culture media revealed that Hp-s1A also reduced Aβ42 production from AD model cells. The phosphorylation of ERK was elevated and the neurite outgrowth rate was restored with Hp-s1A treatment. In conclusion, the ganglioside analogue Hp-s1A inhibited amyloidogenic processing of APP and promoted neurotrophic activity and survival of AD model cells. Hp-s1A has great potential in AD therapeutic development.
Collapse
Affiliation(s)
- Yow-Fu Tsai
- Department of Chemistry, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Dun-Jhu Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Thi Huong Ngo
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Allergology and Clinical Immunology, Hanoi Medical University, Hanoi, Vietnam
| | - Cheng-Hua Shih
- Department of Chemistry, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Yu-Fa Wu
- Department of Chemistry, College of Science, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Veerapol Phraekanjanavichid
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Fen Yen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Horng-Mo Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Vivian Shuhsien Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
8
|
Czeredys M, Vigont VA, Boeva VA, Mikoshiba K, Kaznacheyeva EV, Kuznicki J. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease. Front Cell Neurosci 2018; 12:381. [PMID: 30455632 PMCID: PMC6231533 DOI: 10.3389/fncel.2018.00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease that is caused by polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular activities that is dysregulated in HD is store-operated calcium entry (SOCE), a process by which Ca2+ release from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. HTT-associated protein-1 (HAP1) is a binding partner of HTT. The aim of the present study was to examine the role of HAP1A protein in regulating SOCE in YAC128 mice, a transgenic model of HD. After Ca2+ depletion from the ER by the activation of inositol-(1,4,5)triphosphate receptor type 1 (IP3R1), we detected an increase in the activity of SOC channels when HAP1 protein isoform HAP1A was overexpressed in medium spiny neurons (MSNs) from YAC128 mice. A decrease in the activity of SOC channels in YAC128 MSNs was observed when HAP1 protein was silenced. In YAC128 MSNs that overexpressed HAP1A, an increase in activity of IP3R1 was detected while the ionomycin-sensitive ER Ca2+ pool decreased. 6-Bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride (C20H22BrClN2), identified in our previous studies as a SOCE inhibitor, restored the elevation of SOCE in YAC128 MSN cultures that overexpressed HAP1A. The IP3 sponge also restored the elevation of SOCE and increased the release of Ca2+ from the ER in YAC128 MSN cultures that overexpressed HAP1A. The overexpression of HAP1A in the human neuroblastoma cell line SK-N-SH (i.e., a cellular model of HD (SK-N-SH HTT138Q)) led to the appearance of a pool of constitutively active SOC channels and an increase in the expression of STIM2 protein. Our results showed that HAP1A causes the activation of SOC channels in HD models by affecting IP3R1 activity.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| | - Vladimir A. Vigont
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Vasilisa A. Boeva
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), Saitama, Japan
| | | | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
9
|
Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins. Cell Signal 2017; 35:176-187. [DOI: 10.1016/j.cellsig.2017.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
|
10
|
Lumsden AL, Young RL, Pezos N, Keating DJ. Huntingtin-associated protein 1: Eutherian adaptation from a TRAK-like protein, conserved gene promoter elements, and localization in the human intestine. BMC Evol Biol 2016; 16:214. [PMID: 27737633 PMCID: PMC5064798 DOI: 10.1186/s12862-016-0780-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022] Open
Abstract
Background Huntingtin-associated Protein 1 (HAP1) is expressed in neurons and endocrine cells, and is critical for postnatal survival in mice. HAP1 shares a conserved “HAP1_N” domain with TRAfficking Kinesin proteins TRAK1 and TRAK2 (vertebrate), Milton (Drosophila) and T27A3.1 (C. elegans). HAP1, TRAK1 and TRAK2 have a degree of common function, particularly regarding intracellular receptor trafficking. However, TRAK1, TRAK2 and Milton (which have a “Milt/TRAK” domain that is absent in human and rodent HAP1) differ in function to HAP1 in that they are mitochondrial transport proteins, while HAP1 has emerging roles in starvation response. We have investigated HAP1 function by examining its evolution, and upstream gene promoter sequences. We performed phylogenetic analyses of the HAP1_N domain family of proteins, incorporating HAP1 orthologues (identified by genomic synteny) from 5 vertebrate classes, and also searched the Dictyostelium proteome for a common ancestor. Computational analyses of mammalian HAP1 gene promoters were performed to identify phylogenetically conserved regulatory motifs. Results We found that as recently as marsupials, HAP1 contained a Milt/TRAK domain and was more similar to TRAK1 and TRAK2 than to eutherian HAP1. The Milt/TRAK domain likely arose post multicellularity, as it was absent in the Dictyostelium proteome. It was lost from HAP1 in the eutherian lineage, and also from T27A3.1 in C. elegans. The HAP1 promoter from human, mouse, rat, rabbit, horse, dog, Tasmanian devil and opossum contained common sites for transcription factors involved in cell cycle, growth, differentiation, and stress response. A conserved arrangement of regulatory elements was identified, including sites for caudal-related homeobox transcription factors (CDX1 and CDX2), and myc-associated factor X (MAX) in the region of the TATA box. CDX1 and CDX2 are intestine-enriched factors, prompting investigation of HAP1 protein expression in the human duodenum. HAP1 was localized to singly dispersed mucosal cells, including a subset of serotonin-positive enterochromaffin cells. Conclusion We have identified eutherian HAP1 as an evolutionarily recent adaptation of a vertebrate TRAK protein-like ancestor, and found conserved CDX1/CDX2 and MAX transcription factor binding sites near the TATA box in mammalian HAP1 gene promoters. We also demonstrated that HAP1 is expressed in endocrine cells of the human gut. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0780-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda L Lumsden
- Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia.
| | - Richard L Young
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Nektaria Pezos
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Damien J Keating
- Centre for Neuroscience and Department of Human Physiology, Flinders University, Adelaide, South Australia, Australia. .,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Norflus F, Bu J, Guyton E, Gutekunst CA. Behavioral analysis of the huntingtin-associated protein 1 ortholog trak-1 in Caenorhabditis elegans. J Neurosci Res 2016; 94:850-6. [PMID: 27319755 DOI: 10.1002/jnr.23756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The precise role of huntingtin-associated protein 1 (HAP1) is not known, but studies have shown that it is important for early development and survival. A Caenorhabditis elegans ortholog of HAP1, T27A3.1 (also called trak-1), has been found and is expressed in a subset of neurons. Potential behavioral functions of three knockout lines of T27A3.1 were examined. From its suspected role in mice we hypothesize that T27A3.1 might be involved in egg hatching and early growth, mechanosensation, chemosensation, sensitivity to osmolarity, and synaptic transmission. Our studies show that the knockout worms are significantly different from the wild-type (WT) worms only in the synaptic transmission test, which was measured by adding aldicarb, an acetylcholinesterase inhibitor. The change in function was determined by measuring the number of worms paralyzed. However, when the T27A3.1 worms were tested for egg hatching and early growth, mechanosensation, chemosensation, and sensitivity to osmolarity, there were no significant differences between the knockout and WT worms. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fran Norflus
- Department of Biology, Clayton State University, Morrow, Georgia
| | - Jingnan Bu
- Department of Neurosurgery, Emory University, Atlanta, Georgia
| | - Evon Guyton
- Department of Biology, Clayton State University, Morrow, Georgia
| | | |
Collapse
|
12
|
Komatsu M, Wheeler HE, Chung S, Low SK, Wing C, Delaney SM, Gorsic LK, Takahashi A, Kubo M, Kroetz DL, Zhang W, Nakamura Y, Dolan ME. Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy. Clin Cancer Res 2015; 21:4337-46. [PMID: 26015512 DOI: 10.1158/1078-0432.ccr-15-0133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/20/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Paclitaxel is used worldwide in the treatment of breast, lung, ovarian, and other cancers. Sensory peripheral neuropathy is an associated adverse effect that cannot be predicted, prevented, or mitigated. To better understand the contribution of germline genetic variation to paclitaxel-induced peripheral neuropathy, we undertook an integrative approach that combines genome-wide association study (GWAS) data generated from HapMap lymphoblastoid cell lines (LCL) and Asian patients. METHODS GWAS was performed with paclitaxel-induced cytotoxicity generated in 363 LCLs and with paclitaxel-induced neuropathy from 145 Asian patients. A gene-based approach was used to identify overlapping genes and compare with a European clinical cohort of paclitaxel-induced neuropathy. Neurons derived from human-induced pluripotent stem cells were used for functional validation of candidate genes. RESULTS SNPs near AIPL1 were significantly associated with paclitaxel-induced cytotoxicity in Asian LCLs (P < 10(-6)). Decreased expression of AIPL1 resulted in decreased sensitivity of neurons to paclitaxel by inducing neurite morphologic changes as measured by increased relative total outgrowth, number of processes and mean process length. Using a gene-based analysis, there were 32 genes that overlapped between Asian LCL cytotoxicity and Asian patient neuropathy (P < 0.05), including BCR. Upon BCR knockdown, there was an increase in neuronal sensitivity to paclitaxel as measured by neurite morphologic characteristics. CONCLUSIONS We identified genetic variants associated with Asian paclitaxel-induced cytotoxicity and functionally validated the AIPL1 and BCR in a neuronal cell model. Furthermore, the integrative pharmacogenomics approach of LCL/patient GWAS may help prioritize target genes associated with chemotherapeutic-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Suyoun Chung
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois. Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan
| | - Siew-Kee Low
- Laboratory for Statistical Analysis, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Lidija K Gorsic
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Core for Genomic Medicine, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, University of California, San Francisco, San Francisco, California
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois. Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|