1
|
Lun J, Zheng P, Liang X, Hu Y, An L, Xiao G, Chen X, Chen Y, Gong H, Zhong M, Zhang Y, Hu Z. Identification of a conserved cryptic epitope with cross-immunoreactivity in outer membrane protein K (OmpK) from Vibrio species. Vaccine 2025; 53:126964. [PMID: 40037129 DOI: 10.1016/j.vaccine.2025.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Outer membrane protein K (OmpK) has been proven to be an ideal vaccine candidate for broad-spectrum cross-prevention against Vibriosis. However, due to the extensive biological and genetic diversity of Vibrio species, current OmpK subunit vaccines can only target different strains of the same bacterial species or closely related species and have difficulty providing promising cross-immunoprotection against more diverse Vibrio infections. In recent years, the development of epitope-focused vaccines has been described as the latest stage in the development of vaccine formulations, providing new ideas for the development of broad-spectrum Vibrio vaccines. Interestingly, a cryptic epitope (K7) was identified in OmpK from Vibrio species, which is itself immunogenic but is not involved in the immune response to intact OmpK. Epitope K7 is a 15-residue hairpin structure in OmpK predicted to contain a 6-residue extracellular turn region. Interestingly, unlike other highly variable extracellular long loops, epitope K7 is the only conserved extracellular short turn in OmpK, with a similarity of 33 % to 93 %. K7 homologous peptides stimulated the production of specific antibodies, confirming their high immunogenicity. Cross-immunoreactivity between K7 homologous and K7-induced antibodies was evaluated by peptide-based ELISA, western blot, and cell-based ELISA. Flow cytometry and immunofluorescence assay further confirmed that the native epitope K7 in OmpK is surface-exposed and therefore an extracellular target that binds to antibodies. Moreover, an antibody-dependent and complement-mediated serum bactericidal assay suggested that epitope K7-induced antibodies have vibriocidal activity. In conclusion, we identified a conserved cryptic epitope with cross-immunoreactivity in OmpK from Vibrio species. Our results suggest that epitope K7 could be an ideal candidate for the design of epitope-focused vaccines against diverse Vibrio infections.
Collapse
Affiliation(s)
- Jingsheng Lun
- Department of Biology, College of Science, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, China.
| | - Peng Zheng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Xueji Liang
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Yihui Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Lu An
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Guiqian Xiao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Xinyi Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Ying Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Huisheng Gong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, China.
| |
Collapse
|
2
|
Morales-Hernández S, Ugidos-Damboriena N, López-Sagaseta J. Self-Assembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines (Basel) 2022; 10:1447. [PMID: 36146525 PMCID: PMC9505534 DOI: 10.3390/vaccines10091447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines constitute a pillar in the prevention of infectious diseases. The unprecedented emergence of novel immunization strategies due to the COVID-19 pandemic has again positioned vaccination as a pivotal measure to protect humankind and reduce the clinical impact and socioeconomic burden worldwide. Vaccination pursues the ultimate goal of eliciting a protective response in immunized individuals. To achieve this, immunogens must be efficiently delivered to prime the immune system and produce robust protection. Given their safety, immunogenicity, and flexibility to display varied and native epitopes, self-assembling protein nanoparticles represent one of the most promising immunogen delivery platforms. Currently marketed vaccines against the human papillomavirus, for instance, illustrate the potential of these nanoassemblies. This review is intended to provide novelties, since 2015, on the ground of vaccine design and self-assembling protein nanoparticles, as well as a comparison with the current emergence of mRNA-based vaccines.
Collapse
Affiliation(s)
- Sergio Morales-Hernández
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| | - Nerea Ugidos-Damboriena
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Han J, Poma A. Molecular Targets for Antibody-Based Anti-Biofilm Therapy in Infective Endocarditis. Polymers (Basel) 2022; 14:3198. [PMID: 35956712 PMCID: PMC9370930 DOI: 10.3390/polym14153198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Infective endocarditis (IE) is a heart disease caused by the infection of heart valves, majorly caused by Staphilococcus aureus. IE is initiated by bacteria entering the blood circulation in favouring conditions (e.g., during invasive procedures). So far, the conventional antimicrobial strategies based on the usage of antibiotics remain the major intervention for treating IE. Nevertheless, the therapeutic efficacy of antibiotics in IE is limited not only by the bacterial drug resistance, but also by the formation of biofilms, which resist the penetration of antibiotics into bacterial cells. To overcome these drawbacks, the development of anti-biofilm treatments that can expose bacteria and make them more susceptible to the action of antibiotics, therefore resulting in reduced antimicrobial resistance, is urgently required. A series of anti-biofilm strategies have been developed, and this review will focus in particular on the development of anti-biofilm antibodies. Based on the results previously reported in the literature, several potential anti-biofilm targets are discussed, such as bacterial adhesins, biofilm matrix and bacterial toxins, covering their antigenic properties (with the identification of potential promising epitopes), functional mechanisms, as well as the antibodies already developed against these targets and, where feasible, their clinical translation.
Collapse
Affiliation(s)
- Jiahe Han
- UCL Institute of Cardiovascular Science, The Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, UCL Medical School, Rowland Hill Street, London NW3 2PF, UK
| |
Collapse
|
4
|
Wei J, Cheng X, Zhang Y, Gao C, Wang Y, Peng Q, Luo P, Yang L, Zou Q, Zeng H, Gu J. Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Mol Immunol 2021; 135:45-52. [PMID: 33873093 DOI: 10.1016/j.molimm.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Staphylococcus aureus (SA), especially the methicillin-resistant variant (MRSA), is becoming a serious threat to human health in hospitals and communities, making the development of an effective vaccine urgent. Alpha-hemolysin (Hla) is a key virulence factor and also a good target for the development of SA vaccines. However, the epitopes in Hla recognized by human immunity are not characterized in detail, which hinders the design of epitope-based human vaccines against SA. In this study, we collected sera from volunteers in a phase 1b clinical trial of a novel recombinant five-antigen SA vaccine (NCT03966040). Using a Luminex-based assay, we characterized the human serologic response against Hla, and identified Hla121-138 as a neutralizing epitope. In addition, we successfully produced ferritin nanoparticles carrying the neutralizing Hla121-138 epitope (EpNP) in E. coli. EpNP presented as homogenous nanoparticles in aqueous solution. Immunization with EpNP elicited potent hemolysis-neutralizing antibodies and conferred significant protection in a mouse model of SA skin infection. Our data suggest that EpNP, carrying the neutralizing epitope Hla121-138, is a good candidate for a vaccine against SA.
Collapse
Affiliation(s)
- Jinning Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Xin Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Chen Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Liuyang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China; Medical Laboratory Center, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
5
|
Teymournejad O, Montgomery CP. Evasion of Immunological Memory by S. aureus Infection: Implications for Vaccine Design. Front Immunol 2021; 12:633672. [PMID: 33692805 PMCID: PMC7937817 DOI: 10.3389/fimmu.2021.633672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recurrent S. aureus infections are common, suggesting that natural immune responses are not protective. All candidate vaccines tested thus far have failed to protect against S. aureus infections, highlighting an urgent need to better understand the mechanisms by which the bacterium interacts with the host immune system to evade or prevent protective immunity. Although there is evidence in murine models that both cellular and humoral immune responses are important for protection against S. aureus, human studies suggest that T cells are critical in determining susceptibility to infection. This review will use an “anatomic” approach to systematically outline the steps necessary in generating a T cell-mediated immune response against S. aureus. Through the processes of bacterial uptake by antigen presenting cells, processing and presentation of antigens to T cells, and differentiation and proliferation of memory and effector T cell subsets, the ability of S. aureus to evade or inhibit each step of the T-cell mediated response will be reviewed. We hypothesize that these interactions result in the redirection of immune responses away from protective antigens, thereby precluding the establishment of “natural” memory and potentially inhibiting the efficacy of vaccination. It is anticipated that this approach will reveal important implications for future design of vaccines to prevent these infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
6
|
Zeng H, Zhang J, Song X, Zeng J, Yuan Y, Chen Z, Xu L, Gou Q, Yang F, Zeng N, Zhang Y, Peng L, Zhao L, Zhu J, Liu Y, Luo P, Zou Q, Zhao Z. An Immunodominant Epitope-Specific Monoclonal Antibody Cocktail Improves Survival in a Mouse Model of Staphylococcus aureus Bacteremia. J Infect Dis 2020; 223:1743-1752. [PMID: 32959055 DOI: 10.1093/infdis/jiaa602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023] Open
Abstract
To date, no vaccine or monoclonal antibody (mAb) against Staphylococcus aureus has been approved for use in humans. Our laboratory has developed a 5-antigen S. aureus vaccine (rFSAV), which is now under efficacy evaluation in a phase 2 clinical trial. In the current study, using overlapping peptides and antiserum from rFSAV-immunized volunteers, we identified 7 B-cell immunodominant epitopes on 4 antigens in rFSAV, including 5 novel epitopes (Hla48-65, IsdB402-419, IsdB432-449, SEB78-95, and MntC7-24). Ten immunodominant epitope mAbs were generated against these epitopes, and all of them exhibited partial protection in a mouse sepsis model. Four robust mAbs were used together as an mAb cocktail to prevent methicillin-resistant S. aureus strain 252 infection. The results showed that the mAb cocktail was efficient in combating S. aureus infection and that its protective efficacy correlated with a reduced bacterial burden and decreased infection pathology, which demonstrates that the mAb cocktail is a promising S. aureus vaccine candidate.
Collapse
Affiliation(s)
- Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Xu Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Jiangmin Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Limin Xu
- Chengdu Olymvax Biotechnology Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Feng Yang
- Chengdu Olymvax Biotechnology Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Ni Zeng
- Chengdu Olymvax Biotechnology Co, Ltd, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Liqun Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Medical Corps Department, Unit 69016, Chinese People's Liberation Army, Xinjiang, People's Republic of China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Vaccination with VLPs Presenting a Linear Neutralizing Domain of S. aureus Hla Elicits Protective Immunity. Toxins (Basel) 2020; 12:toxins12070450. [PMID: 32664481 PMCID: PMC7404987 DOI: 10.3390/toxins12070450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/14/2023] Open
Abstract
The pore-forming cytotoxin α-hemolysin, or Hla, is a critical Staphylococcus aureus virulence factor that promotes infection by causing tissue damage, excessive inflammation, and lysis of both innate and adaptive immune cells, among other cellular targets. In this study, we asked whether a virus-like particle (VLP)-based vaccine targeting Hla could attenuate S. aureus Hla-mediated pathogenesis. VLPs are versatile vaccine platforms that can be used to display target antigens in a multivalent array, typically resulting in the induction of high titer, long-lasting antibody responses. In the present study, we describe the first VLP-based vaccines that target Hla. Vaccination with either of two VLPs displaying a 21 amino-acid linear neutralizing domain (LND) of Hla protected both male and female mice from subcutaneous Hla challenge, evident by reduction in lesion size and neutrophil influx to the site of intoxication. Antibodies elicited by VLP-LND vaccination bound both the LND peptide and the native toxin, effectively neutralizing Hla and preventing toxin-mediated lysis of target cells. We anticipate these novel and promising vaccines being part of a multi-component S. aureus vaccine to reduce severity of S. aureus infection.
Collapse
|
8
|
Triplett KD, Pokhrel S, Castleman MJ, Daly SM, Elmore BO, Joyner JA, Sharma G, Herbert G, Campen MJ, Hathaway HJ, Prossnitz ER, Hall PR. GPER activation protects against epithelial barrier disruption by Staphylococcus aureus α-toxin. Sci Rep 2019; 9:1343. [PMID: 30718654 PMCID: PMC6362070 DOI: 10.1038/s41598-018-37951-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Sex bias in innate defense against Staphylococcus aureus skin and soft tissue infection (SSTI) is dependent on both estrogen production by the host and S. aureus secretion of the virulence factor, α-hemolysin (Hla). The impact of estrogen signaling on the immune system is most often studied in terms of the nuclear estrogen receptors ERα and ERβ. However, the potential contribution of the G protein-coupled estrogen receptor (GPER) to innate defense against infectious disease, particularly with respect to skin infection, has not been addressed. Using a murine model of SSTI, we found that GPER activation with the highly selective agonist G-1 limits S. aureus SSTI and Hla-mediated pathogenesis, effects that were absent in GPER knockout mice. Specifically, G-1 reduced Hla-mediated skin lesion formation and pro-inflammatory cytokine production, while increasing bacterial clearance. In vitro, G-1 reduced surface expression of the Hla receptor, ADAM10, in a human keratinocyte cell line and increased resistance to Hla-mediated permeability barrier disruption. This novel role for GPER activation in skin innate defense against infectious disease suggests that G-1 may have clinical utility in patients with epithelial permeability barrier dysfunction or who are otherwise at increased risk of S. aureus infection, including those with atopic dermatitis or cancer.
Collapse
Affiliation(s)
- Kathleen D Triplett
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Srijana Pokhrel
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Moriah J Castleman
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Seth M Daly
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Bradley O Elmore
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Jason A Joyner
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Geetanjali Sharma
- University of New Mexico School of Medicine, Department of Internal Medicine, Albuquerque, NM, 87131, USA
| | - Guy Herbert
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Matthew J Campen
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Helen J Hathaway
- University of New Mexico School of Medicine, Department of Cell Biology & Physiology, Albuquerque, NM, 87131, USA
| | - Eric R Prossnitz
- University of New Mexico School of Medicine, Department of Internal Medicine, Albuquerque, NM, 87131, USA
| | - Pamela R Hall
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Zhang L, Gao J, Barkema HW, Ali T, Liu G, Deng Y, Naushad S, Kastelic JP, Han B. Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China. BMC Vet Res 2018; 14:63. [PMID: 29499697 PMCID: PMC5834907 DOI: 10.1186/s12917-018-1374-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Background Staphylococcus aureus, a common cause of bovine mastitis, is known for its ability to acquire to antimicrobial resistance and to secrete numerous virulence factors that can exacerbate inflammation. In addition, alpha-hemolysin has an important role in S. aureus infections, diversity of the hla gene (that produces alpha-hmolysin) in S. aureus isolated from bovine mastitis has not been well characterized. The objective was, therefore, to determine diversity of virulence genes, hla gene sequences, and clonal profiles of S. aureus from bovine mastitis in Chinese dairy herds, and to evaluate inter-relationships. Results The antimicrobials resistance varies from as low as 1.9% (2/103) for CTX to as high as 76.7% (79/103) for penicilin in the 103 isolates and 46 (44.7%) S. aureus were determined as multi-resistant isolates with diverse resistance patterns. Thirty-eight virulence gene patterns (with variable frequencies) were identified in the 103 isolates and correlated with MLST types, indicating a great diversity. Although the hla gene also had great diversity (14 genotypes), Hla peptides were relatively more conserved. With 7 clonal complexes identified from 24 spa types and 7 MLST types. Regarding the letter, ST 97 was the dominant type in S. aureus from bovine mastitis in China. Furthermore, based on phylogenetic analysis, there was a distinct evolutionary relationship between the hla gene and MLST. Conclusion Multi-resistant S. aureus occurred in bovine mastitis with diverse resistance patterns. The diversity of virulence gene profiles, especially the hla gene and, their relationship with molecular types were reported for the first time in S. aureus from bovine mastitis, which will be useful for future studies on immunogenicity and vaccine development. In addition, based on the distinct evolutionary relationship between the hla gene and MLST types, we inferred that the hla gene has potential role for molecular typing of S. aureus. Electronic supplementary material The online version of this article (10.1186/s12917-018-1374-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Limei Zhang
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tariq Ali
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Youtian Deng
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Sohail Naushad
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Diemen PMV, Leneghan DB, Brian IJ, Miura K, Long CA, Milicic A, Biswas S, Rollier CS, Wyllie DH. The S. aureus 4-oxalocrotonate tautomerase SAR1376 enhances immune responses when fused to several antigens. Sci Rep 2017; 7:1745. [PMID: 28496136 PMCID: PMC5431793 DOI: 10.1038/s41598-017-01421-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
A persistent goal of vaccine development is the enhancement of the immunogenicity of antigens while maintaining safety. One strategy involves alteration of the presentation of the antigen by combining antigens with a multimeric scaffold. Multi-antigen vaccines are under development, and there are presently far more candidate antigens than antigen scaffolding strategies. This is potentially problematic, since prior immunity to a scaffold may inhibit immune responses to the antigen-scaffold combination. In this study, a series of domains from S. aureus which have been shown to crystallise into multimeric structures have been examined for their scaffolding potential. Of these domains, SAR1376, a 62 amino acid member of the 4-oxalocrotonate tautomerase (4-OT) family, was pro-immunogenic in mice when fused to a range of pathogen antigens from both S. aureus and P. falciparum, and delivered by either DNA vaccination, viral vector vaccines or as protein-in-adjuvant formulations. The adjuvant effect did not depend on enzymatic activity, but was abrogated by mutations disrupting the hexameric structure of the protein. We therefore propose that SAR1376, and perhaps other members of the 4-OT protein family, represent very small domains which can be fused to a wide range of antigens, enhancing immune responses against them.
Collapse
Affiliation(s)
| | | | - Iona J Brian
- Jenner Institute, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, USA
| | - Anita Milicic
- Jenner Institute, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Sumi Biswas
- Jenner Institute, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Biomedical Research Centre, CCVTM, Churchill Lane, OX37LE, Oxford, UK
| | - David H Wyllie
- Jenner Institute, University of Oxford, CCMP, OX3 7BN, UK.
| |
Collapse
|
11
|
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation. Sci Rep 2017; 7:637. [PMID: 28377579 PMCID: PMC5429642 DOI: 10.1038/s41598-017-00753-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expression of virulence factors required for invasive infection. Of the four agr alleles (agr types I-IV and corresponding AIPs1-4), agr type I isolates are most frequently associated with invasive infection. Cyclization via a thiolactone bond is essential for AIP function; therefore, recognition of the cyclic form of AIP1 may be necessary for antibody-mediated neutralization. However, the small sizes of AIPs and labile thiolactone bond have hindered vaccine development. To overcome this, we used a virus-like particle (VLP) vaccine platform (PP7) for conformationally-restricted presentation of a modified AIP1 amino acid sequence (AIP1S). Vaccination with PP7-AIP1S elicited AIP1-specific antibodies and limited agr-activation in vivo. Importantly, in a murine SSTI challenge model with a highly virulent agr type I S. aureus isolate, PP7-AIP1S vaccination reduced pathogenesis and increased bacterial clearance compared to controls, demonstrating vaccine efficacy. Given the contribution of MRSA agr type I isolates to human disease, vaccine targeting of AIP1-regulated virulence could have a major clinical impact in the fight against antibiotic resistance.
Collapse
|
12
|
Abstract
Traditional vaccination with whole pathogens or pathogen-derived subunits has completely eliminated diseases like smallpox, and has greatly limited the incidence, morbidity and mortality associated with many other infectious diseases. Unfortunately, a large burden of infectious disease remains that may be preventable through vaccination. For many of these, more focused and innovative approaches may be essential for the development of effective vaccines.
Collapse
Affiliation(s)
- Jon Oscherwitz
- a Division of Hematology-Oncology, Department of Internal Medicine , University of Michigan Medical School , Ann Arbor , MI , USA.,b Veterans Administration Ann Arbor Healthcare System , Ann Arbor , MI , USA
| |
Collapse
|