1
|
Sassani M, Ghafari T, Arachchige PRW, Idrees I, Gao Y, Waitt A, Weaver SRC, Mazaheri A, Lyons HS, Grech O, Thaller M, Witton C, Bagshaw AP, Wilson M, Park H, Brookes M, Novak J, Mollan SP, Hill LJ, Lucas SJE, Mitchell JL, Sinclair AJ, Mullinger K, Fernández-Espejo D. Current and prospective roles of magnetic resonance imaging in mild traumatic brain injury. Brain Commun 2025; 7:fcaf120. [PMID: 40241788 PMCID: PMC12001801 DOI: 10.1093/braincomms/fcaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/26/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
There is unmet clinical need for biomarkers to predict recovery or the development of long-term sequelae of mild traumatic brain injury, a highly prevalent condition causing a constellation of disabling symptoms. A substantial proportion of patients live with long-lasting sequelae affecting their quality of life and ability to work. At present, symptoms can be assessed through clinical tests; however, there are no imaging or laboratory tests fully reflective of pathophysiology routinely used by clinicians to characterize post-concussive symptoms. Magnetic resonance imaging has potential to link subtle pathophysiological alterations to clinical outcomes. Here, we review the state of the art of MRI research in adults with mild traumatic brain injury and provide recommendations to facilitate transition into clinical practice. Studies utilizing MRI can inform on pathophysiology of mild traumatic brain injury. They suggest presence of early cytotoxic and vasogenic oedema. They also show that mild traumatic brain injury results in cellular injury and microbleeds affecting the integrity of myelin and white matter tracts, all processes that appear to induce delayed vascular reactions and functional changes. Crucially, correlates between MRI parameters and post-concussive symptoms are emerging. Clinical sequences such as T1-weighted MRI, susceptibility-weighted MRI or fluid attenuation inversion recovery could be easily implementable in clinical practice, but are not sufficient, in isolation for prognostication. Diffusion sequences have shown promises and, although in need of analysis standardization, are a research priority. Lastly, arterial spin labelling is emerging as a high-utility research as it could become useful to assess delayed neurovascular response and possible long-term symptoms.
Collapse
Affiliation(s)
- Matilde Sassani
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Tara Ghafari
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Pradeepa R W Arachchige
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Iman Idrees
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Yidian Gao
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Waitt
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Samuel R C Weaver
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Mazaheri
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah S Lyons
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Olivia Grech
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Mark Thaller
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Caroline Witton
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hyojin Park
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jan Novak
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Susan P Mollan
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham Neuro-ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust Birmingham, Birmingham B15 2WB, UK
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James L Mitchell
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Alexandra J Sinclair
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Karen Mullinger
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Baskaran A, Hoehn RD, Rose CG. Neuromechanical Models of Mild Traumatic Brain Injury Conditioned on Reaction Time: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:7648. [PMID: 39768571 PMCID: PMC11677630 DOI: 10.3390/jcm13247648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The accurate, repeatable, and cost-effective quantitative characterization of mild traumatic brain injuries (mTBIs) is crucial for safeguarding the long-term health and performance of high-risk groups, including athletes, emergency responders, and military personnel. However, gaps remain in optimizing mTBI assessment methods, especially regarding the integration of neuromechanical metrics such as reaction time (RT) in predictive models. Background/Objectives: This review synthesizes existing research on the use of neuromechanical probabilistic models as tools for assessing mTBI, with an emphasis on RT's role in predictive diagnostics. Methods: We examined 57 published studies on recent sensing technologies such as advanced electromyographic (EMG) systems that contribute data for probabilistic neural imaging, and we also consider measurement models for real-time RT tracking as a diagnostic measure. Results: The analysis identifies three primary contributions: (1) a comprehensive survey of probabilistic approaches for mTBI characterization based on RT, (2) a technical examination of these probabilistic algorithms in terms of reliability and clinical utility, and (3) a detailed outline of experimental requirements for using RT-based metrics in psychomotor tasks to advance mTBI diagnostics. Conclusions: This review provides insights into implementing RT-based neuromechanical metrics within experimental frameworks for mTBI diagnosis, suggesting that such metrics may enhance the sensitivity and utility of assessment and rehabilitation protocols. Further validation studies are recommended to refine RT-based probabilistic models for mTBI applications.
Collapse
Affiliation(s)
- Avinash Baskaran
- Mechanical Engineering Department, Auburn University, Auburn, AL 36849, USA;
| | | | - Chad G. Rose
- Mechanical Engineering Department, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
3
|
Stickland CA, Sztranyovszky Z, Rickard JJS, Goldberg Oppenheimer P. Validation of optimised intracranial spectroscopic probe for instantaneous in-situ monitoring and classification of traumatic brain injury. Exp Neurol 2024; 382:114960. [PMID: 39299676 DOI: 10.1016/j.expneurol.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The development of an optical interface to directly distinguish the brain tissue's biochemistry is the next step in understanding traumatic brain injury (TBI) pathophysiology and the best and most appropriate treatment in cases where in-hospital intracranial access is required. Despite TBI being a globally leading cause of morbidity and mortality in patients under 40, there is still a lack of objective diagnostical tools. Further, given its pathophysiological complexity the majority of treatments provided are purely symptomatic without standardized therapeutic targets. Our tailor-engineered prototype of the intracranial Raman spectroscopy probe (Intra-RSP) is designed to bridge the gap and provide real-time spectroscopic insights to monitor TBI and its evolution as well as identify patient-specific molecular targets for timely intervention. Raman spectroscopy being rapid, label-free and non-destructive, renders it an ideal portable diagnostics tool. In combination with our in-house developed software, using machine learning algorithms for multivariate analysis, the Intra-RSP is shown to accurately differentiate simulated TBI conditions in rat brains from the healthy controls, directly from the brain surface as well as through the rat's skull. Using clinically pre-established methods of cranial entry, the Intra-RSP can be inserted into a 2-piece optimised cranial bolt with integrated focussing and correctly identify a sample in real-life conditions with an accuracy >80 %. To further validate the Intra-RSP's efficiency as a TBI monitoring device, rat brains mildly damaged from inflicted spinal cord injury were found to be correctly classified with 94.5 % accuracy. Through optimization and rigorous in-vivo validation, the Intra-RSP prototype is envisioned to seamlessly integrate into existing standards of neurological care, serving as a minimally invasive, in-situ neuromonitoring tool. This transformative approach has the potential to revolutionize the landscape of neurological care by providing clinicians with unprecedented insights into the nature of brain injuries and fostering targeted, timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa A Stickland
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Zoltan Sztranyovszky
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK
| | - Jonathan J S Rickard
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, College of Engineering and Physical Science, University of Birmingham, B15 2TT, UK; Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK.
| |
Collapse
|
4
|
To XV, Cumming P, Nasrallah F. From impact to recovery: tracking mild traumatic brain injury with MRI-a pilot study and case series. BMJ Open Sport Exerc Med 2024; 10:e002010. [PMID: 39104372 PMCID: PMC11298751 DOI: 10.1136/bmjsem-2024-002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Background Diagnosis and recovery tracking of mild traumatic brain injury (mTBI) is often challenging due to the lack of clear findings on routine imaging techniques. This also complicates defining safe points for returning to activities. Hypothesis/purpose Quantitative susceptibility mapping (QSM) can provide information about cerebral venous oxygen saturation (CSvO2) in the context of brain injury. We tested the prediction that these imaging modalities would enable the detection of changes and recovery patterns in the brains of patients with mTBI. Study design In a case-control study, we recruited a cohort of 24 contact sport athletes for baseline QSM and resting-state functional MRI (rs-fMRI) scanning. Two of those who subsequently experienced head impact with significant post-injury symptoms underwent scans at 3, 7, 14 and 28 days post-injury; one had a boxing match without classical mTBI symptoms were also followed-up on. Results The cohort baseline QSM measurements of the straight sinus were established. The two injured athletes with post-impact symptoms consistent with mTBI had susceptibility results at days 3 and 7 post-impact that fell below the 25th percentile of the baseline values. The per cent amplitude fluctuation quantified from rs-fMRI agreed with the susceptibility trends in the straight sinus. Conclusion QSM holds promise as a diagnostic tool for tracking mTBI progression or recovery in contact sport head injury.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fatima Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland, Australia
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J Neurotrauma 2024. [PMID: 38943278 DOI: 10.1089/neu.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
Post-concussive symptoms are frequently reported by individuals who sustain mild traumatic brain injuries (mTBIs) and subconcussive head impacts, even when evidence of intracranial pathology is lacking. Current strategies used to evaluate head injuries, which primarily rely on self-report, have a limited ability to predict the incidence, severity, and duration of post-concussive symptoms that will develop in an individual patient. In addition, these self-report measures have little association with the underlying mechanisms of pathology that may contribute to persisting symptoms, impeding advancement in precision treatment for TBI. Emerging evidence suggests that biofluid, imaging, physiological, and functional biomarkers associated with mTBI and subconcussive head impacts may address these shortcomings by providing more objective measures of injury severity and underlying pathology. Interest in the use of biomarker data has rapidly accelerated, which is reflected by the recent efforts of organizations such as the National Institute of Neurological Disorders and Stroke and the National Academies of Sciences, Engineering, and Medicine to prioritize the collection of biomarker data during TBI characterization in acute-care settings. Thus, this review aims to describe recent progress in the identification and development of biomarkers of mTBI and subconcussive head impacts and to discuss important considerations for the implementation of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Kryshawna Beard
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Amina K Gauff
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Ashley M Pennington
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Xynergie Federal, LLC, San Juan, United States Minor Outlying Islands
| | - Donald W Marion
- General Dynamics Information Technology Fairfax, Falls Church, Virginia, USA
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Johanna Smith
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| | - Stephanie Sloley
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Szaflarski JP, Szaflarski M. Traumatic Brain Injury Outcomes After Recreational Cannabis Use. Neuropsychiatr Dis Treat 2024; 20:809-821. [PMID: 38586307 PMCID: PMC10999198 DOI: 10.2147/ndt.s453616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/23/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Basic science data indicate potential neuroprotective effects of cannabinoids in traumatic brain injury (TBI). We aimed to evaluate the effects of pre-TBI recreational cannabis use on TBI outcomes. Patients and Methods We used i2b2 (a scalable informatics framework; www.i2b2.org) to identify all patients presenting with acute TBI between 1/1/2014 and 12/31/2016, then conducted a double-abstraction medical chart review to compile basic demographic, urine drug screen (UDS), Glasgow Coma Scale (GCS), and available outcomes data (mortality, modified Rankin Scale (mRS), duration of stay, disposition (home, skilled nursing facility, inpatient rehabilitation, other)) at discharge and at specific time points thereafter. We conducted multivariable nested ordinal and logistic regression analyses to estimate associations between cannabis use, other UDS results, demographic factors, and selected outcomes. Results i2b2 identified 6396 patients who acutely presented to our emergency room with TBI. Of those, 3729 received UDS, with 22.2% of them testing positive for cannabis. Mortality was similar in patients who tested positive vs negative for cannabis (3.9% vs 4.8%; p = 0.3) despite more severe GCS on admission in the cannabis positive group (p = 0.045). Several discharge outcome measures favored the cannabis positive group who had a higher rate of discharge home vs other care settings (p < 0.001), lower discharge mRS (p < 0.001), and shorter duration of hospital stay (p < 0.001) than the UDS negative group. Multivariable analyses confirmed mostly independent associations between positive cannabis screen and these post-TBI short- and long-term outcomes. Conclusion This study adds evidence about the potentially neuroprotective effects of recreational cannabis for short- and long-term post-TBI outcomes. These results need to be confirmed via prospective data collections.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Heersink School of Medicine, Birmingham, AL, USA
| | - Magdalena Szaflarski
- Department of Sociology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
7
|
Sicard V, Fang Z, Kardish R, Healey K, Smith AM, Reid S, Cron GO, Melkus G, Abdeen N, Yeates KO, Goldfield G, Reed N, Zemek R, Ledoux AA. Longitudinal Brain Perfusion and Symptom Presentation Following Pediatric Concussion: A Pediatric Concussion Assessment of Rest and Exertion +MRI (PedCARE +MRI) Substudy. J Neurotrauma 2024; 41:552-570. [PMID: 38204176 DOI: 10.1089/neu.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Emerging evidence suggests that advanced neuroimaging modalities such as arterial spin labelling (ASL) might have prognostic utility for pediatric concussion. This study aimed to: 1) examine group differences in global and regional brain perfusion in youth with concussion or orthopedic injury (OI) at 72 h and 4 weeks post-injury; 2) examine patterns of abnormal brain perfusion within both groups and their recovery; 3) investigate the association between perfusion and symptom burden within concussed and OI youths at both time-points; and 4) explore perfusion between symptomatic and asymptomatic concussed and OI youths. Youths ages 10.00-17.99 years presenting to the emergency department with an acute concussion or OI were enrolled. ASL-magnetic resonance imaging scans were conducted at 72 h and 4 weeks post-injury to measure brain perfusion, along with completion of the Health Behavior Inventory (HBI) to measure symptoms. Abnormal perfusion clusters were identified using voxel-based z-score analysis at each visit. First, mixed analyses of covariance (ANCOVAs) investigated the Group*Time interaction on global and regional perfusion. Post hoc region of interest (ROI) analyses were performed on significant regions. Second, within-group generalized estimating equations investigated the recovery of abnormal perfusion at an individual level. Third, multiple regressions at each time-point examined the association between HBI and regional perfusion, and between HBI and abnormal perfusion volumes within the concussion group. Fourth, whole-brain one-way ANCOVAs explored differences in regional and abnormal perfusion based on symptomatic status (symptomatic vs. asymptomatic) and OIs at each time-point. A total of 70 youths with a concussion [median age (interquartile range; IQR) = 12.70 (11.67-14.35), 47.1% female] and 29 with an OI [median age (IQR) = 12.05 (11.18-13.89), 41.4% female] were included. Although no Group effect was found in global perfusion, the concussion group showed greater adjusted perfusion within the anterior cingulate cortex/middle frontal gyrus (MFG) and right MFG compared with the OI group across time-points (ps ≤ 0.004). The concussion group showed lower perfusion within the right superior temporal gyrus at both time-points and bilateral occipital gyrus at 4 weeks, (ps ≤ 0.006). The number of hypoperfused clusters was increased at 72 h compared with 4 weeks in the concussion youths (p < 0.001), but not in the OIs. Moreover, Group moderated the HBI-perfusion association within the left precuneus and superior frontal gyrus at both time-points, (ps ≤ 0.001). No association was found between HBI and abnormal perfusion volume within the concussion group at any visits. At 4 weeks, the symptomatic sub-group (n = 10) showed lower adjusted perfusion within the right cerebellum and lingual gyrus, while the asymptomatic sub-group (n = 59) showed lower adjusted perfusion within the left calcarine, but greater perfusion within the left medial orbitofrontal cortex, right middle frontal gyrus, and bilateral caudate compared with OIs. Yet, no group differences were observed in the number of abnormal perfusion clusters or volumes at any visit. The present study suggests that symptoms may be associated with changes in regional perfusion, but not abnormal perfusion levels.
Collapse
Affiliation(s)
- Veronik Sicard
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Zhuo Fang
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Rachel Kardish
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Katherine Healey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Andra M Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Reid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Greg O Cron
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Gerd Melkus
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology, and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Nishard Abdeen
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gary Goldfield
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Nick Reed
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Kilgore MO, Hubbard WB. Effects of Low-Level Blast on Neurovascular Health and Cerebral Blood Flow: Current Findings and Future Opportunities in Neuroimaging. Int J Mol Sci 2024; 25:642. [PMID: 38203813 PMCID: PMC10779081 DOI: 10.3390/ijms25010642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Low-level blast (LLB) exposure can lead to alterations in neurological health, cerebral vasculature, and cerebral blood flow (CBF). The development of cognitive issues and behavioral abnormalities after LLB, or subconcussive blast exposure, is insidious due to the lack of acute symptoms. One major hallmark of LLB exposure is the initiation of neurovascular damage followed by the development of neurovascular dysfunction. Preclinical studies of LLB exposure demonstrate impairment to cerebral vasculature and the blood-brain barrier (BBB) at both early and long-term stages following LLB. Neuroimaging techniques, such as arterial spin labeling (ASL) using magnetic resonance imaging (MRI), have been utilized in clinical investigations to understand brain perfusion and CBF changes in response to cumulative LLB exposure. In this review, we summarize neuroimaging techniques that can further our understanding of the underlying mechanisms of blast-related neurotrauma, specifically after LLB. Neuroimaging related to cerebrovascular function can contribute to improved diagnostic and therapeutic strategies for LLB. As these same imaging modalities can capture the effects of LLB exposure in animal models, neuroimaging can serve as a gap-bridging diagnostic tool that permits a more extensive exploration of potential relationships between blast-induced changes in CBF and neurovascular health. Future research directions are suggested, including investigating chronic LLB effects on cerebral perfusion, exploring mechanisms of dysautoregulation after LLB, and measuring cerebrovascular reactivity (CVR) in preclinical LLB models.
Collapse
Affiliation(s)
- Madison O. Kilgore
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
9
|
Grijalva C, Mullins VA, Michael BR, Hale D, Wu L, Toosizadeh N, Chilton FH, Laksari K. Neuroimaging, wearable sensors, and blood-based biomarkers reveal hyperacute changes in the brain after sub-concussive impacts. BRAIN MULTIPHYSICS 2023; 5:100086. [PMID: 38292249 PMCID: PMC10827333 DOI: 10.1016/j.brain.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Impacts in mixed martial arts (MMA) have been studied mainly in regard to the long-term effects of concussions. However, repetitive sub-concussive head impacts at the hyperacute phase (minutes after impact), are not understood. The head experiences rapid acceleration similar to a concussion, but without clinical symptoms. We utilize portable neuroimaging technology - transcranial Doppler (TCD) ultrasound and functional near infrared spectroscopy (fNIRS) - to estimate the extent of pre- and post-differences following contact and non-contact sparring sessions in nine MMA athletes. In addition, the extent of changes in neurofilament light (NfL) protein biomarker concentrations, and neurocognitive/balance parameters were determined following impacts. Athletes were instrumented with sensor-based mouth guards to record head kinematics. TCD and fNIRS results demonstrated significantly increased blood flow velocity (p = 0.01) as well as prefrontal (p = 0.01) and motor cortex (p = 0.04) oxygenation, only following the contact sparring sessions. This increase after contact was correlated with the cumulative angular acceleration experienced during impacts (p = 0.01). In addition, the NfL biomarker demonstrated positive correlations with angular acceleration (p = 0.03), and maximum principal and fiber strain (p = 0.01). On average athletes experienced 23.9 ± 2.9 g peak linear acceleration, 10.29 ± 1.1 rad/s peak angular velocity, and 1,502.3 ± 532.3 rad/s2 angular acceleration. Balance parameters were significantly increased following contact sparring for medial-lateral (ML) center of mass (COM) sway, and ML ankle angle (p = 0.01), illustrating worsened balance. These combined results reveal significant changes in brain hemodynamics and neurophysiological parameters that occur immediately after sub-concussive impacts and suggest that the physical impact to the head plays an important role in these changes.
Collapse
Affiliation(s)
- Carissa Grijalva
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
| | - Veronica A. Mullins
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Bryce R. Michael
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Dallin Hale
- University of Arizona, Department of Physiology, Tucson, AZ, United States
| | - Lyndia Wu
- Univerisity of British Columbia, Department of Mechanical Engineering, Vancouver, BC, Canada
| | - Nima Toosizadeh
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Medicine, Arizona Center for Aging, Tucson, AZ, United States
| | - Floyd H. Chilton
- University of Arizona, School of Nutritional Sciences and Wellness, Tucson, AZ, United States
| | - Kaveh Laksari
- University of Arizona, Department of Biomedical Engineering, Tucson, AZ, United States
- University of Arizona, Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of California Riverside, Department of Mechanical Engineering, Riverside, CA, United States
| |
Collapse
|
10
|
Parks A, Hogg-Johnson S. Autonomic nervous system dysfunction in pediatric sport-related concussion: a systematic review. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2023; 67:246-268. [PMID: 38283159 PMCID: PMC10814701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Objective To identify, appraise and synthesize the evidence of autonomic nervous system (ANS) dysfunction following sport-related concussion in pediatric populations. Methods A literature search was conducted using MEDLINE (Ovid), SportDiscus (EBSCO), CINAHL (EBSCO), EMBASE (Ovid) and PsycINFO (Ovid). Studies were selected and appraised using the Joanna Briggs Institute (JBI) critical appraisal tools. Data was extracted from the included studies and qualitatively synthesized. Results Eleven studies were included in the synthesis. There was variability in the methods used to measure ANS function between studies, and sample populations and time to assessment following concussion varied considerably. There was also variability in the direction of change of ANS function between some studies. Conclusion This systematic review identifies that concussion is associated with dysregulation of ANS function in pediatric athletes. We identified some weaknesses in the extant literature which may be due to existing logistical and financial barriers to implementing valid ANS measurements in clinical and sports settings.
Collapse
Affiliation(s)
- Andrew Parks
- Division of Graduate Studies, Sports Sciences, Canadian Memorial Chiropractic College
- Private Practice
| | - Sheilah Hogg-Johnson
- Department of Research and Innovation, Canadian Memorial Chiropractic College
- Dalla Lana School of Public Health, University of Toronto
- Institute for Disability and Rehabilitation Research, Ontario Tech University
| |
Collapse
|
11
|
Alberts A, Lucke-Wold B. Updates on Improving Imaging Modalities for Traumatic Brain Injury. J Integr Neurosci 2023; 22:142. [PMID: 38176928 PMCID: PMC10776037 DOI: 10.31083/j.jin2206142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 01/06/2024] Open
Abstract
The Center for Disease Control and Prevention reports that traumatic brain injury (TBI) was related to over 64,000 deaths in the United States in 2020, equating to more than 611 TBI-related hospitalizations and 176 TBI-related deaths per day. There are both long- and short-term sequelae involved with the pathophysiology of TBI that can range from mild to severe. Recently, more effort has been devoted to understanding the long-term consequences of TBI and how early detection of these injuries can prevent late clinical manifestations. Obtaining proper, detailed imaging is key to guiding the direction of intervention, but there is a gap in the understanding of how TBI imaging can be used to predict and prevent the long-term morbidities seen with even mild forms of TBI. There have been significant strides in the advancement of TBI imaging that allows for quicker, more affordable, and more effective imaging of intracranial bleeds, axonal injury, tissue damage, and more. Despite this, there is still room for improved standardization and more data supporting the justification of using certain imaging modalities. This review aims to outline recent advancements in TBI imaging and areas that require further investigation to improve patient outcomes and minimize the acute and chronic comorbidities associated with TBI.
Collapse
Affiliation(s)
- Amelia Alberts
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
12
|
Eldirdiri A, Zhuo J, Lin Z, Lu H, Gullapalli RP, Jiang D. Toward vendor-independent measurement of cerebral venous oxygenation: Comparison of TRUST MRI across three major MRI manufacturers and association with end-tidal CO 2. NMR IN BIOMEDICINE 2023; 36:e4990. [PMID: 37315951 PMCID: PMC10801912 DOI: 10.1002/nbm.4990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Cerebral venous oxygenation (Yv ) is a valuable biomarker for a variety of brain diseases. T2 relaxation under spin tagging (TRUST) MRI is a widely used method for Yv quantification. In this work, there were two main objectives. The first was to evaluate the reproducibility of TRUST Yv measurements across MRI scanners from different vendors. The second was to examine the correlation between Yv and end-tidal CO2 (EtCO2 ) in a multisite, multivendor setting and determine the usefulness of this correlation to account for variations in Yv caused by normal variations and physiological fluctuations. Standardized TRUST pulse sequences were implemented on three scanners from major MRI vendors (GE, Siemens, Philips). These scanners were located at two research institutions. Ten healthy subjects were scanned. On each scanner, the subject underwent two scan sessions, each of which included three TRUST scans, to evaluate the intrasession and intersession reproducibility of Yv . Each scanner was also equipped with a capnograph device to record the EtCO2 of the subject during the MRI scan. We found no significant bias in Yv measurements across the three scanners (P = 0.18). The measured Yv values on the three scanners were also strongly correlated with each other (intraclass correlation coefficients > 0.85, P < 0.001). The intrasession and intersession coefficients of variation of Yv were less than 4% and showed no significant difference among the scanners. In addition, our results revealed that (1) within the same subject, Yv increased with EtCO2 at a rate of 1.24 ± 0.17%/mmHg (P < 0.0001), and (2) across different subjects, individuals with a higher EtCO2 had a higher Yv , at a rate of 0.94 ± 0.36%/mmHg (P = 0.01). These results suggest that (1) the standardized TRUST sequences had similar accuracies and reproducibilities for the quantification of Yv across the scanners, and (2) recording of EtCO2 may be a useful complement to Yv measurement to account for CO2 -related physiological fluctuations in Yv in multisite, multivendor studies.
Collapse
Affiliation(s)
- Abubakr Eldirdiri
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Li F, Lu L, Li H, Liu Y, Chen H, Yuan F, Jiang H, Yin X, Chen YC. Disrupted resting-state functional connectivity and network topology in mild traumatic brain injury: an arterial spin labelling study. Brain Commun 2023; 5:fcad254. [PMID: 37829696 PMCID: PMC10567062 DOI: 10.1093/braincomms/fcad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Mild traumatic brain injury can cause different degrees of cognitive impairment and abnormal brain structure and functional connectivity, but there is still a lack of research on the functional connectivity and topological organization of cerebral blood flow fluctuations. This study explored the cerebral blood flow, functional connectivity and topological organization of the cerebral blood flow network in acute mild traumatic brain injury patients. In total, 48 mild traumatic brain injury patients and 46 well-matched healthy controls underwent resting-state arterial spin labelling perfusion MRI and neuropsychological assessments. The functional connectivity and topological organization of the cerebral blood flow network were analysed. Then, the correlation between the changes in cerebral blood flow network characteristics and cognitive function was explored. Acute mild traumatic brain injury patients showed decreased cerebral blood flow in the right insula and increased cerebral blood flow in the right inferior temporal gyrus and left superior temporal gyrus. Abnormal cerebral blood flow network connection patterns mainly occur in sensorimotor network, default mode network, cingulo-opercular network and occipital network-related regions. Furthermore, mild traumatic brain injury disrupted the topological organization of the whole brain, which manifested as (i) reduced global efficiency; (ii) abnormal degree centrality, betweenness centrality, nodal clustering coefficient and nodal efficiency; and (iii) decreased intermodular connectivity between the occipital network and sensorimotor network. Finally, the change in network topology was correlated with the cognitive score of the mild traumatic brain injury. This study provided evidence of abnormal functional connectivity and network topology based on cerebral blood flow in acute mild traumatic brain injury patients, revealing their potential use as early markers for mild traumatic brain injury, which may contribute to both disease diagnosis and assessment.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hui Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yin Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Hailong Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
14
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
15
|
Karimpoor M, Georgiadis M, Zhao MY, Goubran M, Moein Taghavi H, Mills BD, Tran D, Mouchawar N, Sami S, Wintermark M, Grant G, Camarillo DB, Moseley ME, Zaharchuk G, Zeineh MM. Longitudinal Alterations of Cerebral Blood Flow in High-Contact Sports. Ann Neurol 2023; 94:457-469. [PMID: 37306544 DOI: 10.1002/ana.26718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Repetitive head trauma is common in high-contact sports. Cerebral blood flow (CBF) can measure changes in brain perfusion that could indicate injury. Longitudinal studies with a control group are necessary to account for interindividual and developmental effects. We investigated whether exposure to head impacts causes longitudinal CBF changes. METHODS We prospectively studied 63 American football (high-contact cohort) and 34 volleyball (low-contact controls) male collegiate athletes, tracking CBF using 3D pseudocontinuous arterial spin labeling magnetic resonance imaging for up to 4 years. Regional relative CBF (rCBF, normalized to cerebellar CBF) was computed after co-registering to T1-weighted images. A linear mixed effects model assessed the relationship of rCBF to sport, time, and their interaction. Within football players, we modeled rCBF against position-based head impact risk and baseline Standardized Concussion Assessment Tool score. Additionally, we evaluated early (1-5 days) and delayed (3-6 months) post-concussion rCBF changes (in-study concussion). RESULTS Supratentorial gray matter rCBF declined in football compared with volleyball (sport-time interaction p = 0.012), with a strong effect in the parietal lobe (p = 0.002). Football players with higher position-based impact-risk had lower occipital rCBF over time (interaction p = 0.005), whereas players with lower baseline Standardized Concussion Assessment Tool score (worse performance) had relatively decreased rCBF in the cingulate-insula over time (interaction effect p = 0.007). Both cohorts showed a left-right rCBF asymmetry that decreased over time. Football players with an in-study concussion showed an early increase in occipital lobe rCBF (p = 0.0166). INTERPRETATION These results suggest head impacts may result in an early increase in rCBF, but cumulatively a long-term decrease in rCBF. ANN NEUROL 2023;94:457-469.
Collapse
Affiliation(s)
| | | | - Moss Y Zhao
- Department of Radiology, Stanford University, Stanford, CA
| | - Maged Goubran
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Physical Sciences Platform & Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | | | - Brian D Mills
- Department of Radiology, Stanford University, Stanford, CA
| | - Dean Tran
- Department of Radiology, Stanford University, Stanford, CA
| | | | - Sohrab Sami
- Department of Radiology, Stanford University, Stanford, CA
| | - Max Wintermark
- Department of Radiology, Stanford University, Stanford, CA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA
| | | | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA
| | | |
Collapse
|
16
|
Anderson ED, Talukdar T, Goodwin G, Di Pietro V, Yakoub KM, Zwilling CE, Davies D, Belli A, Barbey AK. Assessing blood oxygen level-dependent signal variability as a biomarker of brain injury in sport-related concussion. Brain Commun 2023; 5:fcad215. [PMID: 37649639 PMCID: PMC10465085 DOI: 10.1093/braincomms/fcad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/02/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Mild traumatic brain injury is a complex neurological disorder of significant concern among athletes who play contact sports. Athletes who sustain sport-related concussion typically undergo physical examination and neurocognitive evaluation to determine injury severity and return-to-play status. However, traumatic disruption to neurometabolic processes can occur with minimal detectable anatomic pathology or neurocognitive alteration, increasing the risk that athletes may be cleared for return-to-play during a vulnerable period and receive a repetitive injury. This underscores the need for sensitive functional neuroimaging methods to detect altered cerebral physiology in concussed athletes. The present study compared the efficacy of Immediate Post-concussion Assessment and Cognitive Testing composite scores and whole-brain measures of blood oxygen level-dependent signal variability for classifying concussion status and predicting concussion symptomatology in healthy, concussed and repetitively concussed athletes, assessing blood oxygen level-dependent signal variability as a potential diagnostic tool for characterizing functional alterations to cerebral physiology and assisting in the detection of sport-related concussion. We observed significant differences in regional blood oxygen level-dependent signal variability measures for concussed athletes but did not observe significant differences in Immediate Post-concussion Assessment and Cognitive Testing scores of concussed athletes. We further demonstrate that incorporating measures of functional brain alteration alongside Immediate Post-concussion Assessment and Cognitive Testing scores enhances the sensitivity and specificity of supervised random forest machine learning methods when classifying and predicting concussion status and post-concussion symptoms, suggesting that alterations to cerebrovascular status characterize unique variance that may aid in the detection of sport-related concussion and repetitive mild traumatic brain injury. These results indicate that altered blood oxygen level-dependent variability holds promise as a novel neurobiological marker for detecting alterations in cerebral perfusion and neuronal functioning in sport-related concussion, motivating future research to establish and validate clinical assessment protocols that can incorporate advanced neuroimaging methods to characterize altered cerebral physiology following mild traumatic brain injury.
Collapse
Affiliation(s)
- Evan D Anderson
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
| | - Tanveer Talukdar
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Grace Goodwin
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Nevada, Las Vegas, NV 89557, USA
| | - Valentina Di Pietro
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Kamal M Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Christopher E Zwilling
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David Davies
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Aron K Barbey
- Decision Neuroscience Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
17
|
Penn C, Katnik C, Cuevas J, Mohapatra SS, Mohapatra S. Multispectral optoacoustic tomography (MSOT): Monitoring neurovascular changes in a mouse repetitive traumatic brain injury model. J Neurosci Methods 2023; 393:109876. [PMID: 37150303 PMCID: PMC10388337 DOI: 10.1016/j.jneumeth.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Evidence suggests that mild TBI injuries, which comprise > 75% of all TBIs, can cause chronic post-concussive symptoms, especially when experienced repetitively (rTBI). rTBI is a major cause of cognitive deficit in athletes and military personnel and is associated with neurovascular changes. Current methods to monitor neurovascular changes in detail are prohibitively expensive and invasive for patients with mild injuries. NEW METHOD We evaluated the potential of multispectral optoacoustic tomography (MSOT) to monitor neurovascular changes and assess therapeutic strategies in a mouse model of rTBI. Mice were subjected to rTBI or sham via controlled cortical impact and administered pioglitazone (PG) or vehicle. Oxygenated and deoxygenated hemoglobin were monitored using MSOT. Indocyanine green clearance was imaged via MSOT to evaluate blood-brain-barrier (BBB) integrity. RESULTS Mice subjected to rTBI show a transient increase in oxygenated/total hemoglobin ratio which can be mitigated by PG administration. rTBI mice also show BBB disruption shortly after injury and reduction of oxygenated/total hemoglobin in the chronic stage, neither of which were affected by PG intervention. COMPARISON WITH EXISTING METHODS MSOT imaging has the potential as a noninvasive in vivo imaging method to monitor neurovascular changes and assess therapeutics in mouse models of rTBI. In comparison to standard methods of tracking inflammation and BBB disruption, MSOT can be used multiple times throughout the course of injury without the need for surgery. Thus, MSOT is especially useful in research of rTBI models for screening therapeutics, and with further technological improvements may be extended for use in rTBI patients.
Collapse
Affiliation(s)
- Courtney Penn
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Chris Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Internal Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
18
|
Wang Y, Bartels HM, Nelson LD. A Systematic Review of ASL Perfusion MRI in Mild TBI. Neuropsychol Rev 2023; 33:160-191. [PMID: 32808244 PMCID: PMC7889778 DOI: 10.1007/s11065-020-09451-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 08/06/2020] [Indexed: 01/06/2023]
Abstract
Mild traumatic brain injury (mTBI) is a major public health concern. Cerebrovascular alterations play a significant role in the evolution of injury sequelae and in the process of post-traumatic brain repair. Arterial spin labeling (ASL) is an advanced perfusion magnetic resonance imaging technique that permits noninvasive quantification of cerebral blood flow (CBF). This is the first systematic review of ASL research findings in patients with mTBI. Our approach followed the American Academy of Neurology (AAN) and PRISMA guidelines. We searched Ovid/MEDLINE, Web of Science, Scopus, and the Cochrane Index for relevant articles published as of February 20, 2020. Full-text results were combined into Rayyan software for further evaluation. Data extraction, including risk of bias ratings, was performed using American Academy of Neurology's four-tiered classification scheme. Twenty-three articles met inclusion criteria comprising data on up to 566 mTBI patients and 654 control subjects. Of the 23 studies, 18 reported some type of regional CBF abnormality in mTBI patients at rest or during a cognitive task, with more findings of decreased than increased CBF. The evidence supports the conclusion that mTBI likely causes ASL-derived CBF anomalies. However, synthesis of findings was challenging due to substantial methodological variations across studies and few studies with low risk of bias. Thus, larger-scale prospective cohort studies are needed to more definitively chart the course of CBF changes in humans after mTBI and to understand how individual difference factors contribute to post-injury CBF changes.
Collapse
Affiliation(s)
- Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Hannah M Bartels
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| |
Collapse
|
19
|
Sub-acute Changes on MRI Measures of Cerebral Blood Flow and Venous Oxygen Saturation in Concussed Australian Rules Footballers. SPORTS MEDICINE - OPEN 2022; 8:45. [PMID: 35362855 PMCID: PMC8975948 DOI: 10.1186/s40798-022-00435-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/17/2022] [Indexed: 12/03/2022]
Abstract
Background Sports-related concussion (SRC) is common in collision sport athletes. There is growing evidence that repetitive SRC can have serious neurological consequences, particularly when the repetitive injuries occur when the brain has yet to fully recover from the initial injury. Hence, there is a need to identify biomarkers that are capable of determining SRC recovery so that they can guide clinical decisions pertaining to return-to-play. Cerebral venous oxygen saturation (SvO2) and cerebral blood flow (CBF) can be measured using magnetic resonance imaging (MRI) and may provide insights into changing energy demands and recovery following SRC. Results In this study we therefore investigated SvO2 and CBF in a cohort of concussed amateur Australian Football athletes (i.e., Australia’s most participated collision sport). Male and female Australian footballers (n = 13) underwent MRI after being cleared to return to play following a mandatory 13-day recovery period and were compared to a group of control Australian footballers (n = 16) with no recent history of SRC (i.e., > 3 months since last SRC). Despite the concussed Australian footballers being cleared to return to play at the time of MRI, we found evidence of significantly increased susceptibility in the global white matter (p = 0.020) and a trend (F5,21 = 2.404, p = 0.071) for reduced relative CBF (relCBF) compared to the control group. Further, there was evidence of an interaction between sex and injury in straight sinus susceptibility values (F1,25 = 3.858, p = 0.061) which were decreased in female SRC athletes (p = 0.053). Of note, there were significant negative correlations between straight sinus susceptibility and relCBF suggesting impaired metabolic function after SRC. Conclusions These findings support the use of quantitative susceptibility mapping (QSM) and relCBF as sensitive indicators of SRC, and raise further concerns related to SRC guidelines that allow for return-to-play in less than two weeks.
Collapse
|
20
|
Liu L, Wu Y, Zhang K, Meng R, Duan J, Zhou C, Ji X. Anatomy imaging and hemodynamics research on the cerebral vein and venous sinus among individuals without cranial sinus and jugular vein diseases. Front Neurosci 2022; 16:999134. [PMID: 36238084 PMCID: PMC9551167 DOI: 10.3389/fnins.2022.999134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
In recent years, imaging technology has allowed the visualization of intracranial and extracranial vascular systems. However, compared with the cerebral arterial system, the relative lack of image information, individual differences in the anatomy of the cerebral veins and venous sinuses, and several unique structures often cause neurologists and radiologists to miss or over-diagnose. This increases the difficulty of the clinical diagnosis and treatment of cerebral venous system diseases. This review focuses on applying different imaging methods to the normal anatomical morphology of the cerebral venous system and special structural and physiological parameters, such as hemodynamics, in people without cranial sinus and jugular vein diseases and explores its clinical significance. We hope this study will reinforce the importance of studying the cerebral venous system anatomy and imaging data and will help diagnose and treat systemic diseases.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Emergency, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Kaiyuan Zhang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiangang Duan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chen Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Chen Zhou,
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Xunming Ji,
| |
Collapse
|
21
|
Xiong F, Li T, Pan Y, Liu Y, Zhang J, Bai L. Arterial spin labeling magnetic resonance evaluates changes of cerebral blood flow in patients with mild traumatic brain injury. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1016-1024. [PMID: 36097769 PMCID: PMC10950119 DOI: 10.11817/j.issn.1672-7347.2022.210754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The patients with mild traumatic brain injury (mTBI) accounts for more than 80% of the patients with brain injury. Most patients with mTBI have no abnormalities in CT examination. Therefore, most patients choose to self-care and recover rather than seeking medical treatment. In fact, mTBI may result in persistent cognitive decline and neurobehavioral dysfunction. In addition, changes occurred in neurochemistry, metabolism, and cells after injury may cause changes in cerebral blood flow (CBF), which is one of the causes of secondary injury and slow brain repair. This study aims to evaluate the changes of CBF with the progression of the disease in patients with mTBI based on arterial spin labeling (ASL) magnetic resonance imaging technology. METHODS In the outpatient or emergency department of the Second Affiliated Hospital of Wenzhou Medical University, 43 mTBI patients were collected as an mTBI group, and 43 normal subjects with age, gender, and education level matching served as a control group. They all received clinical neuropsychology and cognitive function evaluation and magnetic resonance imaging. In the mTBI group, 22 subjects were followed up at acute phase, 1 month, 3 months, and 12 months. Based on the control group, the abnormal regions of CBF in the whole brain of mTBI patients were analyzed. The abnormal regions were taken as the regions of interest (ROI). The correlation of the values of the CBF in ROIs with clinical indications, cognitive function, and the changes of CBF in ROI at each time point during the follow-up were analyzed. RESULTS Compared with the control group, the CBF in the bilateral dorsolateral superior frontal gyrus and auxiliary motor areas in the cortical region, as well as the right putamen, caudate nucleus, globus pallidus, and parahippocampus in the subcutaneous regions in the acute phase of the mTBI group were significantly increased (all P<0.01, TFCE-FWE correction). The analysis results of correlation of CBF with neuropsychology and cognitive domain showed that in the mTBI group, whole brain (r=0.528, P<0.001), right caudate nucleus (r=0.512, P<0.001), putamen (r=0.486, P<0.001), and globus pallidus (r=0.426, P=0.006) values of the were positively correlated with Backward Digit Span Test (BDST) score (reflectting working memory ability), and the right globus pallidus CBF was negatively correlated with the Post-Traumatic Stress Disorder Cheeklist-CivilianVersion (PCL-C) score (r=-0.402, P=0.010). Moreover, the follow-up study showed that abnormal CBF in these areas had not been restored. The correlation of CBF was negatively correlated with PCL-C and BDST at 1 months, 3 months, and 12 months (all P>0.05). CONCLUSIONS The elevated CBF value is one of the stress characteristics of brain injury in the mTBI patients at the acute phase. There is abnormal elevation of CBF values in multiple cortex or subcortical areas. Multi-time point studies show that there is no obvious change of CBF in abnormal areas, suggesting that potential clinical treatment is urgently needed for the mTBI patients.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049.
| | - Tianhui Li
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049
| | - Yizhen Pan
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049
| | - Yuling Liu
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049
| | - Jie Zhang
- Department of Radiation Medicine, Military Preventive Medicine School, Air Force Medical University, Xi'an 710032, China.
| | - Lijun Bai
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University; Key Laboratory of Biomedical Information Engineering Ministry of Education, Xi'an 710049.
| |
Collapse
|
22
|
Cao F, Wang M, Han S, Fan S, Guo Y, Yang Y, Luo Y, Guo J, Kang Y. Quantitative Distribution of Cerebral Venous Oxygen Saturation and Its Prognostic Value in Patients with Acute Ischemic Stroke. Brain Sci 2022; 12:brainsci12081109. [PMID: 36009171 PMCID: PMC9406002 DOI: 10.3390/brainsci12081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the quantitative distribution of cerebral venous oxygen saturation (SvO2) based on quantitative sensitivity mapping (QSM) and determined its prognostic value in patients with acute ischemic stroke (AIS). A retrospective study was conducted on 39 hospitalized patients. Reconstructed QSM was used to calculate the cerebral SvO2 of each region of interest (ROI) in the ischemic hemisphere. The intraclass correlation coefficient (ICC) and Bland−Altman analysis were conducted to define the best resolution of the distribution map. The correlation between the cerebral SvO2 in hypoxic regions (SvO2ROI < 0.7) and clinical scores was obtained by Spearman and power analysis. The associations between cerebral SvO2 and unfavorable prognosis were analyzed using multivariate logistic regression. Excellent agreement was found between the cerebral SvO2 in hypoxic regions with a resolution of 7.18 × 7.18 × 1.6 mm3 and asymmetrically prominent cortical veins regions (ICC: 0.879 (admission), ICC: 0.906 (discharge)). The cerebral SvO2 was significantly negative with clinical scores (all |r| > 0.3). The cerebral SvO2 and its changes at discharge were significantly associated with an unfavorable prognosis (OR: 0.812 and 0.866). Therefore, the cerebral SvO2 in hypoxic regions measured by the quantitative distribution map can be used as an indicator for evaluating the early prognosis of AIS.
Collapse
Affiliation(s)
- Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shanhua Han
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shengyu Fan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingjian Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yu Luo
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| |
Collapse
|
23
|
Liu Y, Lu L, Li F, Chen YC. Neuropathological Mechanisms of Mild Traumatic Brain Injury: A Perspective From Multimodal Magnetic Resonance Imaging. Front Neurosci 2022; 16:923662. [PMID: 35784844 PMCID: PMC9247389 DOI: 10.3389/fnins.2022.923662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for more than 80% of the total number of TBI cases. The mechanism of injury for patients with mTBI has a variety of neuropathological processes. However, the underlying neurophysiological mechanism of the mTBI is unclear, which affects the early diagnosis, treatment decision-making, and prognosis evaluation. More and more multimodal magnetic resonance imaging (MRI) techniques have been applied for the diagnosis of mTBI, such as functional magnetic resonance imaging (fMRI), arterial spin labeling (ASL) perfusion imaging, susceptibility-weighted imaging (SWI), and diffusion MRI (dMRI). Various imaging techniques require to be used in combination with neuroimaging examinations for patients with mTBI. The understanding of the neuropathological mechanism of mTBI has been improved based on different angles. In this review, we have summarized the application of these aforementioned multimodal MRI techniques in mTBI and evaluated its benefits and drawbacks.
Collapse
|
24
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Under the Helmet: Perioperative Concussion-Review of Current Literature and Targets for Research. J Neurosurg Anesthesiol 2022; 34:277-281. [PMID: 35522842 DOI: 10.1097/ana.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Patients with recent concussion experience disruption in neurocellular and neurometabolic function that may persist beyond symptom resolution. Patients may require anesthesia to facilitate diagnostic or surgical procedures following concussion; these procedures may or may not be related to the injury that caused the patient to sustain a concussion. As our knowledge about concussion continues to advance, it is imperative that anesthesiologists remain up to date with current principles. This Focused Review will update readers on the latest concussion literature, discuss the potential impact of concussion on perianesthetic care, and identify knowledge gaps in our understanding of concussion.
Collapse
|
26
|
Wilde EA, Wanner I, Kenney K, Gill J, Stone JR, Disner S, Schnakers C, Meyer R, Prager EM, Haas M, Jeromin A. A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury. J Neurotrauma 2022; 39:436-457. [PMID: 35057637 PMCID: PMC8978568 DOI: 10.1089/neu.2021.0099] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elisabeth A. Wilde
- University of Utah, Neurology, 383 Colorow, Salt Lake City, Utah, United States, 84108
- VA Salt Lake City Health Care System, 20122, 500 Foothill Dr., Salt Lake City, Utah, United States, 84148-0002
| | - Ina Wanner
- UCLA, Semel Institute, NRB 260J, 635 Charles E. Young Drive South, Los Angeles, United States, 90095-7332, ,
| | - Kimbra Kenney
- Uniformed Services University of the Health Sciences, Neurology, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, Maryland, United States, 20814
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 1 cloister, Bethesda, Maryland, United States, 20892
| | - James R. Stone
- University of Virginia, Radiology and Medical Imaging, Box 801339, 480 Ray C. Hunt Dr. Rm. 185, Charlottesville, Virginia, United States, 22903, ,
| | - Seth Disner
- Minneapolis VA Health Care System, 20040, Minneapolis, Minnesota, United States
- University of Minnesota Medical School Twin Cities, 12269, 10Department of Psychiatry and Behavioral Sciences, Minneapolis, Minnesota, United States
| | - Caroline Schnakers
- Casa Colina Hospital and Centers for Healthcare, 6643, Pomona, California, United States
- Ronald Reagan UCLA Medical Center, 21767, Los Angeles, California, United States
| | - Restina Meyer
- Cohen Veterans Bioscience, 476204, New York, New York, United States
| | - Eric M Prager
- Cohen Veterans Bioscience, 476204, External Affairs, 535 8th Ave, New York, New York, United States, 10018
| | - Magali Haas
- Cohen Veterans Bioscience, 476204, 535 8th Avenue, 12th Floor, New York City, New York, United States, 10018,
| | - Andreas Jeromin
- Cohen Veterans Bioscience, 476204, Translational Sciences, Cambridge, Massachusetts, United States
| |
Collapse
|
27
|
Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res 2022; 9:2. [PMID: 34991734 PMCID: PMC8740337 DOI: 10.1186/s40779-021-00363-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Military psychiatry, a new subcategory of psychiatry, has become an invaluable, intangible effect of the war. In this review, we begin by examining related military research, summarizing the related epidemiological data, neuropathology, and the research achievements of diagnosis and treatment technology, and discussing its comorbidity and sequelae. To date, advances in neuroimaging and molecular biology have greatly boosted the studies on military traumatic brain injury (TBI). In particular, in terms of pathophysiological mechanisms, several preclinical studies have identified abnormal protein accumulation, blood-brain barrier damage, and brain metabolism abnormalities involved in the development of TBI. As an important concept in the field of psychiatry, TBI is based on organic injury, which is largely different from many other mental disorders. Therefore, military TBI is both neuropathic and psychopathic, and is an emerging challenge at the intersection of neurology and psychiatry.
Collapse
Affiliation(s)
- Ling-Zhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Rui-Li Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shao-Hua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China. .,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China. .,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| | - Jian-Bo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China. .,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China. .,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
28
|
Wang R, Poublanc J, Crawley AP, Sobczyk O, Kneepkens S, Mcketton L, Tator C, Wu R, Mikulis DJ. Cerebrovascular reactivity changes in acute concussion: a controlled cohort study. Quant Imaging Med Surg 2021; 11:4530-4542. [PMID: 34737921 DOI: 10.21037/qims-20-1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
Background Evidence suggests that cerebrovascular reactivity (CVR) increases within the first week after the incidence of concussion, indicating a disruption of normal autoregulation. We sought to extend these findings by investigating the effects of acute concussion on the speed of CVR response and by visualizing global and regional impairments in individual patients with acute concussion. Methods Twelve patients aged 18-40 years who experienced concussion less than a week before this prospective study were included. Twelve age and sex-matched healthy subjects constituted the control group. In all subjects, CVR was assessed using blood oxygenation level-dependent (BOLD) echo-planar imaging with a 3.0T MRI scanner, in combination with changes in end-tidal partial pressure of CO2 (PETCO2). In each subject, we calculated the CVR amplitude and CVR response time in the gray and white matter using a step and ramp PETCO2 challenge. In addition, a separate group of 39 healthy controls who underwent the same evaluation was used to create atlases with voxel-wise mean and standard deviation of CVR amplitude and CVR response time. This allowed us to convert each metric of the 12 patients with concussion and the 12 healthy controls into z-score maps. These maps were then used to generate and compare z-scores for each of the two groups. Group differences were calculated using an unpaired t-test. Results All studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study subjects. No differences in CO2 stimulus and O2 targeting were observed between the two participant groups during BOLD MRI. With regard to the gray matter, the CVR magnitude step (P=0.117) and ramp + 10 (P=0.085) were not significantly different between patients with concussion and healthy controls. However, the tau value was significantly lower in patients with concussion than in the healthy controls (P=0.04). With regard to the white matter, the CVR magnitude step (P=0.003) and ramp + 10 (P=0.031) were significantly higher and the tau value (P=0.024) was significantly shorter in patients with concussion than in healthy controls. After z-score transformation, the z tau value was significantly lower in patients with concussion than in healthy controls (Grey matter P=0.021, White matter P=0.003). Comparison of the three parameters, z ramp + 10, z step, and z tau, between the two groups showed that z step (Grey matter P=0.035, White matter P=0.005) was the most sensitive parameter and that z ramp + 10 (Grey matter P=0.073, White matter P=0.126) was the least sensitive parameter. Conclusions Concussion is associated with patient-specific abnormalities in BOLD cerebrovascular responsiveness that occur in the setting of normal global CVR. This study demonstrates that the measurement of CVR using BOLD MRI and precise CO2 control is a safe, reliable, reproducible, and clinically useful method for evaluating the state of patients with concussion. It has the potential to be an important tool for assessing the severity and duration of symptoms after concussion.
Collapse
Affiliation(s)
- Runrun Wang
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China.,Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Sander Kneepkens
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Larissa Mcketton
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Charles Tator
- Department of Surgery, Division of Neurosurgery, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Renhua Wu
- Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|
30
|
Xu L, Ware JB, Kim JJ, Shahim P, Silverman E, Magdamo B, Dabrowski C, Wesley L, Le MD, Morrison J, Zamore H, Lynch CE, Petrov D, Chen HI, Schuster J, Diaz-Arrastia R, Sandsmark DK. Arterial Spin Labeling Reveals Elevated Cerebral Blood Flow with Distinct Clusters of Hypo- and Hyperperfusion after Traumatic Brain Injury. J Neurotrauma 2021; 38:2538-2548. [PMID: 34115539 PMCID: PMC8403182 DOI: 10.1089/neu.2020.7553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Imaging detection of brain perfusion alterations after traumatic brain injury (TBI) may provide prognostic insights. In this study, we used arterial spin labeling (ASL) to quantify cross-sectional and longitudinal changes in cerebral blood flow (CBF) after TBI and correlated changes with clinical outcome. We analyzed magnetic resonance imaging scans from adult participants with TBI requiring hospitalization in the acute (2 weeks post-injury, n = 33) and chronic (6 months post-injury, n = 16) phases, with 13 participants scanned longitudinally at both time points. We also analyzed 18 age- and sex-matched healthy controls. Whole-brain CBF maps were derived using a three-dimensional pseudo-continuous arterial spin label technique. Mean CBF across tissue-based regions (whole brain, gray matter, and white matter) was compared cross-sectionally and longitudinally. In addition, individual-level clusters of abnormal perfusion were identified using voxel-based z-score analysis of relative CBF maps, and number and volume of abnormally hypo- and hyperperfused clusters were assessed cross-sectionally and longitudinally. Finally, all CBF measures were correlated with clinical outcome measures. Mean global and gray matter CBF were significantly elevated in acute and chronic TBI participants compared to controls. Participants with better outcome at 6 months post-injury tended to have higher CBF in the acute phase compared to those with poorer outcome. Acute TBI participants had a significantly greater volume of hypo- and hyperperfused brain tissue compared to controls, with these regions partially normalizing by the chronic phase. Our findings demonstrate global elevation of CBF with focal hypo- and hyperperfusion in the early post-injury period and suggest a reparative role for acute elevation in CBF post-TBI.
Collapse
Affiliation(s)
- Linda Xu
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey B. Ware
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Junghoon J. Kim
- CUNY School of Medicine, The City College of New York, New York, New York, USA
| | | | - Erika Silverman
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brigid Magdamo
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cian Dabrowski
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Leroy Wesley
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - My Duyen Le
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Justin Morrison
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hannah Zamore
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cillian E. Lynch
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dmitriy Petrov
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - H. Isaac Chen
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James Schuster
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Danielle K. Sandsmark
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Barlow KM, Iyer K, Yan T, Scurfield A, Carlson H, Wang Y. Cerebral Blood Flow Predicts Recovery in Children with Persistent Post-Concussion Symptoms after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2275-2283. [PMID: 33430707 PMCID: PMC9009764 DOI: 10.1089/neu.2020.7566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Persistent post-concussion symptoms (PPCS) following pediatric mild traumatic brain injury (mTBI) are associated with differential changes in cerebral blood flow (CBF). Given its potential as a therapeutic target, we examined CBF changes during recovery in children with PPCS. We hypothesized that CBF would decrease and that such decreases would mirror clinical recovery. In a prospective cohort study, 61 children and adolescents (mean age 14 [standard deviation = 2.6] years; 41% male) with PPCS were imaged with three-dimensional (3D) pseudo-continuous arterial spin-labelled (pCASL) magnetic resonance imaging (MRI) at 4-6 and 8-10 weeks post-injury. Exclusion criteria included any significant past medical history and/or previous concussion within the past 3 months. Twenty-three participants had clinically recovered at the time of the second scan. We found that relative and mean absolute CBF were higher in participants with poor recovery, 44.0 (95% confidence interval [CI]: 43.32, 44.67) than in those with good recovery, 42.19 (95% CI: 41.77, 42.60) mL/min/100 g gray tissue and decreased over time (β = -1.75; p < 0.001). The decrease was greater in those with good recovery (β = 2.29; p < 0.001) and predicted outcome in 77% of children with PPCS (odds ratio [OR] 0.54, 95% CI: 0.36, 0.80; p = 0.002). Future studies are warranted to validate the utility of CBF as a useful predictive biomarker of outcome in PPCS.
Collapse
Affiliation(s)
- Karen M. Barlow
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
- Queensland Children's Hospital, Children's Health Queensland, Brisbane, Queensland, Australia
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kartik Iyer
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Tingting Yan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Scurfield
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen Carlson
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
Cerebral perfusion disturbances in chronic mild traumatic brain injury correlate with psychoemotional outcomes. Brain Imaging Behav 2021; 15:1438-1449. [PMID: 32734434 DOI: 10.1007/s11682-020-00343-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The study explored associations between hemodynamic changes and psychoemotional status in 32 patients with chronic mild traumatic brain injury (mTBI) and 31 age-matched healthy volunteers. Cerebral blood flow (CBF) and cerebral blood volume (CBV) values were obtained using Dynamic Susceptibility Contrast Magnetic Resonance Imaging in brain regions suspected to play a role in anxiety and depression. Patients were administered self-report measures of anxiety and depression symptoms and underwent neuropsychological assessment. As a group mTBI patients scored significantly below age- and education-adjusted population norms on multiple cognitive domains and reported high rates of anxiety and depression symptomatology. Significantly reduced CBF values were detected in the mTBI group compared to controls in dorsolateral prefrontal areas, putamen, and hippocampus, bilaterally. Within the mTBI group, depressive symptomatology was significantly associated with lower perfusion in the left anterior cingulate gyrus and higher perfusion in the putamen, bilaterally. The latter association was independent from verbal working memory capacity. Moreover, anxiety symptomatology was associated with lower perfusion in the hippocampus (after controlling for verbal episodic memory difficulties). Associations between regional perfusion and psychoemotional scores were specific to depression or anxiety, respectively, and independent of the presence of visible lesions on conventional MRI. Results are discussed in relation to the role of specific limbic and paralimbic regions in the pathogenesis of symptoms of depression and anxiety.
Collapse
|
33
|
Rudroff T, Workman CD. Transcranial Direct Current Stimulation as a Treatment Tool for Mild Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11060806. [PMID: 34207004 PMCID: PMC8235194 DOI: 10.3390/brainsci11060806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short- and long-term motor and cognitive impairments. Recent studies have documented the therapeutic potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique used for this purpose is transcranial direct current stimulation (tDCS). The focus of this review was to provide a detailed, comprehensive (i.e., both cognitive and motor impairment) overview of the literature regarding therapeutic tDCS paradigms after mTBI. A publication search of the PubMed, Scopus, CINAHL, and PsycINFO databases was performed to identify records that applied tDCS in mTBI. The publication search yielded 14,422 records from all of the databases, however, only three met the inclusion criteria and were included in the final review. Based on the review, there is limited evidence of tDCS improving cognitive and motor performance. Surprisingly, there were only three studies that used tDCS in mTBI, which highlights an urgent need for more research to provide additional insights into ideal therapeutic brain targets and optimized stimulation parameters.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
34
|
Mester JR, Bazzigaluppi P, Dorr A, Beckett T, Burke M, McLaurin J, Sled JG, Stefanovic B. Attenuation of tonic inhibition prevents chronic neurovascular impairments in a Thy1-ChR2 mouse model of repeated, mild traumatic brain injury. Am J Cancer Res 2021; 11:7685-7699. [PMID: 34335958 PMCID: PMC8315057 DOI: 10.7150/thno.60190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Mild traumatic brain injury (mTBI), the most common type of brain trauma, frequently leads to chronic cognitive and neurobehavioral deficits. Intervening effectively is impeded by our poor understanding of its pathophysiological sequelae. Methods: To elucidate the long-term neurovascular sequelae of mTBI, we combined optogenetics, two-photon fluorescence microscopy, and intracortical electrophysiological recordings in mice to selectively stimulate peri-contusional neurons weeks following repeated closed-head injury and probe individual vessel's function and local neuronal reactivity. Results: Compared to sham-operated animals, mTBI mice showed doubled cortical venular speeds (115 ± 25%) and strongly elevated cortical venular reactivity (53 ± 17%). Concomitantly, the pericontusional neurons exhibited attenuated spontaneous activity (-57 ± 79%) and decreased reactivity (-47 ± 28%). Post-mortem immunofluorescence revealed signs of peri-contusional senescence and DNA damage, in the absence of neuronal loss or gliosis. Alteration of neuronal and vascular functioning was largely prevented by chronic, low dose, systemic administration of a GABA-A receptor inverse agonist (L-655,708), commencing 3 days following the third impact. Conclusions: Our findings indicate that repeated mTBI leads to dramatic changes in the neurovascular unit function and that attenuation of tonic inhibition can prevent these alterations. The sustained disruption of the neurovascular function may underlie the concussed brain's long-term susceptibility to injury, and calls for development of better functional assays as well as of neurovascularly targeted interventions.
Collapse
|
35
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
36
|
Chen Y, Herrold AA, Gallagher V, Martinovich Z, Bari S, Vike NL, Vesci B, Mjaanes J, McCloskey LR, Reilly JL, Breiter HC. Preliminary Report: Localized Cerebral Blood Flow Mediates the Relationship between Progesterone and Perceived Stress Symptoms among Female Collegiate Club Athletes after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:1809-1820. [PMID: 33470158 PMCID: PMC8336258 DOI: 10.1089/neu.2020.7217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Female athletes are under-studied in the field of concussion research, despite evidence of higher injury prevalence and longer recovery time. Hormonal fluctuations caused by the natural menstrual cycle (MC) or hormonal contraceptive (HC) use impact both post-injury symptoms and neuroimaging findings, but the relationships among hormone, symptoms, and brain-based measures have not been jointly considered in concussion studies. In this preliminary study, we compared cerebral blood flow (CBF) measured with arterial spin labeling between concussed female club athletes 3-10 days after mild traumatic brain injury (mTBI) and demographic, HC/MC matched controls (CON). We tested whether CBF statistically mediates the relationship between progesterone serum levels and post-injury symptoms, which may support a hypothesis for progesterone's role in neuroprotection. We found a significant three-way relationship among progesterone, CBF, and perceived stress score (PSS) in the left middle temporal gyrus for the mTBI group. Higher progesterone was associated with lower (more normative) PSS, as well as higher (more normative) CBF. CBF mediates 100% of the relationship between progesterone and PSS (Sobel p value = 0.017). These findings support a hypothesis for progesterone having a neuroprotective role after concussion and highlight the importance of controlling for the effects of sex hormones in future concussion studies.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Virginia Gallagher
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zoran Martinovich
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sumra Bari
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole L. Vike
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Vesci
- Northwestern Health Services Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Jeffrey Mjaanes
- Northwestern Health Services Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Leanne R. McCloskey
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James L. Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans C. Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Chai C, Wang H, Chu Z, Li J, Qian T, Mark Haacke E, Xia S, Shen W. Reduced regional cerebral venous oxygen saturation is a risk factor for the cognitive impairment in hemodialysis patients: a quantitative susceptibility mapping study. Brain Imaging Behav 2021; 14:1339-1349. [PMID: 30511117 DOI: 10.1007/s11682-018-9999-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to noninvasively evaluate the changes of regional cerebral venous oxygen saturation (rSvO2) in hemodialysis patients using quantitative susceptibility mapping (QSM) and investigate the relationship with clinical risk factors and neuropsychological testing. Fifty four (54) hemodialysis patients and 54 age, gender and education matched healthy controls (HCs) were recruited in this prospective study. QSM data were reconstructed from the original phase data of susceptibility weighted imaging to measure the susceptibility of cerebral regional major veins in all subjects and calculate their rSvO2. The differences in rSvO2 between hemodialysis patients and HCs were investigated using analysis of covariance adjusting for age and gender as covariates. Stepwise multiple regression and correlation analysis were performed between the cerebral rSvO2 and clinical factors including neuropsychological testing. The SvO2 of the bilateral cortical, thalamostriate, septal, cerebral internal and basal veins in hemodialysis patients was significantly lower than that in HCs (p < 0.001, Bonferroni corrected). The cerebral rSvO2 in all these veins was reduced by 1.67% to 2.30%. The hematocrit, iron, glucose, pre-and post-dialysis diastolic blood pressure (DBP) were independent predictive factors for the cerebral rSvO2 (all P < 0.05). The Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) scores were both lower in patients than those in HCs (both P < 0.05). The SvO2 of the left cerebral internal vein correlated with MoCA scores (r = 0.492; P = 0.02, FDR corrected). In conclusion, our study indicated that the cerebral rSvO2 was reduced in hemodialysis patients, which was the risk factor for neurocognitive impairment. The hematocrit, iron, glucose, pre-and post-dialysis DBP were independent risk factors for the cerebral rSvO2.
Collapse
Affiliation(s)
- Chao Chai
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Huiying Wang
- School of Graduates, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhiqiang Chu
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jinping Li
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Tianyi Qian
- MR collaboration, Siemens Healthcare, Northeast Asia, Beijing, 100102, China
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, 48202, USA
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
38
|
Weber AM, Zhang Y, Kames C, Rauscher A. Quantitative Susceptibility Mapping of Venous Vessels in Neonates with Perinatal Asphyxia. AJNR Am J Neuroradiol 2021; 42:1327-1333. [PMID: 34255732 DOI: 10.3174/ajnr.a7086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/14/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral venous oxygen saturation can be used as an indirect measure of brain health, yet it often requires either an invasive procedure or a noninvasive technique with poor sensitivity. We aimed to test whether cerebral venous oxygen saturation could be measured using quantitative susceptibility mapping, an MR imaging technique, in 3 distinct groups: healthy term neonates, injured term neonates, and preterm neonates. MATERIALS AND METHODS We acquired multiecho gradient-echo MR imaging data in 16 neonates with perinatal asphyxia and moderate or severe hypoxic-ischemic encephalopathy (8 term age: average, 40.0 [SD, 0.8] weeks' gestational age; 8 preterm, 33.5 [SD, 2.0] weeks' gestational age) and in 8 healthy term-age controls (39.3 [SD, 0.6] weeks, for a total of n = 24. Data were postprocessed as quantitative susceptibility mapping images, and magnetic susceptibility was measured in cerebral veins by thesholding out 99.95% of lower magnetic susceptibility values. RESULTS The mean magnetic susceptibility value of the cerebral veins was found to be 0.36 (SD, 0.04) ppm in healthy term neonates, 0.36 (SD, 0.06) ppm in term injured neonates, and 0.29 (SD, 0.04) ppm in preterm injured neonates. Correspondingly, the derived cerebral venous oxygen saturation values were 73.6% (SD, 2.8%), 71.5% (SD, 7.4%), and 72.2% (SD, 5.9%). There was no statistically significant difference in cerebral venous oxygen saturation among the 3 groups (P = .751). CONCLUSIONS Quantitative susceptibility mapping-derived oxygen saturation values in preterm and term neonates agreed well with values in past literature. Cerebral venous oxygen saturation in preterm and term neonates with hypoxic-ischemic encephalopathy, however, was not found to be significantly different between neonates or healthy controls.
Collapse
Affiliation(s)
- A M Weber
- From the Division of Neurology (A.M.W., A.R.) .,Department of Pediatrics and University of British Columbia MRI Research Centre (A.M.W., C.K., A.R.)
| | - Y Zhang
- Department of Radiology (Y.Z.), Children's Hospital of Chongqing Medical University, Chongqing, China .,Ministry of Education Key Laboratory of Child Development and Disorders (Y.Z.), Chongqing, China.,Key Laboratory of Pediatrics in Chongqing (Y.Z.), Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders (Y.Z.), Chongqing, P.R. China
| | - C Kames
- Department of Pediatrics and University of British Columbia MRI Research Centre (A.M.W., C.K., A.R.).,Department of Physics and Astronomy (C.K., A.R.)
| | - A Rauscher
- From the Division of Neurology (A.M.W., A.R.).,Department of Pediatrics and University of British Columbia MRI Research Centre (A.M.W., C.K., A.R.).,Department of Physics and Astronomy (C.K., A.R.).,Department of Radiology (A.R.), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Sah J, Balucani C, Abrams A, Hisamoto Y, Chari G, Velayudhan V, Pavlakis SG. Pearls & Oy-sters: Sturge-Weber Syndrome Unmasked by Traumatic Brain Injury. Neurology 2021; 96:e1262-e1265. [PMID: 33067405 DOI: 10.1212/wnl.0000000000011075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jeetendra Sah
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD.
| | - Clotilde Balucani
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD
| | - Aaron Abrams
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD
| | - Yoshimi Hisamoto
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD
| | - Geetha Chari
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD
| | - Vinodkumar Velayudhan
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD
| | - Steven G Pavlakis
- From the Departments of Pediatric Neurology (J.S., A.A., Y.H., G.C., S.G.P.) and Radiology (V.V.), SUNY Downstate Health Sciences University, Kings County Hospital Center, Brooklyn, NY; and Johns Hopkins Medicine (C.B.), Department of Neurology, Baltimore, MD
| |
Collapse
|
40
|
Hemachandran N, Meena S, Kumar A, Sharma R, Gupta D, Gamanagatti S. Utility of admission perfusion CT for the prediction of suboptimal outcome following uncomplicated minor traumatic brain injury. Emerg Radiol 2021; 28:541-548. [PMID: 33420847 DOI: 10.1007/s10140-020-01876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To compare the perfusion parameters of patients with uncomplicated mild traumatic brain injury (mTBI) with healthy controls and to assess whether admission perfusion CT parameters can be used to predict outcome at 6 months post-injury in patients with uncomplicated mTBI. METHODS Institute ethical committee approval was obtained for this prospective cohort study and informed written consent obtained from all subjects. Patients who sustained mTBI and had no abnormalities on non-contrast CT from June 2010 to January 2012 (20 months) and 10 healthy controls were included and underwent perfusion CT at admission. Outcome was determined at 6 months follow-up using the extended Glasgow Coma Outcome Scale score. RESULTS Forty-nine patients were included, of which 16 (32.7%) had symptoms at 6 months post-injury (suboptimal outcome). The mean cerebral blood flow and volume were lower in both the gray and white matter of all three arterial territories in the study group than in the control group (p value < 0.05). In the study group, these values were lower in those with suboptimal outcome than in those with optimal outcome (no symptoms). Cerebral blood flow showed higher area under the curve for predicting the outcome. CONCLUSION Perfusion parameters are altered even in patients with uncomplicated mTBI. A single ROI (region of interest) evaluation of the gray matter in the posterior cerebral artery territory on admission perfusion CT could provide a quick and efficient way to predict patients who would have a suboptimal outcome at 6 months post-injury.
Collapse
Affiliation(s)
| | | | - Atin Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Raju Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gupta
- All India Institute of Medical Sciences, New Delhi, India
| | - Shivanand Gamanagatti
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Room no. 81b, 110029, New Delhi, India.
| |
Collapse
|
41
|
Quinn DK, Upston J, Jones T, Brandt E, Story-Remer J, Fratzke V, Wilson JK, Rieger R, Hunter MA, Gill D, Richardson JD, Campbell R, Clark VP, Yeo RA, Shuttleworth CW, Mayer AR. Cerebral Perfusion Effects of Cognitive Training and Transcranial Direct Current Stimulation in Mild-Moderate TBI. Front Neurol 2020; 11:545174. [PMID: 33117255 PMCID: PMC7575722 DOI: 10.3389/fneur.2020.545174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Persistent post-traumatic symptoms (PPS) after traumatic brain injury (TBI) can lead to significant chronic functional impairment. Pseudocontinuous arterial spin labeling (pCASL) has been used in multiple studies to explore changes in cerebral blood flow (CBF) that may result in acute and chronic TBI, and is a promising neuroimaging modality for assessing response to therapies. Methods: Twenty-four subjects with chronic mild-moderate TBI (mmTBI) were enrolled in a pilot study of 10 days of computerized executive function training combined with active or sham anodal transcranial direct current stimulation (tDCS) for treatment of cognitive PPS. Behavioral surveys, neuropsychological testing, and magnetic resonance imaging (MRI) with pCASL sequences to assess global and regional CBF were obtained before and after the training protocol. Results: Robust improvements in depression, anxiety, complex attention, and executive function were seen in both active and sham groups between the baseline and post-treatment visits. Global CBF decreased over time, with differences in regional CBF noted in the right inferior frontal gyrus (IFG). Active stimulation was associated with static or increased CBF in the right IFG, whereas sham was associated with reduced CBF. Neuropsychological performance and behavioral symptoms were not associated with changes in CBF. Discussion: The current study suggests a complex picture between mmTBI, cerebral perfusion, and recovery. Changes in CBF may result from physiologic effect of the intervention, compensatory neural mechanisms, or confounding factors. Limitations include a small sample size and heterogenous injury sample, but these findings suggest promising directions for future studies of cognitive training paradigms in mmTBI.
Collapse
Affiliation(s)
- Davin K Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Emma Brandt
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | | | - Violet Fratzke
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States.,Chicago Medical School, Chicago, IL, United States
| | - J Kevin Wilson
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | - Rebecca Rieger
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | | | - Darbi Gill
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States.,Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.,Mind Research Network, Albuquerque, NM, United States
| | - Ronald A Yeo
- Department of Neuroscience, University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | |
Collapse
|
42
|
Stone JR, Avants BB, Tustison NJ, Wassermann EM, Gill J, Polejaeva E, Dell KC, Carr W, Yarnell AM, LoPresti ML, Walker P, O'Brien M, Domeisen N, Quick A, Modica CM, Hughes JD, Haran FJ, Goforth C, Ahlers ST. Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers. J Neurotrauma 2020; 37:2468-2481. [PMID: 32928028 PMCID: PMC7703399 DOI: 10.1089/neu.2020.7141] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Combat military and civilian law enforcement personnel may be exposed to repetitive low-intensity blast events during training and operations. Persons who use explosives to gain entry (i.e., breach) into buildings are known as “breachers” or dynamic entry personnel. Breachers operate under the guidance of established safety protocols, but despite these precautions, breachers who are exposed to low-level blast throughout their careers frequently report performance deficits and symptoms to healthcare providers. Although little is known about the etiology linking blast exposure to clinical symptoms in humans, animal studies demonstrate network-level changes in brain function, alterations in brain morphology, vascular and inflammatory changes, hearing loss, and even alterations in gene expression after repeated blast exposure. To explore whether similar effects occur in humans, we collected a comprehensive data battery from 20 experienced breachers exposed to blast throughout their careers and 14 military and law enforcement controls. This battery included neuropsychological assessments, blood biomarkers, and magnetic resonance imaging measures, including cortical thickness, diffusion tensor imaging of white matter, functional connectivity, and perfusion. To better understand the relationship between repetitive low-level blast exposure and behavioral and imaging differences in humans, we analyzed the data using similarity-driven multi-view linear reconstruction (SiMLR). SiMLR is specifically designed for multiple modality statistical integration using dimensionality-reduction techniques for studies with high-dimensional, yet sparse, data (i.e., low number of subjects and many data per subject). We identify significant group effects in these data spanning brain structure, function, and blood biomarkers.
Collapse
Affiliation(s)
- James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica Gill
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena Polejaeva
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Kristine C Dell
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Walter Carr
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA.,Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Angela M Yarnell
- Military Emergency Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Matthew L LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Peter Walker
- Health Mission Initiative, DoD Joint Artificial Intelligence Center, Washington, DC, USA
| | - Meghan O'Brien
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Natalie Domeisen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Alycia Quick
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Claire M Modica
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - John D Hughes
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francis J Haran
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carl Goforth
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Stephen T Ahlers
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
43
|
Anesthesia and the brain after concussion. Curr Opin Anaesthesiol 2020; 33:639-645. [PMID: 32796169 DOI: 10.1097/aco.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of acute and chronic repeated concussion. We address epidemiology, pathophysiology, anesthetic utilization, and provide some broad-based care recommendations. RECENT FINDINGS Acute concussion is associated with altered cerebral hemodynamics. These aberrations can persist despite resolution of signs and symptoms. Multiple repeated concussions can cause chronic traumatic encephalopathy, a disorder associated with pathologic findings similar to some organic dementias. Anesthetic utilization is common following concussion, especially soon after injury, a time when the brain may be most vulnerable to secondary injury. SUMMARY Brain physiology may be abnormal following concussion and these abnormalities may persist despite resolutions of clinical manifestations. Those with recent concussion or chronic repeated concussion may be susceptible to secondary injury in the perioperative period. Clinicians should suspect concussion in any patient with recent trauma and strive to maintain cerebral homeostasis in the perianesthetic period.
Collapse
|
44
|
Menshchikov P, Ivantsova A, Manzhurtsev A, Ublinskiy M, Yakovlev A, Melnikov I, Kupriyanov D, Akhadov T, Semenova N. Separate N-acetyl aspartyl glutamate, N-acetyl aspartate, aspartate, and glutamate quantification after pediatric mild traumatic brain injury in the acute phase. Magn Reson Med 2020; 84:2918-2931. [PMID: 32544309 DOI: 10.1002/mrm.28332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To separately measure N-acetyl aspartul glutamate (NAAG), N-acetyl aspartate (NAA), aspartate (Asp), and glutamate (Glu) concentrations in white matter (WM) using J-editing techniques in patients with mild traumatic brain injury (mTBI) in the acute phase. METHODS Twenty-four patients with closed concussive head injury and 29 healthy volunteers were enrolled in the current study. For extended 1 H MRS examination, patients and controls were equally divided into two subgroups. In subgroup 1 (12 patients/15 controls), NAAG and NAA concentrations were measured in WM separately with MEGA-PRESS (echo time/repetition time [TE/TR] = 140/2000 ms; δ ON NAA / δ OFF NAA = 4.84/4.38 ppm, δ ON NAAG / δ OFF NAAG = 4.61/4.15 ppm). In subgroup 2 (12 patients/14 controls), Asp and Glu concentrations were acquired with MEGA-PRESS (TE/TR = 90/2000 ms; δ ON Asp / δ OFF Asp = 3.89/5.21 ppm) and TE-averaged PRESS (TE from 35 ms to 185 ms with 2.5-ms increments; TR = 2000 ms) pulse sequences, respectively. RESULTS tNAA and NAAG concentrations were found to be reduced, while NAA concentrations were unchanged, after mild mTBI. Reduced Asp and elevated myo-inositol (mI) concentrations were also found. CONCLUSION The main finding of the study is that the tNAA signal reduction in WM after mTBI is associated with a decrease in the NAAG concentration rather than a decrease in the NAA concentration, as was thought previously. This finding highlights the importance of separating these signals, at least for WM studies, to avoid misinterpretation of the results. NAAG plays an important role in selectively activating mGluR3 receptors, thus providing neuroprotective and neuroreparative functions immediately after mTBI. NAAG shows potential for the development of new therapeutic strategies for patients with injuries of varying severity.
Collapse
Affiliation(s)
- Petr Menshchikov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Anna Ivantsova
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Andrei Manzhurtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Alexey Yakovlev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Ilya Melnikov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | | | - Tolib Akhadov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| | - Natalia Semenova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation.,Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Moscow, Russian Federation
| |
Collapse
|
45
|
Han X, Chai Z, Ping X, Song LJ, Ma C, Ruan Y, Jin X. In vivo Two-Photon Imaging Reveals Acute Cerebral Vascular Spasm and Microthrombosis After Mild Traumatic Brain Injury in Mice. Front Neurosci 2020; 14:210. [PMID: 32210758 PMCID: PMC7077429 DOI: 10.3389/fnins.2020.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Mild traumatic brain injury (mTBI), or concussion, is reported to interfere with cerebral blood flow and microcirculation in patients, but our current understanding is quite limited and the results are often controversial. Here we used longitudinal in vivo two-photon imaging to investigate dynamic changes in cerebral vessels and velocities of red blood cells (RBC) following mTBI. Closed-head mTBI induced using a controlled cortical impact device resulted in a significant reduction of dwell time in a Rotarod test but no significant change in water maze test. Cerebral blood vessels were repeatedly imaged through a thinned skull window at baseline, 0.5, 1, 6 h, and 1 day following mTBI. In both arterioles and capillaries, their diameters and RBC velocities were significantly decreased at 0.5, 1, and 6 h after injury, and recovered in 1 day post-mTBI. In contrast, decreases in the diameter and RBC velocity of venules occurred only in 0.5–1 h after mTBI. We also observed formation and clearance of transient microthrombi in capillaries within 1 h post-mTBI. We concluded that in vivo two-photon imaging is useful for studying earlier alteration of vascular dynamics after mTBI and that mTBI induced reduction of cerebral blood flow, vasospasm, and formation of microthrombi in the acute stage following injury. These changes may contribute to early brain functional deficits of mTBI.
Collapse
Affiliation(s)
- Xinjia Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,GHM Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zhi Chai
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shaanxi University of Chinese Medicine, Jinzhong, China
| | - Xingjie Ping
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Li-Juan Song
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shaanxi University of Chinese Medicine, Jinzhong, China
| | - Cungen Ma
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shaanxi University of Chinese Medicine, Jinzhong, China
| | - Yiwen Ruan
- GHM Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Jin
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
46
|
Champagne AA, Coverdale NS, Ross A, Chen Y, Murray CI, Dubowitz D, Cook DJ. Multi-modal normalization of resting-state using local physiology reduces changes in functional connectivity patterns observed in mTBI patients. Neuroimage Clin 2020; 26:102204. [PMID: 32058317 PMCID: PMC7013121 DOI: 10.1016/j.nicl.2020.102204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022]
Abstract
Blood oxygenation level dependent (BOLD) resting-state functional magnetic resonance imaging (rs-fMRI) may serve as a sensitive marker to identify possible changes in the architecture of large-scale networks following mild traumatic brain injury (mTBI). Differences in functional connectivity (FC) measurements derived from BOLD rs-fMRI may however be confounded by changes in local cerebrovascular physiology and neurovascular coupling mechanisms, without changes in the underlying neuronally driven connectivity of networks. In this study, multi-modal neuroimaging data including BOLD rs-fMRI, baseline cerebral blood flow (CBF0) and cerebrovascular reactivity (CVR; acquired using a hypercapnic gas breathing challenge) were collected in 23 subjects with reported mTBI (14.6±14.9 months post-injury) and 27 age-matched healthy controls. Despite no group differences in CVR within the networks of interest (P > 0.05, corrected), significantly higher CBF0 was documented in the mTBI subjects (P < 0.05, corrected), relative to the controls. A normalization method designed to account for differences in CBF0 post-mTBI was introduced to evaluate the effects of such an approach on reported group differences in network connectivity. Inclusion of regional perfusion measurements in the computation of correlation coefficients within and across large-scale networks narrowed the differences in FC between the groups, suggesting that this approach may elucidate unique changes in connectivity post-mTBI while accounting for shared variance with CBF0. Altogether, our results provide a strong paradigm supporting the need to account for changes in physiological modulators of BOLD in order to expand our understanding of the effects of brain injury on large-scale FC of cortical networks.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada.
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada.
| | - Andrew Ross
- Performance Phenomics, 180 John St., Toronto ON M5T 1 × 5 Canada.
| | - Yining Chen
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada.
| | | | - David Dubowitz
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
| | - Douglas J Cook
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada; Department of Surgery, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
47
|
Viscoelastic characterization of injured brain tissue after controlled cortical impact (CCI) using a mouse model. J Neurosci Methods 2020; 330:108463. [DOI: 10.1016/j.jneumeth.2019.108463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
|
48
|
Smith LGF, Milliron E, Ho ML, Hu HH, Rusin J, Leonard J, Sribnick EA. Advanced neuroimaging in traumatic brain injury: an overview. Neurosurg Focus 2019; 47:E17. [PMID: 32364704 DOI: 10.3171/2019.9.focus19652] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a common condition with many potential acute and chronic neurological consequences. Standard initial radiographic evaluation includes noncontrast head CT scanning to rapidly evaluate for pathology that might require intervention. The availability of fast, relatively inexpensive CT imaging has fundamentally changed the clinician's ability to noninvasively visualize neuroanatomy. However, in the context of TBI, limitations of head CT without contrast include poor prognostic ability, inability to analyze cerebral perfusion status, and poor visualization of underlying posttraumatic changes to brain parenchyma. Here, the authors review emerging advanced imaging for evaluation of both acute and chronic TBI and include QuickBrain MRI as an initial imaging modality. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI, MR arterial spin labeling, and perfusion CT are reviewed as methods for examining cerebral blood flow following TBI. The authors evaluate MR-based diffusion tensor imaging and functional MRI for prognostication of recovery post-TBI. Finally, MR elastography, MR spectroscopy, and convolutional neural networks are examined as future tools in TBI management. Many imaging technologies are being developed and studied in TBI, and some of these may hold promise in improving the understanding and management of TBI. ABBREVIATIONS ASL = arterial spin labeling; CNN = convolutional neural network; CTP = perfusion CT; DAI = diffuse axonal injury; DMN = default mode network; DOC = disorders of consciousness; DTI = diffusion tensor imaging; FA = fractional anisotropy; fMRI = functional MRI; GCS = Glasgow Coma Scale; MD = mean diffusivity; MRE = MR elastography; MRS = MR spectroscopy; mTBI = mild TBI; NAA = N-acetylaspartate; SWI = susceptibility-weighted imaging; TBI = traumatic brain injury; UHF = ultra-high field.
Collapse
Affiliation(s)
| | - Eric Milliron
- 2The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus; and
| | | | | | | | - Jeffrey Leonard
- 1Department of Neurological Surgery and.,4Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Eric A Sribnick
- 1Department of Neurological Surgery and.,4Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
49
|
Liu W, Yeh PH, Nathan DE, Song C, Wu H, Bonavia GH, Ollinger J, Riedy G. Assessment of Brain Venous Structure in Military Traumatic Brain Injury Patients using Susceptibility Weighted Imaging and Quantitative Susceptibility Mapping. J Neurotrauma 2019; 36:2213-2221. [DOI: 10.1089/neu.2018.5970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Wei Liu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
- The NorthTide Group LLC, Sterling, Virginia
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
- The NorthTide Group LLC, Sterling, Virginia
| | - Dominic E. Nathan
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
- The NorthTide Group LLC, Sterling, Virginia
| | - Chihwa Song
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Helena Wu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
- The NorthTide Group LLC, Sterling, Virginia
| | - Grant H. Bonavia
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Gerard Riedy
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
50
|
Stephens JA, Liu P, Lu H, Suskauer SJ. Cerebral Blood Flow after Mild Traumatic Brain Injury: Associations between Symptoms and Post-Injury Perfusion. J Neurotrauma 2019; 35:241-248. [PMID: 28967326 DOI: 10.1089/neu.2017.5237] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Arterial spin labeling (ASL) has emerged as a technique for assessing mild traumatic brain injury (mTBI), as it can noninvasively evaluate cerebrovascular physiology. To date, there is substantial variability in methodology and findings of ASL studies of mTBI. While both increased and decreased perfusion are reported after mTBI, more consistency is emerging when perfusion is examined with regard to symptomology. We evaluated 15 teenage athletes two and six weeks after sports-related concussion (SRC group) using pseudo-continuous ASL. We acquired comparison data from 15 matched controls from a single time point. At each time point, we completed whole-brain contrasts to evaluate differences between the SRC group and controls in relative cerebral blood flow (rCBF). Cluster-level findings directed region of interest (ROI) analyses to test for group differences in rCBF across the left dorsal anterior cingulate cortex (ACC) and left insula. Finally, we evaluated ROI rCBF and symptomology in the SRC group. At two weeks post-injury, the SRC group had significantly higher rCBF in the left dorsal ACC and left insula than controls; at six weeks post-injury, elevated rCBF persisted in the SRC group in the left dorsal ACC. Perfusion in the left dorsal ACC was higher in athletes reporting physical symptoms six weeks post-injury compared with asymptomatic athletes and controls. Overall, these findings are inconsistent with reports of reduced rCBF after mTBI but coherent with studies that report increased perfusion in persons with greater or persistent mTBI-related symptomology. Future work should continue to assess how CBF perfusion relates to symptomology and recovery after mTBI.
Collapse
Affiliation(s)
- Jaclyn A Stephens
- 1 Kennedy Krieger Institute , Baltimore, Maryland.,2 Department of Occupational Therapy at Colorado State University , Fort Collins, Colorado.,3 Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Peiying Liu
- 4 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Hanzhang Lu
- 4 Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Stacy J Suskauer
- 1 Kennedy Krieger Institute , Baltimore, Maryland.,3 Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine , Baltimore, Maryland.,5 Department of Pediatrics, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|