1
|
Barsky ST, Monks DA. The role of androgens and global and tissue-specific androgen receptor expression on body composition, exercise adaptation, and performance. Biol Sex Differ 2025; 16:28. [PMID: 40269952 PMCID: PMC12016402 DOI: 10.1186/s13293-025-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/23/2025] [Indexed: 04/25/2025] Open
Abstract
Gonadal testosterone stimulates skeletal muscle anabolism and contributes to sexually differentiated adipose distribution through incompletely understood mechanisms. Observations in humans and animal models have indicated a major role for androgen receptor (AR) in mediating sex differences in body composition throughout the lifespan. Traditional surgical, genetic and pharmacological studies have tested systemic actions of circulating androgens, and more recent transgenic approaches have allowed for tests of AR gene function in specific androgen responsive niches contributing to body composition, including: skeletal muscle and surrounding interstitial cells, white and brown adipose, as well as trabecular and cortical bone. Less well understood is how these functions of gonadal androgens interact with exercise. Here, we summarize the understood mechanisms of action of AR and its interactions with exercise, specifically on outcomes of body composition and muscle function, and the global- and tissue-specific role of AR in regulating skeletal muscle, adipose, and bone morphology. Additionally, we describe the known effects of androgen and AR manipulation on female body composition, muscle morphology, and sport performance, while highlighting a need for greater inclusion of female subjects in human and animal muscle physiology and endocrinology research.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, ON, Canada
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, 3359 Mississauga Road North, Deerfield Hall DH4098, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Kim CJ, Hadjiargyrou M. Mustn1 in Skeletal Muscle: A Novel Regulator? Genes (Basel) 2024; 15:829. [PMID: 39062608 PMCID: PMC11276411 DOI: 10.3390/genes15070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Skeletal muscle is a complex organ essential for locomotion, posture, and metabolic health. This review explores our current knowledge of Mustn1, particularly in the development and function of skeletal muscle. Mustn1 expression originates from Pax7-positive satellite cells in skeletal muscle, peaks during around the third postnatal month, and is crucial for muscle fiber differentiation, fusion, growth, and regeneration. Clinically, Mustn1 expression is potentially linked to muscle-wasting conditions such as muscular dystrophies. Studies have illustrated that Mustn1 responds dynamically to injury and exercise. Notably, ablation of Mustn1 in skeletal muscle affects a broad spectrum of physiological aspects, including glucose metabolism, grip strength, gait, peak contractile strength, and myofiber composition. This review summarizes our current knowledge of Mustn1's role in skeletal muscle and proposes future research directions, with a goal of elucidating the molecular function of this regulatory gene.
Collapse
Affiliation(s)
- Charles J. Kim
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA;
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Prakasam R, Bonadiman A, Andreotti R, Zuccaro E, Dalfovo D, Marchioretti C, Tripathy D, Petris G, Anderson EN, Migazzi A, Tosatto L, Cereseto A, Battaglioli E, Sorarù G, Lim WF, Rinaldi C, Sambataro F, Pourshafie N, Grunseich C, Romanel A, Pandey UB, Contestabile A, Ronzitti G, Basso M, Pennuto M. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice. Nat Commun 2023; 14:603. [PMID: 36746939 PMCID: PMC9902531 DOI: 10.1038/s41467-023-36186-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.
Collapse
Affiliation(s)
- Ramachandran Prakasam
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Angela Bonadiman
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- Padova Neuroscience Center, Padova, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Saffron Walden, UK
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alice Migazzi
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Laura Tosatto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Gianni Sorarù
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Wooi Fang Lim
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fabio Sambataro
- Padova Neuroscience Center, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Naemeh Pourshafie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Giuseppe Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
- Genethon, 91000, Evry, France
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Pennuto
- Dulbecco Telethon Institute at the Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
4
|
Hu Z, Xu H, Lu Y, He Q, Yan C, Zhao X, Tian Y, Yang C, Zhang Z, Qiu M, Wang Y. MUSTN1 is an indispensable factor in the proliferation, differentiation and apoptosis of skeletal muscle satellite cells in chicken. Exp Cell Res 2021; 407:112833. [PMID: 34536390 DOI: 10.1016/j.yexcr.2021.112833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
The yield and quality of the skeletal muscle are important economic traits in livestock and poultry production. The musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been shown to be associated with embryonic development, postnatal growth, bone and skeletal muscle regeneration; however, its function in the skeletal muscle development of chicken remains unclear. Therefore, in this study, we observed that the expression level of MUSTN1 increased in conjunction with the proliferation of chicken skeletal muscle satellite cells (SMSCs). Knockdown of MUSTN1 in SMSCs downregulated the expression of cell proliferation genes as Pax7, CDK-2 and differentiation-relate genes including MyoD, MyoG, MyHC and MyH1B, whereas it upregulates the expression of cell apoptosis gene (Caspase-3) (P < 0.05). However, the combined analysis of CCK-8 and EdU showed that the cell vitality and EdU-positive cells of the si-MUSTN1 transfected group were significantly lower than those of the negative siRNA group (P < 0.05). In addition, the knockdown of MUSTN1 significantly increased the cell population in the G0/G1 phase and significantly decreased the cell population in the G2/M phase (P < 0.05), whereas the overexpression of MUSTN1 showed opposite effect. Taken together, our findings indicates that MUSTN1 is an important molecular factor that is responsible for regulating muscle growth and development in chickens, particularly, proliferation and differentiation of SMSCs.
Collapse
Affiliation(s)
- Zhi Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yuxiang Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Qijian He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Chaoyang Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China.
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
5
|
Halievski K, Nath SR, Katsuno M, Adachi H, Sobue G, Breedlove SM, Lieberman AP, Jordan CL. Disease Affects Bdnf Expression in Synaptic and Extrasynaptic Regions of Skeletal Muscle of Three SBMA Mouse Models. Int J Mol Sci 2019; 20:ijms20061314. [PMID: 30875922 PMCID: PMC6470984 DOI: 10.3390/ijms20061314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/01/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is a slowly progressive, androgen-dependent neuromuscular disease in men that is characterized by both muscle and synaptic dysfunction. Because gene expression in muscle is heterogeneous, with synaptic myonuclei expressing genes that regulate synaptic function and extrasynaptic myonuclei expressing genes to regulate contractile function, we used quantitative PCR to compare gene expression in these two domains of muscle from three different mouse models of SBMA: the "97Q" model that ubiquitously expresses mutant human androgen receptor (AR), the 113Q knock-in (KI) model that expresses humanized mouse AR with an expanded glutamine tract, and the "myogenic" model that overexpresses wild-type rat AR only in skeletal muscle. We were particularly interested in neurotrophic factors because of their role in maintaining neuromuscular function via effects on both muscle and synaptic function, and their implicated role in SBMA. We confirmed previous reports of the enriched expression of select genes (e.g., the acetylcholine receptor) in the synaptic region of muscle, and are the first to report the synaptic enrichment of others (e.g., glial cell line-derived neurotrophic factor). Interestingly, all three models displayed comparably dysregulated expression of most genes examined in both the synaptic and extrasynaptic domains of muscle, with only modest differences between regions and models. These findings of comprehensive gene dysregulation in muscle support the emerging view that skeletal muscle may be a prime therapeutic target for restoring function of both muscles and motoneurons in SBMA.
Collapse
Affiliation(s)
- Katherine Halievski
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environment Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu Fukuoka 807-8555, Japan.
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - S Marc Breedlove
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Cynthia L Jordan
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
- Physiology Department, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| |
Collapse
|
6
|
Liu X, Zhu M, Li X, Tang J. Clinical manifestations and AR gene mutations in Kennedy's disease. Funct Integr Genomics 2019; 19:533-539. [PMID: 30612224 DOI: 10.1007/s10142-018-0651-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/02/2018] [Indexed: 11/28/2022]
Abstract
Kennedy's disease, resulted from the expansion of a CAG repeat in exon 1 of androgen receptor (AR) gene, is a motor neuron degenerative disease in the brainstem and spinal cord with the slow development of facial, bulbar, and limb muscle degeneration. To investigate the clinical manifestations and gene mutations in Han Chinese patients with Kennedy's disease. The clinical manifestations of 5 male Han Chinese patients including 2 probands and their relatives from 2 families and 1 sporadic case were retrospectively studied. The CAG repeats in the first exon of AR were screened in 5 Han Chinese people including 2 probands and their healthy relatives from 2 families and 1 sporadic case by polymerase chain reaction (PCR) and direct sequencing. The average age at onset of Kennedy's disease was 48.20 ± 8.70 (mean ± SD) years and the average duration was 7.60 ± 5.32 years. All the patients showed slow onset and progressive weakness, wasting, and fasciculations of the whole body. Four patients demonstrated decreased fertility and 1 patient showed mild gynecomastia. Serum creatine kinase and testosterone levels were elevated mildly in 2 and 1 patients, respectively. The electromyogram showed neurogenic abnormalities. Muscle magnetic resonance demonstrated reduced muscle volume and fatty infiltration. Three different enlarged CAG domains were discovered in the 2 families and 1 sporadic patient with Kennedy's disease, and the CAG repeat number was 48, 43, and 44, respectively. The clinical manifestations of Kennedy's disease in Han Chinese middle-aged men were progressive weakness and atrophy in the bulbar and spinal muscles, occasionally demonstrating incomplete androgen insensitivity syndrome. These patients were also characterized with enlarged CAG repeat number in the first exon of AR, indicating that CAG number could be used in the diagnosis of Han Chinese patients with Kennedy's disease.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| | - Meijia Zhu
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Xiuhua Li
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Hadjiargyrou M. Mustn1: A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene. Int J Mol Sci 2018; 19:ijms19010206. [PMID: 29329193 PMCID: PMC5796155 DOI: 10.3390/ijms19010206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/26/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Abstract
The Mustn1 gene encodes a small nuclear protein (~9.6 kDa) that does not belong to any known family. Its genomic organization consists of three exons interspersed by two introns and it is highly homologous across vertebrate species. Promoter analyses revealed that its expression is regulated by the AP family of transcription factors, especially c-Fos, Fra-2 and JunD. Mustn1 is predominantly expressed in the major tissues of the musculoskeletal system: bone, cartilage, skeletal muscle and tendon. Its expression has been associated with normal embryonic development, postnatal growth, exercise, and regeneration of bone and skeletal muscle. Moreover, its expression has also been detected in various musculoskeletal pathologies, including arthritis, Duchenne muscular dystrophy, other skeletal muscle myopathies, clubfoot and diabetes associated muscle pathology. In vitro and in vivo functional perturbation revealed that Mustn1 is a key regulatory molecule in myogenic and chondrogenic lineages. This comprehensive review summarizes our current knowledge of Mustn1 and proposes that it is a new developmentally regulated pan-musculoskeletal marker as well as a key regulatory protein for cell differentiation and tissue growth.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| |
Collapse
|
8
|
Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Sci Rep 2016; 6:22827. [PMID: 26961006 PMCID: PMC4785366 DOI: 10.1038/srep22827] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models.
Collapse
|