1
|
Xia L, Mei J, Huang M, Bao D, Wang Z, Chen Y. O-GlcNAcylation in ovarian tumorigenesis and its therapeutic implications. Transl Oncol 2025; 51:102220. [PMID: 39616984 DOI: 10.1016/j.tranon.2024.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
Ovarian cancer is a prevalent malignancy among women, often associated with a poor prognosis. Post-translational modifications (PTMs), particularly O-GlcNAcylation, have been implicated in the progression of ovarian cancer. Emerging evidence indicates that dysregulation of O-GlcNAcylation contributes to the initiation and malignant progression of ovarian cancer. This review discusses the potential role of O-GlcNAcylation in ovarian tumorigenesis, with a focus on its regulation of various cellular signaling pathways, including p53, RhoA/ROCK/MLC, Ezrin/Radixin/Moesin (ERM), and β-catenin. This review also emphasizes the O-GlcNAcylation of critical proteins in ovarian cancer, such as SNAP-23, SNAP-29, E-cadherin, and calreticulin. Additionally, the potential of O-GlcNAcylation to enhance immunotherapy for ovarian cancer patients is explored. Several compounds targeting OGT and OGA in ovarian cancer are also highlighted. Targeting the dynamic and versatile nature of O-GlcNAcylation could undoubtedly contribute to more effective treatments and improved outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Min Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Bao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yizhe Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Zhou M, Tian T, Wu C. Mechanism Underlying the Regulation of Mucin Secretion in the Uterus during Pregnancy. Int J Mol Sci 2023; 24:15896. [PMID: 37958878 PMCID: PMC10647571 DOI: 10.3390/ijms242115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The function of endometrial epithelial cells is to secrete various substances that are rich in growth factors and nutrients. These substances support both embryo implantation and its subsequent development into a fetus. A vast number of mucins are expressed in endometrial epithelial cells, and they play an important role in regulating the processes of embryo implantation, pregnancy, and parturition. Previous studies have shown that mucin forms a mucus layer covering endometrial epithelial cells, which helps resist damage from foreign bacteria and their toxins. Therefore, this article aims to investigate the location of mucins in the endometrium, the mechanism of mucin secretion by the endometrium, and the regulation of mucins in the uterine epithelium by reproductive hormones, as well as the role of mucins in the protection of the epithelium's structure. This research aims to provide a foundational understanding for future studies on the role and mechanism of endometrial mucins throughout the pregnancy cycle.
Collapse
Affiliation(s)
| | | | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.Z.); (T.T.)
| |
Collapse
|
3
|
Gentile GM, Gamarra JR, Engels NM, Blue RE, Hoerr I, Wiedner HJ, Hinkle ER, Cote JL, Leverence E, Mills CA, Herring LE, Tan X, Giudice J. The synaptosome-associated protein 23 (SNAP23) is necessary for proper myogenesis. FASEB J 2022; 36:e22441. [PMID: 35816155 PMCID: PMC9836321 DOI: 10.1096/fj.202101627rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023]
Abstract
Vesicle-mediated transport is necessary for maintaining cellular homeostasis and proper signaling. The synaptosome-associated protein 23 (SNAP23) is a member of the SNARE protein family and mediates the vesicle docking and membrane fusion steps of secretion during exocytosis. Skeletal muscle has been established as a secretory organ; however, the role of SNAP23 in the context of skeletal muscle development is still unknown. Here, we show that depletion of SNAP23 in C2C12 mouse myoblasts reduces their ability to differentiate into myotubes as a result of premature cell cycle exit and early activation of the myogenic transcriptional program. This effect is rescued when cells are seeded at a high density or when cultured in conditioned medium from wild type cells. Proteomic analysis of collected medium indicates that SNAP23 depletion leads to a misregulation of exocytosis, including decreased secretion of the insulin-like growth factor 1 (IGF1), a critical protein for muscle growth, development, and function. We further demonstrate that treatment of SNAP23-depleted cells with exogenous IGF1 rescues their myogenic capacity. We propose that SNAP23 mediates the secretion of specific proteins, such as IGF1, that are important for achieving proper differentiation of skeletal muscle cells during myogenesis. This work highlights the underappreciated role of skeletal muscle as a secretory organ and contributes to the understanding of factors necessary for myogenesis.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer R. Gamarra
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabel Hoerr
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L. Cote
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elise Leverence
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine A. Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianming Tan
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Eubanks HB, Lavoie EG, Goree J, Kamykowski JA, Gokden N, Fausther M, Dranoff JA. Reduction in SNAP-23 Alters Microfilament Organization in Myofibrobastic Hepatic Stellate Cells. Gene Expr 2020; 20:25-37. [PMID: 31757226 PMCID: PMC7284106 DOI: 10.3727/105221619x15742818049365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.
Collapse
Affiliation(s)
- Haleigh B. Eubanks
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elise G. Lavoie
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jessica Goree
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey A. Kamykowski
- †Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman Gokden
- ‡Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michel Fausther
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jonathan A. Dranoff
- *Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Abstract
Exocytosis of secreted mucins is the final step in their intracellular processing, resulting in their release into the airway lumen to interact with water and ions to form mucus. Mucins are secreted at a low baseline rate and a high stimulated rate, and both rates are regulated by second messengers acting on components of the exocytic machinery. The principal physiologic function of the low baseline rate is to support steady-state mucociliary clearance of inhaled particles and pathogens that enter the airways during normal breathing. Even in the setting of mucin hyperproduction, baseline secretion generally does not induce mucus occlusion. The principal physiologic function of the high stimulated rate of secretion from both submucosal glands and surface goblet cells in proximal airways appears to be to sweep away larger particles, whereas in distal airways it appears to act in concert with mucin hyperproduction to induce mucus occlusion to trap migrating helminths. Pathophysiologically, stimulated mucin secretion in the setting of mucin hyperproduction from allergic or other types of airway inflammation in the absence of helminth infection causes airflow obstruction and infection. Molecular components of the mucin exocytic machinery are increasingly being identified, and surprisingly, many components are not shared between baseline and stimulated machines. The physiologic significance of the presence of two distinct molecular machines is not yet known, such as whether these interact selectively with secretory granules of different sizes or contents. A full understanding of the mechanism and regulation of airway mucin secretion will provide further insight into pathophysiologic processes and may identify therapeutic strategies to alleviate obstructive airway diseases.
Collapse
|
6
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
7
|
Salavati M, Bush SJ, Palma-Vera S, McCulloch MEB, Hume DA, Clark EL. Elimination of Reference Mapping Bias Reveals Robust Immune Related Allele-Specific Expression in Crossbred Sheep. Front Genet 2019; 10:863. [PMID: 31608110 PMCID: PMC6761296 DOI: 10.3389/fgene.2019.00863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Pervasive allelic variation at both gene and single nucleotide level (SNV) between individuals is commonly associated with complex traits in humans and animals. Allele-specific expression (ASE) analysis, using RNA-Seq, can provide a detailed annotation of allelic imbalance and infer the existence of cis-acting transcriptional regulation. However, variant detection in RNA-Seq data is compromised by biased mapping of reads to the reference DNA sequence. In this manuscript, we describe an unbiased standardized computational pipeline for allele-specific expression analysis using RNA-Seq data, which we have adapted and developed using tools available under open license. The analysis pipeline we present is designed to minimize reference bias while providing accurate profiling of allele-specific expression across tissues and cell types. Using this methodology, we were able to profile pervasive allelic imbalance across tissues and cell types, at both the gene and SNV level, in Texel×Scottish Blackface sheep, using the sheep gene expression atlas data set. ASE profiles were pervasive in each sheep and across all tissue types investigated. However, ASE profiles shared across tissues were limited, and instead, they tended to be highly tissue-specific. These tissue-specific ASE profiles may underlie the expression of economically important traits and could be utilized as weighted SNVs, for example, to improve the accuracy of genomic selection in breeding programs for sheep. An additional benefit of the pipeline is that it does not require parental genotypes and can therefore be applied to other RNA-Seq data sets for livestock, including those available on the Functional Annotation of Animal Genomes (FAANG) data portal. This study is the first global characterization of moderate to extreme ASE in tissues and cell types from sheep. We have applied a robust methodology for ASE profiling to provide both a novel analysis of the multi-dimensional sheep gene expression atlas data set and a foundation for identifying the regulatory and expressed elements of the genome that are driving complex traits in livestock.
Collapse
Affiliation(s)
- Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sergio Palma-Vera
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Reproductive Biology, Dummerstorf, Germany
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
9
|
Zhu B, Zhang Q, Wu Y, Luo J, Zheng X, Xu L, Lu E, Qu J, Ren B. SNAP23 suppresses cervical cancer progression via modulating the cell cycle. Gene 2018; 673:217-224. [PMID: 29908998 DOI: 10.1016/j.gene.2018.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cervical cancer (CC) is one of the most common gynecologic tumors in women worldwide, with poor prognosis and low survival rate. In this study, we identified SNAP23 as a potential tumor suppressor gene in CC. METHODS The expression of SNAP23 in tissues and cell lines were measured by qRT-PCR, western blot and IHC. Knockdown of SNAP23 by siRNA and ectopic expression of SNAP23 by overexpression plasmid were performed to observe the biological function of SNAP23 in CC. Xenograft nude mice models were established to measure its function in vivo. RESULTS SNAP23 was downregulated in CC tissues and had a negative correlation with advanced clinical characteristics. Ectopic expression of SNAP23 suppressed malignant phonotype of CC while knockdown of SNAP23 promoted the progression of CC in vitro. The flow cytometry analysis revealed that SNAP23 exerted its tumor suppressor activity via inducing G2/M cell cycle arrest. Moreover, xenograft tumor models showed that SNAP23 suppresses tumor growth in vivo. CONCLUSIONS Our results revealed that SNAP23 suppressed progression of CC and induced cell cycle G2/M arrest via upregulating p21cip1 and downregulating CyclinB1.
Collapse
Affiliation(s)
- Biqing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China
| | - Quanli Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China
| | - Jing Luo
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiufen Zheng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China.
| | - Emei Lu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China.
| | - Junwei Qu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, PR China
| |
Collapse
|
10
|
Feng D, Amgalan D, Singh R, Wei J, Wen J, Wei TP, McGraw TE, Kitsis RN, Pessin JE. SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy. J Clin Invest 2018; 128:3941-3956. [PMID: 30102258 PMCID: PMC6118598 DOI: 10.1172/jci99217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/26/2018] [Indexed: 01/19/2023] Open
Abstract
The t-SNARE protein SNAP23 conventionally functions as a component of the cellular machinery required for intracellular transport vesicle fusion with target membranes and has been implicated in the regulation of fasting glucose levels, BMI, and type 2 diabetes. Surprisingly, we observed that adipocyte-specific KO of SNAP23 in mice resulted in a temporal development of severe generalized lipodystrophy associated with adipose tissue inflammation, insulin resistance, hyperglycemia, liver steatosis, and early death. This resulted from adipocyte cell death associated with an inhibition of macroautophagy and lysosomal degradation of the proapoptotic regulator BAX, with increased BAX activation. BAX colocalized with LC3-positive autophagic vacuoles and was increased upon treatment with lysosome inhibitors. Moreover, BAX deficiency suppressed the lipodystrophic phenotype in the adipocyte-specific SNAP23-KO mice and prevented cell death. In addition, ATG9 deficiency phenocopied SNAP23 deficiency, whereas ATG7 deficiency had no effect on BAX protein levels, BAX activation, or apoptotic cell death. These data demonstrate a role for SNAP23 in the control of macroautophagy and programmed cell death through an ATG9-dependent, but ATG7-independent, pathway regulating BAX protein levels and BAX activation.
Collapse
Affiliation(s)
- Daorong Feng
- Department of Medicine
- Department of Molecular Pharmacology
| | | | - Rajat Singh
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianwen Wei
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, and
| | - Jennifer Wen
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | | | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, USA
| | - Richard N. Kitsis
- Department of Medicine
- Department of Cell Biology, and
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jeffrey E. Pessin
- Department of Medicine
- Department of Molecular Pharmacology
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Wilf Family Cardiovascular Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells. Oncotarget 2017; 7:33220-8. [PMID: 27121208 PMCID: PMC5078088 DOI: 10.18632/oncotarget.8903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.
Collapse
|
12
|
Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R739-R752. [PMID: 28356294 DOI: 10.1152/ajpregu.00002.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic β-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional β-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Debbie C Thurmond
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and .,Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
13
|
Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D, Darling A, Trotter JH, Stothert AR, Nordhues BA, Lussier A, Baker J, Shelton L, Kahn M, Blair LJ, Stevens SM, Dickey CA. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 2016; 35:1537-49. [PMID: 27261198 PMCID: PMC4946142 DOI: 10.15252/embj.201593489] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dali Zheng
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jonathan J Sabbagh
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Mackenzie D Martin
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - April Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Andrew R Stothert
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Bryce A Nordhues
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - April Lussier
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Jeremy Baker
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Lindsey Shelton
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Mahnoor Kahn
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Laura J Blair
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell, Molecular and Life Sciences, University of South Florida, Tampa, FL, USA
| | - Chad A Dickey
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA James A. Haley Veteran's Hospital, Tampa, FL, USA
| |
Collapse
|