1
|
Zhan C, Jia R, Yang S, Zhang M, Peng L. Transcriptome Analysis Reveals the Mechanism of Cold-Induced Sweetening in Chestnut during Cold Storage. Foods 2024; 13:2822. [PMID: 39272587 PMCID: PMC11394792 DOI: 10.3390/foods13172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Chestnuts become sweetened with better tastes for fried products after cold storage, but the possible mechanism is not clear. The dynamics of sugar components and related physiological responses, as well as the possible molecular mechanism in chestnuts during cold storage, were investigated. Sucrose accumulation and starch degradation contributed to taste improvement. Sucrose content reached the peak after two months of cold storage, along with the accumulation of reducing sugars of maltose, fructose and glucose to a much lesser extent. Meanwhile, alpha-amylase and beta-amylase maintained high levels, and the activities of acid invertase and sucrose synthase increased. Transcriptome data demonstrated that differentially expressed genes (DEGs) were significantly enriched in the process of starch and sucrose metabolism pathway, revealing the conversion promotion of starch to sucrose. Furthermore, DEGs involved in multiple phytohormone biosynthesis and signal transduction, as well as the transcription regulators, indicated that sucrose accumulation might be interconnected with the dormancy release of chestnuts, with over 90% germinated after two months of cold storage. Altogether, the results indicated that cold storage improved the taste of chestnuts mainly due to sucrose accumulation induced by DEGs of starch and sucrose metabolism pathway in this period, and the sweetening process was interconnected with dormancy release.
Collapse
Affiliation(s)
- Chun Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruqi Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuzhen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihong Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Litao Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
DI P, YAN Y, WANG P, YAN M, WANG YP, HUANG LQ. Integrative SMRT sequencing and ginsenoside profiling analysis provide insights into the biosynthesis of ginsenoside in Panax quinquefolium. Chin J Nat Med 2022; 20:614-626. [DOI: 10.1016/s1875-5364(22)60198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/28/2022]
|
3
|
Ge N, Yang K, Yang L, Meng ZG, Li LG, Chen JW. iTRAQ and RNA-seq analyses provide an insight into mechanisms of recalcitrance in a medicinal plant Panax notoginseng seeds during the after-ripening process. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:68-88. [PMID: 34822750 DOI: 10.1071/fp21197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an important economic and medicinal plant from the family of Araliaceae, and its seed is characterised by the recalcitrance and after-ripening process. However, the molecular mechanism on the dehydration sensitivity is not clear in recalcitrant seeds. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) and RNA-seq were used to analyse the proteomic and transcriptomic changes in seeds of P. notoginseng in days after-ripening (DAR). A total of 454 differentially expressed proteins (DEPs) and 12000 differentially expressed genes (DEGs) were obtained. The activity of enzymes related to antioxidant system were significantly increased, and the late embryogenesis abundant (LEA) protein family and most members of glutathione metabolism enzymes have been downregulated during the after-ripening process. The lack or inadequate accumulation of LEA proteins in the embryo and the low activity of antioxidant defense in glutathione metabolism might be the key factors leading to the dehydration sensitivity in recalcitrant seeds of P. notoginseng. In addition, the increased activity of elycolysis (EMP), citric acid cycle (TCA) and pentose phosphate pathway (PPP) pathways might be one of important signals to complete the after-ripening process. Overall, our study might provide a new insight into the molecular mechanism on dehydration sensitivity of recalcitrant seeds.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China; and National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, Yunnan 650201, China
| |
Collapse
|
4
|
Liao D, An R, Wei J, Wang D, Li X, Qi J. Transcriptome profiles revealed molecular mechanisms of alternating temperatures in breaking the epicotyl morphophysiological dormancy of Polygonatum sibiricum seeds. BMC PLANT BIOLOGY 2021; 21:370. [PMID: 34384392 PMCID: PMC8359049 DOI: 10.1186/s12870-021-03147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/27/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND To adapt seasonal climate changes under natural environments, Polygonatum sibiricum seeds have a long period of epicotyl morphophysiological dormancy, which limits their wide-utilization in the large-scale plant progeny propagation. It has been proven that the controlled consecutive warm and cold temperature treatments can effectively break and shorten this seed dormancy status to promote its successful underdeveloped embryo growth, radicle emergence and shoot emergence. To uncover the molecular basis of seed dormancy release and seedling establishment, a SMRT full-length sequencing analysis and an Illumina sequencing-based comparison of P. sibiricum seed transcriptomes were combined to investigate transcriptional changes during warm and cold stratifications. RESULTS A total of 87,251 unigenes, including 46,255 complete sequences, were obtained and 77,148 unigenes (88.42%) were annotated. Gene expression analyses at four stratification stages identified a total of 27,059 DEGs in six pairwise comparisons and revealed that more differentially expressed genes were altered at the Corm stage than at the other stages, especially Str_S and Eme. The expression of 475 hormone metabolism genes and 510 hormone signaling genes was modulated during P. sibiricum seed dormancy release and seedling emergence. One thousand eighteen transcription factors and five hundred nineteen transcription regulators were detected differentially expressed during stratification and germination especially at Corm and Str_S stages. Of 1246 seed dormancy/germination known DEGs, 378, 790, and 199 DEGs were associated with P. sibiricum MD release (Corm vs Seed), epicotyl dormancy release (Str_S vs Corm), and the seedling establishment after the MPD release (Eme vs Str_S). CONCLUSIONS A comparison with dormancy- and germination-related genes in Arabidopsis thaliana seeds revealed that genes related to multiple plant hormones, chromatin modifiers and remodelers, DNA methylation, mRNA degradation, endosperm weakening, and cell wall structures coordinately mediate P. sibiricum seed germination, epicotyl dormancy release, and seedling establishment. These results provided the first insights into molecular regulation of P. sibiricum seed epicotyl morphophysiological dormancy release and seedling emergence. They may form the foundation of future studies regarding gene interaction and the specific roles of individual tissues (endosperm, newly-formed corm) in P. sibiricum bulk seed dormancy.
Collapse
Affiliation(s)
- Dengqun Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ruipeng An
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
- The Key Laboratory of Plant Physiology and Molecular Pathology, Hebei province, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Dongmei Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, Hebei, China
- The Key Laboratory of Plant Physiology and Molecular Pathology, Hebei province, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jianjun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
5
|
The dehiscence process in Panax ginseng seeds and the stigmasterol biosynthesis pathway in terms of metabolomics. J Ginseng Res 2021; 46:225-234. [PMID: 35509817 PMCID: PMC9058826 DOI: 10.1016/j.jgr.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
Background Ginseng, officially known as Panax ginseng Meyer, has been traditionally used as a medicinal herb, particularly in Asia. Ginseng is propagated from seeds; however, seed germination is challenging, especially in its natural environment on farms. The seeds typically exhibit morphophysiological dormancy and require release from both morphological and physiological dormancy before germination. Although some studies have proposed methods for increasing seed germination rates, the underlying mechanisms of its dormancy release process remain unclear. Here, we investigated metabolic alterations during dehiscence in P. ginseng to determine their potential roles in dormancy release. Methods We compared the ginseng seed metabolome before and after dehiscence and the ginsenoside and phytosterol compositions of the seeds in both periods in the presence of related enzymes. Results After seed dehiscence, the sugar, amino acid, and squalene concentrations were significantly altered, phytosterols associated with the stigmasterol biosynthesis pathway were increased, while ginsenoside and brassinosteroid levels were not significantly altered. In addition, squalene epoxidase, cycloartenol synthase, 24-methylenesterol C-methyltransferase, and the stigmasterol biosynthesis pathway were activated. Conclusion Overall, our findings suggest that morphological activities that facilitate ginseng seed growth are the primary phenomena occurring during the dehiscence process. This study improves the understanding of P. ginseng germination processes and promotes further research of its germination and cultivation.
Collapse
|
6
|
Gómez-Maqueo X, Figueroa-Corona L, Martínez-Villegas JA, Soriano D, Gamboa-deBuen A. The Relevance of a Physiological-Stage Approach Study of the Molecular and Environmental Factors Regulating Seed Germination in Wild Plants. PLANTS 2021; 10:plants10061084. [PMID: 34071163 PMCID: PMC8226667 DOI: 10.3390/plants10061084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Germination represents the culmination of the seed developmental program and is affected by the conditions prevailing during seed maturation in the mother plant. During maturation, the dormancy condition and tolerance to dehydration are established. These characteristics are modulated by the environment to which they are subjected, having an important impact on wild species. In this work, a review was made of the molecular bases of the maturation, the processes of dormancy imposition and loss, as well as the germination process in different wild species with different life histories, and from diverse habitats. It is also specified which of these species present a certain type of management. The impact that the domestication process has had on certain characteristics of the seed is discussed, as well as the importance of determining physiological stages based on morphological characteristics, to face the complexities of the study of these species and preserve their genetic diversity and physiological responses.
Collapse
Affiliation(s)
- Ximena Gómez-Maqueo
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Laura Figueroa-Corona
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Jorge Arturo Martínez-Villegas
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
| | - Diana Soriano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alicia Gamboa-deBuen
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (X.G.-M.); (L.F.-C.); (J.A.M.-V.)
- Correspondence:
| |
Collapse
|
7
|
Kumar R, Sharma V, Suresh S, Ramrao DP, Veershetty A, Kumar S, Priscilla K, Hangargi B, Narasanna R, Pandey MK, Naik GR, Thomas S, Kumar A. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front Genet 2021; 12:637141. [PMID: 33889179 PMCID: PMC8055929 DOI: 10.3389/fgene.2021.637141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the current era, one of biggest challenges is to shorten the breeding cycle for rapid generation of a new crop variety having high yield capacity, disease resistance, high nutrient content, etc. Advances in the "-omics" technology have revolutionized the discovery of genes and bio-molecules with remarkable precision, resulting in significant development of plant-focused metabolic databases and resources. Metabolomics has been widely used in several model plants and crop species to examine metabolic drift and changes in metabolic composition during various developmental stages and in response to stimuli. Over the last few decades, these efforts have resulted in a significantly improved understanding of the metabolic pathways of plants through identification of several unknown intermediates. This has assisted in developing several new metabolically engineered important crops with desirable agronomic traits, and has facilitated the de novo domestication of new crops for sustainable agriculture and food security. In this review, we discuss how "omics" technologies, particularly metabolomics, has enhanced our understanding of important traits and allowed speedy domestication of novel crop plants.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Srinivas Suresh
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Akash Veershetty
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Sharan Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Kagolla Priscilla
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Rahul Narasanna
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Manish Kumar Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Sherinmol Thomas
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
8
|
Zhang D, Li W, Chen ZJ, Wei FG, Liu YL, Gao LZ. SMRT- and Illumina-based RNA-seq analyses unveil the ginsinoside biosynthesis and transcriptomic complexity in Panax notoginseng. Sci Rep 2020; 10:15310. [PMID: 32943706 PMCID: PMC7499265 DOI: 10.1038/s41598-020-72291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Panax notoginseng is one of the most widely used traditional Chinese herbs with particularly valued roots. Triterpenoid saponins are mainly specialized secondary metabolites, which medically act as bioactive components. Knowledge of the ginsenoside biosynthesis in P. notoginseng, which is of great importance in the industrial biosynthesis and genetic breeding program, remains largely undetermined. Here we combined single molecular real time (SMRT) and Second-Generation Sequencing (SGS) technologies to generate a widespread transcriptome atlas of P. notoginseng. We mapped 2,383 full-length non-chimeric (FLNC) reads to adjacently annotated genes, corrected 1,925 mis-annotated genes and merged into 927 new genes. We identified 8,111 novel transcript isoforms that have improved the annotation of the current genome assembly, of which we found 2,664 novel lncRNAs. We characterized more alternative splicing (AS) events from SMRT reads (20,015 AS in 6,324 genes) than Illumina reads (18,498 AS in 9,550 genes), which contained a number of AS events associated with the ginsenoside biosynthesis. The comprehensive transcriptome landscape reveals that the ginsenoside biosynthesis predominantly occurs in flowers compared to leaves and roots, substantiated by levels of gene expression, which is supported by tissue-specific abundance of isoforms in flowers compared to roots and rhizomes. Comparative metabolic analyses further show that a total of 17 characteristic ginsenosides increasingly accumulated, and roots contained the most ginsenosides with variable contents, which are extraordinarily abundant in roots of the three-year old plants. We observed that roots were rich in protopanaxatriol- and protopanaxadiol-type saponins, whereas protopanaxadiol-type saponins predominated in aerial parts (leaves, stems and flowers). The obtained results will greatly enhance our understanding about the ginsenoside biosynthetic machinery in the genus Panax.
Collapse
Affiliation(s)
- Dan Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Zhong-Jian Chen
- Wenshan Sanqi Institute of Science and Technology, Wenshan University, Wenshan, 663000, China
| | - Fu-Gang Wei
- Wenshan Miaoxiang Notoginseng Industral Co., LTD, Wenshan, 663000, China
| | - Yun-Long Liu
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204, China
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China. .,Plant Germplasm and Genomics Center, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
9
|
Till 2018: a survey of biomolecular sequences in genus Panax. J Ginseng Res 2020; 44:33-43. [PMID: 32095095 PMCID: PMC7033366 DOI: 10.1016/j.jgr.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.
Collapse
|
10
|
Yang K, Yang L, Fan W, Long GQ, Xie SQ, Meng ZG, Zhang GH, Yang SC, Chen JW. Illumina-based transcriptomic analysis on recalcitrant seeds of Panax notoginseng for the dormancy release during the after-ripening process. PHYSIOLOGIA PLANTARUM 2019; 167:597-612. [PMID: 30548605 DOI: 10.1111/ppl.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Panax notoginseng (Burk) F.H. Chen is an economically and medicinally important plant of the family Araliacease, with seed dormancy being a key factor limiting the extended cultivation of P. notoginseng. The seeds belong to the morphophysiological dormancy (MPD) group, and it has also been described as the recalcitrant seed. To date, the molecular mechanism of dormancy release in the recalcitrant seed of P. notoginseng is unknown. In the present study, the transcript profiles of seeds from different after-ripening stages (0, 20, 40 and 60 days) were investigated using Illumina Hiseq 2500 technology. 91 979 946 clean reads were generated, and 81 575 unigenes were annotated in at least one database. In addition, the differentially expressed genes (DEGs) were identified by the pairwise comparisons. We screened out 2483 DEGs by the three key groups of 20 days vs 0 d, 40 d vs 0 d and 60 d vs 0 d. The DEGs were analyzed by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation. Meanwhile, we obtained 78 DEGs related to seeds dormancy release at different after-ripening stages of P. notoginseng, of which 15 DEGs were associated with abscisic acid and gibberellin. 26 DEGs that encode late embryogenesis abundant protein and antioxidant enzyme were correlated with desiccation tolerance in seeds. In summary, the results obtained here showed that PECTINESTERASE-2-LIKE, GA-INSENSITIVE, ENT-KAURENE SYNTHASE, PROTEIN PHOSPHATASE 2C, GIBBERELLIN 2-BETA-DIOXYGENASE, SUPEROXIDE DISMUTASE, L-ASCORBATE PEROXIDASE, CATALASE, LATE EMBRYOGENESIS ABUNDANT PROTEIN DC3 and DEHYDRIN 9 were potentially involved in dormancy release and desiccation sensitivity of P. notoginseng seeds. The data might provide a basis for researches on MPD.
Collapse
Affiliation(s)
- Kai Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Fan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Qiang Long
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shi-Qing Xie
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
11
|
Kavas M, Kurt Kızıldoğan A, Balık Hİ. Gene expression analysis of bud burst process in European hazelnut ( Corylus avellana L.) using RNA-Seq. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:13-29. [PMID: 30804627 PMCID: PMC6352538 DOI: 10.1007/s12298-018-0588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 05/27/2023]
Abstract
The control of bud burst process depending on temperature is crucial factor in woody perennial plants to survive in unfavorable ecological conditions. Although it has important economic and agronomic values, little information is available on the molecular mechanism of the bud burst process in Corylus avellana. Here for the first time, we conducted a de novo transcriptome-based experiment using eco-dormant leaf bud tissues. Four transcriptome libraries were constructed from the leaf bud tissues and sequenced via Illumina platform. Transcriptome analysis revealed 86,394 unigenes with a mean length of 1189 nt and an N50 of 1916 nt. Among these unigenes, 63,854 (73.78%) of them were annotated by at least one database. De novo assembled transcripts were enriched in phenylpropanoid metabolism, phytohormone biosynthesis and signal transduction pathways. Analyses of phytohormone-associated genes revealed important changes during bud burst, in response to gibberellic acid, auxin, and brassinosteroids. Approximately 2163 putative transcription factors were predicted, of which the largest number of unique transcripts belonged to the MYB transcription factor family. These results contribute to a better understanding of the regulation of bud burst genes in perennial plants.
Collapse
Affiliation(s)
- Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Aslıhan Kurt Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Hüseyin İrfan Balık
- Giresun Hazelnut Research Station, Ministry of Food, Agriculture and Livestock, Giresun, Turkey
| |
Collapse
|
12
|
Ma Y, Chen X, Guo B. Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy. PLANT CELL REPORTS 2018; 37:1061-1075. [PMID: 29796945 DOI: 10.1007/s00299-018-2291-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Key genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy release were identified using phytochemistry, transcriptomics, and bioinformatic methods. The molecular mechanism of seed morphophysiological dormancy of Epimedium pseudowushanense B.L.Guo. remains largely unknown. The endogenous abscisic acid (ABA) and gibberellin (GA) content of E. pseudowushanense seeds at three developmental stages were quantitatively determined. The results showed the levels of ABA in E. pseudowushanense seeds decreased during seed embryo growth and development, while levels of GA3 increased during seed embryo growth, and levels of GA4 increased during seed dormancy release and seed sprouting. A high-throughput sequencing method was used to determine the E. pseudowushanense seed transcriptome. The transcriptome data were assembled as 178,613 unigenes and the numbers of differentially expressed unigenes between the seed development stages were compared. Computer analysis of reference pathways revealed that 12 candidate genes were likely to be involved in metabolism and signalling of ABA and GAs. The expression patterns of these genes were revealed by real-time quantitative PCR. Phylogenetic relationships among the deduced E. pseudowushanense proteins and their homologous proteins in other plant species were analysed. The results indicated that EpNCED1, EpNCED2, EpCYP707A1, and EpCYP707A2 are likely to be involved in ABA biosynthesis and catabolism. EpSnRK2 is likely implicated in ABA signalling during seed dormancy. EpGA3ox is likely to be involved in GA biosynthesis. EpDELLA1 and EpDELLA2 are likely implicated in GA signalling. This study is the first to provide the E. pseudowushanense seed transcriptome and the key genes involved in metabolism and signalling of ABA and GAs, and it is valuable for studies on the mechanism of seed morphophysiological dormancy.
Collapse
Affiliation(s)
- Yimian Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Xiangdong Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, No.151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
13
|
Silva J, Kim YJ, Xiao D, Sukweenadhi J, Hu T, Kwon WS, Hu J, Yang DC, Zhang D. Cytological analysis of ginseng carpel development. PROTOPLASMA 2017; 254:1909-1922. [PMID: 28154963 DOI: 10.1007/s00709-017-1081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Panax ginseng Meyer, commonly known as ginseng, is considered one of the most important herbs with pharmaceutical values due to the presence of ginsenosides and is cultivated for its highly valued root for medicinal purposes. Recently, it has been recognized that ginseng fruit contains high contents of triterpene such as ginsenoside Re as pharmaceutical compounds. However, it is unclear how carpel, the female reproductive tissue of flowers, is formed during the three-year-old growth before fruit is formed in ginseng plants. Here, we report P. ginseng carpel development at the cytological level, starting from the initial stage of ovule development to seed development. The carpel of P. ginseng is composed of two free stigmas, two free styles, and one epigynous bilocular ovary containing one ovule in each locule. Based on our cytological study, we propose that the female reproductive development in P. ginseng can be classified into seven stages: early phase of ovule development, megasporogenesis, megagametogenesis, pre-fertilization, fertilization, post-fertilization, and seed development. We also describe the correlation of the female and male gametophyte development and compare morphological differences in carpel development between ginseng and other higher plants. One unique feature for ginseng seed development is that it takes 40 days for the embryo to develop to the early torpedo stage and that the embryo is small relative to the seed size, which could be a feature of taxonomic importance. This study will provide an integral tool for the study of the reproductive development and breeding of P. ginseng.
Collapse
Affiliation(s)
- Jeniffer Silva
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China.
| | - Dexin Xiao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Johan Sukweenadhi
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea
| | - Tingting Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Woo-Saeng Kwon
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea
| | - Jianping Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Deok-Chun Yang
- Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, South Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China.
| |
Collapse
|
14
|
Liu M, Wang Q, Xie H, Liu S, Wang S, Zhang H, Zhao Y. UDP and NTF2 are the most consistently expressed genes in Panax ginseng roots at different growth stages. Mol Med Rep 2017; 15:4382-4390. [PMID: 28440415 DOI: 10.3892/mmr.2017.6494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
Abstract
Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis relies on normalization against a consistently expressed reference gene. However, it has been reported that reference gene expression levels often vary markedly between samples as they are usually selected based solely on convention. The advent of RNA sequencing technology offers the opportunity to select reference genes with the least variability in steady‑state transcript levels. To identify the most consistently stable genes, which are a prerequisite for obtaining reliable gene expression data, the present study analyzed transcriptomes from six Panax ginseng transcriptome data sets, representing six growth stages, and selected 21 candidate reference genes for screening using RT‑qPCR. Of the 21 candidate genes, 13 had not been reported previously. The geNorm, NormFinder and BestKeeper programs were used to analyze the stability of the 21 candidate reference genes. The results showed that UDP‑N‑acetylgalactosamine transporter and nuclear transport factor 2 were likely to be the optimal combination of reference genes for use in investigations of ginseng. The novel reference genes were validated by correlating the gene expression profiles of four pathogenesis‑related protein genes generated from RT‑qPCR, with their expression levels calculated from the RNA sequencing data. The expression levels were well correlated, which demonstrated their value in performing RT‑qPCR analyses in ginseng.
Collapse
Affiliation(s)
- Meichen Liu
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Qun Wang
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Hongmei Xie
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shichao Liu
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Siming Wang
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Hui Zhang
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yu Zhao
- Center of Chinese Medicine and Bio‑Engineering Research, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|