1
|
Joo B, Park HJ, Park M, Suh SH, Ahn SJ. Establishing Normative Values for Entire Spinal Cord Morphometrics in East Asian Young Adults. Korean J Radiol 2025; 26:146-155. [PMID: 39898395 PMCID: PMC11794285 DOI: 10.3348/kjr.2024.0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE The quantitative assessment of spinal cord volume is still in the early stages of development. Recently, normative morphometric values of the cervical spinal cord have been reported. This study aimed to establish normative values for spinal cord morphometry, extending beyond the cervical region to include the thoracic and lumbar spinal cord, and to examine the influence of sex and ethnicity on these measurements. MATERIALS AND METHODS This prospective study included 28 young, healthy, East Asian volunteers (14 males and 14 females; mean age, 30.14 ± 4.07 years) who underwent spinal cord MRI using a 3T scanner. The cross-sectional areas (CSAs), anteroposterior (AP) and transverse diameters, and compression ratios of the entire spinal cord were calculated. Additionally, the effects of sex and ethnicity on spinal cord volumetry were evaluated, with the influence of ethnicity assessed by comparing the findings with a Caucasian dataset from the PAM50 study. RESULTS The CSAs demonstrated two enlargements at the cervical and lumbar levels. The cervical enlargement at C4-5 exhibited an elliptical shape, while the lumbar enlargement at T12 appeared more circular. The CSAs and AP and transverse diameters of the spinal cords in males were significantly larger than that of females (P < 0.001). The spinal cord compression ratios in East Asians were significantly lower than those in Caucasians (P < 0.001). CONCLUSION This study revealed that the two spinal cord enlargements exhibit different patterns and suggest significant differences in spinal cord morphometric values according to sex and ethnicity.
Collapse
Affiliation(s)
- Bio Joo
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Mongay-Ochoa N, Pareto D, Alberich M, Carbonell-Mirabent P, Valsasina P, Margoni M, Braga N, Vidal-Jordana A, Auger C, Tintore M, Meani A, Gobbi C, Zecca C, Barkhof F, Schoonheim MM, Strijbis EMM, Gallo A, Bisecco A, Ciccarelli O, De Angelis F, Yiannakas MC, Palace J, Matthews L, Gass A, Eisele P, Lukas C, Bellenberg B, Preziosa P, Montalban X, Rocca MA, Filippi M, Rovira À, Sastre-Garriga J. Association of the Cervical Canal Area With Disability and Progression in People With Multiple Sclerosis. Neurology 2025; 104:e210136. [PMID: 39666921 DOI: 10.1212/wnl.0000000000210136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), brain reserve serves as a protective factor against cognitive impairment. Previous research has suggested a structural counterpart in the spine-spinal cord reserve-seemed to be associated with physical disability. This study aimed to investigate the potential of the cervical canal area (CCaA) as a proxy for spinal cord reserve in a multicentric cohort of people with MS (PwMS). METHODS This retrospective, multicentric, longitudinal study included PwMS and healthy controls (HCs) from 9 European MAGNIMS sites. Baseline cervical 3D T1-weighted images were acquired, excluding poor-quality images. CCaA was estimated independently at the C2/C3 and C3/C4 levels. The Expanded Disability Status Scale (EDSS) score was assessed at baseline and 5-year follow-up. We analyzed mean CCaA differences between groups and the association of CCaA with baseline EDSS scores and disability progression using multivariable regression models adjusted for age, sex, spinal cord parenchymal fraction, and cervical cord lesions. RESULTS After quality check, the cohort included 177 HCs (mean age 39.8 years, 57.6% women) and 428 PwMS (mean age 46.5 years, 60.8% women), comprising 289 people with relapsing MS (PwRMS) and 139 people with progressive MS (PwPMS). No significant differences in CCaA were found between HCs and PwRMS at C2/C3 or C3/C4 levels. Conversely, PwPMS showed a smaller CCaA at the C2/C3 level (210.51 mm2) than HCs (214.62 mm2, estimated mean difference [EMD] -4.11, 95% CI -6.28 to -1.00, p = 0.007) and PwRMS (213.68 mm2, EMD -3.17, 95% CI -5.22 to -0.34, p = 0.026). PwPMS also had a smaller CCaA at C3/C4 (165.16 mm2) than HCs (169.67 mm2, EMD -4.51, 95% CI -5.50 to -1.60, p < 0.001) and PwRMS (169.44 mm2, EMD -3.81, 95% CI -5.22 to -0.34, p < 0.001). At the C3/C4 level, CCaA and baseline EDSS scores were significantly associated (β = -0.13, p < 0.001); in addition, PwMS with clinical worsening at 5-year follow-up displayed a smaller baseline CCaA (worsened vs stable: 167.03 mm2 vs 169.13 mm2, EMD -2.10, 95% CI -3.98 to -023, p = 0.028). DISCUSSION CCaA was associated with baseline EDSS scores and clinical worsening in a multicentric MS cohort, suggesting the existence of spinal cord reserve. PwPMS had a smaller CCaA, indicating that reduced spinal cord reserve might be characteristic of progressive MS. Therefore, spinal cord reserve may represent a novel radiologic marker for better understanding physical disability in MS.
Collapse
Affiliation(s)
- Neus Mongay-Ochoa
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Deborah Pareto
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manel Alberich
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pere Carbonell-Mirabent
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nathane Braga
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Vidal-Jordana
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Auger
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mar Tintore
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Gobbi
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Zecca
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Frederik Barkhof
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Menno M Schoonheim
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eva M M Strijbis
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Gallo
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alvino Bisecco
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Olga Ciccarelli
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Floriana De Angelis
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marios C Yiannakas
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacqueline Palace
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucy Matthews
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Achim Gass
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philipp Eisele
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carsten Lukas
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Bellenberg
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Xavier Montalban
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Àlex Rovira
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jaume Sastre-Garriga
- From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Kesenheimer EM, Wendebourg MJ, Weidensteiner C, Sander L, Weigel M, Haas T, Fischer D, Neuwirth C, Braun N, Weber M, Granziera C, Sinnreich M, Bieri O, Schlaeger R. Spinal cord gray matter atrophy is associated with disability in spinal muscular atrophy. J Neurol 2025; 272:102. [PMID: 39775109 PMCID: PMC11706851 DOI: 10.1007/s00415-024-12740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability. METHODS Twenty-one patients with 5q-SMA and twenty-one age- and sex-matched healthy controls (HCs) prospectively underwent 3 T axial 2D-rAMIRA MR-imaging at the intervertebral disc levels C2/C3-C5/C6 and Tmax (lumbar enlargement level). Associations between SC GM areas with muscle strength tested by dynamometry, Motor Function Measure (MFM), revised upper limb module (RULM), Revised Hammersmith Scale (RHS), and SMA-Functional Rating Scale (SMA-FRS) were assessed by Spearman Rank correlations and linear regression analysis. RESULTS Compared to HCs, patients had significantly reduced SC GM areas at levels C3/C4 (relative reduction (RR) = 13.6%, p < 0.0001); C4/C5 (RR = 16.7%, p < 0.0001), C5/C6 (RR = 17.1%, p < 0.0001), and Tmax (RR = 17.4%, p < 0.0001). Significant correlations were found between cervical SC GM areas and muscle strength, RULM, MFM, RHS, and SMA-FRS. In linear regression analysis, GM area C3/C4 explained 33% of RHS variance. CONCLUSION SC GM atrophy is detectable in patients with 5q-SMA and is consistently associated with clinical measures of upper limb function, physiotherapeutic assessments, and SMA-FRS indicating the clinical relevance of the observed atrophy. Further longitudinal investigations are necessary next steps to evaluate this novel and easily applicable imaging marker as a potential disease course and therapeutic response marker.
Collapse
Affiliation(s)
- Eva Maria Kesenheimer
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Basel, Switzerland
| | - Maria Janina Wendebourg
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Claudia Weidensteiner
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Laura Sander
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Dirk Fischer
- Division of Neuropediatrics and Developmental Medicine, University Childrens` Hospital of Basel (UKBB), University of Basel, Basel, Switzerland
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nathalie Braun
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel, Basel, Switzerland
| | - Michael Sinnreich
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Regina Schlaeger
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Weigel M, Celicanin Z, Haas T, Bieri O. Feasibility of interleaved multislice averaged magnetization inversion-recovery acquisitions of the spinal cord. Magn Reson Med 2024; 92:2588-2595. [PMID: 39051628 DOI: 10.1002/mrm.30223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To establish an interleaved multislice variant of the averaged magnetization inversion-recovery acquisitions (AMIRA) approach for 2D spinal cord imaging with increased acquisition efficiency compared with the conventional 2D single-slice approach(es), and to determine essential prerequisites for a working interleaved multislice AMIRA approach in practice. METHODS The general AMIRA concept is based on an inversion recovery-prepared, segmented, and time-limited cine balanced SSFP sequence, generating images of different contrast. For AMIRA imaging of multiple, independent slices in a 2D interleaved fashion, a slice loop within the acquisition loops was programmed. The former non-selective inversions were replaced with slice-selective inversions with user-definable slice thickness. RESULTS The thickness of the slice-selective inversion in 2D interleaved multislice AMIRA should be doubled compared with the manufacturer's standard setting to avoid an increased sensitivity to flow and pulsation effects particularly in the CSF. However, this solution also limits its practical applicability, as slices located at directly adjacent vertebrae cannot be imaged together. Successful interleaved two-slice AMIRA imaging for a "reference" in vivo protocol with 0.50 × 0.50 mm2 in-plane resolution and 8-mm slice thickness is demonstrated, therefore halving its acquisition time per slice from 3 min down to 1.5 min. CONCLUSION The investigated 2D interleaved two-slice AMIRA variant facilitates spinal cord imaging that maintains similar contrast and the same resolution as the conventional 2D single-slice AMIRA approach, but does so with a halved acquisition time.
Collapse
Affiliation(s)
- Matthias Weigel
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Zarko Celicanin
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| |
Collapse
|
5
|
Hines K, Tran C, Koka A, Mouchtouris N, Hafazalla K, Hattar E, Wu C, Sharan A. Thoracic canal morphology on preoperative magnetic resonance imaging in spinal cord stimulation patients. Pain Pract 2024; 24:1035-1041. [PMID: 38943345 DOI: 10.1111/papr.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
INTRODUCTION In high-frequency spinal cord stimulation anatomic placement targeting of the T9-10 disc space is based on "empiric" results that are best replicated with coverage broadly from T8 to T10. This study contains the largest cohort of patients evaluating low thoracic morphology and seeks to address the lack of MRI morphological analysis in literature. METHODS This study was a retrospective review of a database of 101 consecutive patients undergoing permanent implant of thoracic SCS for chronic pain. Measurements were carried out on preoperative MRI imaging. Anteroposterior (AP) and lateral dimensions of the spinal cord as well as dural sac were measured. In addition, dorsal cerebrospinal fluid thickness and paddle depression distance were also measured. RESULTS When comparing morphological dimensions by level, dorsal CSF thickness was smaller at T9-10 than T7-8 (p = 0.018). In addition, lateral dural and spinal cord diameters were larger at T10-11 than T9-10, contributing to larger dural surface area at T10-11 (p = 0.028). While trends of dorsal CSF thickness tend to decrease with lower thoracic levels, the ratio of surface area of spinal cord to dural sac appeared to remain relatively constant. CONCLUSIONS Dorsal CSF thickness is smaller at T9-10 than T7-8 in chronic pain patients in this cohort. More ellipsoid, cord, and spinal canal diameter measurements were noted at lower levels of the thoracic spinal cord, particularly at T10-11. This may correlate with anatomical SCS placement. Future studies should evaluate efficacy of SCS therapy for pain based on these anatomical considerations.
Collapse
Affiliation(s)
- Kevin Hines
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Christian Tran
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Anusha Koka
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Nikolaos Mouchtouris
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Karim Hafazalla
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Ellina Hattar
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Muhammad F, Weber KA, Bédard S, Haynes G, Smith L, Khan AF, Hameed S, Gray K, McGovern K, Rohan M, Ding L, Van Hal M, Dickson D, Tamimi MA, Parrish T, Dhaher Y, Smith ZA. Cervical spinal cord morphometrics in degenerative cervical myelopathy: quantification using semi-automated normalized technique and correlation with neurological dysfunctions. Spine J 2024; 24:2045-2057. [PMID: 39038658 PMCID: PMC11527586 DOI: 10.1016/j.spinee.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND CONTEXT Degenerative cervical myelopathy (DCM) is characterized by spinal cord atrophy. Accurate estimation of spinal cord atrophy is key to the understanding of neurological diseases, including DCM. However, its clinical application is hampered by difficulties in its precise and consistent estimation due to significant variability in spinal cord morphometry along the cervical spine, both within and between individuals. PURPOSE To characterize morphometrics of the compressed spinal cord in DCM patients. We employed our semiautomated analysis framework that incorporates the Spinal Cord Toolbox (SCT) and a normalization approach to effectively address the challenges posed by cord compression in these patients. Additionally, we examined the clinical relevance of these morphometric measures to enhance our understanding of DCM pathophysiology. STUDY DESIGN Prospective study. PATIENT SAMPLE This study investigated 36 DCM patients and 31 healthy controls (HCs). OUTCOME MEASURES Clinical scores including 9-hole peg test for hand dexterity, hand grip strength, balance, gait speed, modified Japanese Orthopaedic Association (mJOA) score, and imaging-based spinal cord morphometrics. METHOD Using the generic spine acquisition protocol and our semiautomated analysis pipeline, spinal cord morphometrics, including cross-sectional area (CSA), anterior-posterior (AP) and transverse (RL) diameters, eccentricity, and solidity, were estimated from sagittal T2w magnetic resonance imaging (MRI) images using the Spinal Cord Toolbox (SCT). Normalized metrics were extracted from the C1 to C7 vertebral levels and compared between DCM patients and HC. Morphometric data at regions of maximum spinal cord compression (MSCC) were correlated with the clinical scores. A subset of participants underwent follow-up scans at 6 months to monitor longitudinal changes in spinal cord atrophy. RESULTS Spinal cord morphometric data were normalized against the healthy population morphometry (PAM50 database) and extracted for all participants. DCM patients showed a notable reduction in CSA, AP, and RL diameter across all vertebral levels compared to HC. MSCC metrics correlated significantly with clinical scores like dexterity, grip strength, and mJOA scores. Longitudinal analysis indicated a decrease in CSA and worsening clinical scores in DCM patients. CONCLUSION Our processing pipeline offers a reliable method for assessing spinal cord compression in DCM patients. Normalized spinal cord morphometrics, particularly the CSA could have potential for monitoring DCM disease severity and progression, guiding treatment decisions. Furthermore, to our knowledge our study is the first to apply the generic spinal cord acquisition protocol, ensuring consistent imaging across different MRI scanners and settings. Coupled with our semiautomated analysis pipeline, this protocol is key for the detailed morphometric characterization of compressed spinal cords in patients with DCM, a disease that is both complex and heterogenous. This study was funded by the National Institute of Neurological Disorders and Stroke (NINDS) (K23:NS091430) and (R01: NS129852-01A1).
Collapse
Affiliation(s)
- Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kenneth A Weber
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Lonnie Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ali F Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathyrn Gray
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathleen McGovern
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Lei Ding
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Michael Van Hal
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Dickson
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mazin Al Tamimi
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Todd Parrish
- Department of Radiology, Fienberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Yasin Dhaher
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Cook SR, Vasamreddy K, Combes A, Vandekar S, Visagie M, Houston D, Wald L, Kumar A, McGrath M, McKnight CD, Bagnato F, Smith SA, O’Grady KP. Biological variation in cervical spinal cord MRI morphometry in healthy individuals and people with multiple sclerosis. J Neuroimaging 2024; 34:466-474. [PMID: 38858847 PMCID: PMC11236499 DOI: 10.1111/jon.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Conclusions from prior literature regarding the impact of sex, age, and height on spinal cord (SC) MRI morphometrics are conflicting, while the effect of body weight on SC morphometrics has been found to be nonsignificant. The purpose of this case-control study is to assess the associations between cervical SC MRI morphometric parameters and age, sex, height, and weight to establish their potential role as confounding variables in a clinical study of people with multiple sclerosis (MS) compared to a cohort of healthy volunteers. METHODS Sixty-nine healthy volunteers and 31 people with MS underwent cervical SC MRI at 3 Tesla field strength. Images were centered at the C3/C4 intervertebral disc and processed using Spinal Cord Toolbox v.4.0.2. Mixed-effects linear regression models were used to evaluate the effects of biological variables and disease status on morphometric parameters. RESULTS Sex, age, and height had significant effects on cord and gray matter (GM) cross-sectional area (CSA) as well as the GM:cord CSA ratio. There were no significant effects of body weight on morphometric parameters. The effect of MS disease duration on cord CSA in the C4 level was significant when controlling for all other variables. CONCLUSIONS Studies of disease-related changes in SC morphometry should control for sex, age, and height to account for physiological variation.
Collapse
Affiliation(s)
- Sarah R. Cook
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Yale University, New Haven, CT, United States
| | - Kritin Vasamreddy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Anna Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mereze Visagie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Delaney Houston
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lily Wald
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ashwin Kumar
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Megan McGrath
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Colin D. McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, VA Hospital, TN Valley Healthcare Center, Nashville, TN, United States
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kristin P. O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
8
|
Labounek R, Bondy MT, Paulson AL, Bédard S, Abramovic M, Alonso-Ortiz E, Atcheson NT, Barlow LR, Barry RL, Barth M, Battiston M, Büchel C, Budde MD, Callot V, Combes A, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak AV, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers JM, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler H, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Laganà MM, Laule C, Law CSW, Leutritz T, Liu Y, Llufriu S, Mackey S, Martin AR, Martinez-Heras E, Mattera L, O’Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley GW, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber KA, Weiskopf N, Wise RG, Wyss PO, Xu J, Cohen-Adad J, Lenglet C, Nestrašil I. Body size interacts with the structure of the central nervous system: A multi-center in vivo neuroimaging study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591421. [PMID: 38746371 PMCID: PMC11092490 DOI: 10.1101/2024.04.29.591421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.
Collapse
Affiliation(s)
- René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Monica T. Bondy
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Amy L. Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicole T Atcheson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Laura R. Barlow
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, Massachusetts, USA
| | - Markus Barth
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Clement J. Zablocki Veteran’s Affairs Medical Center, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna Combes
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Adam V. Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jürgen Finsterbusch
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Claudia A. M. Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - GianCarlo Germani
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Neuroimaging Laboratory, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo 113-8421, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James M. Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Haleh Karbasforoushan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Joo-won Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Nawal Kinany
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Hagen Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Science, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Petr Kudlička
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czech Republic
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and Carl Gustav Carus University Hospital, Technische Universität Dresden, Germany
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | | | | | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | | | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, China
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Allan R. Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Eloy Martinez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Geneva, Genève, Switzerland
| | - Kristin P. O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Todd B. Parrish
- Department of Radiology, Northwestern University, Chicago, IL 60611, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
- Centre for Medical Image Computing, University College London, London, UK
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rebecca S. Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele (MI), Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089, Rozzano (MI), Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alex K. Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Zachary A. Smith
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS and Universitat de Barcelona. Barcelona, Spain
| | - Yuichi Suzuki
- The University of Tokyo Hospital, Radiology Center, Tokyo, Japan
| | - George W Tackley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Marios C. Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, UK
| | - Kenneth A. Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, ‘G. D’Annunzio’ University of Chieti-Pescara, Chieti, Italy
| | - Patrik O. Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Igor Nestrašil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Harland TA, Staudt MD, Bandlamuri S, Juneja A, Pilitsis JG, Sukul VV. Predictors of Skip Laminotomy for Placement of Paddle Leads for Spinal Cord Stimulation. Neuromodulation 2024; 27:183-187. [PMID: 37632516 DOI: 10.1016/j.neurom.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVES Placement of a standard paddle lead for spinal cord stimulation (SCS) requires a laminotomy for positioning of the lead within the epidural space. During initial placement, an additional laminotomy or laminectomy, termed a "skip" laminotomy, may be necessary at a higher level to pass the lead to the appropriate midline position. Patient and radiographic factors that predict the need for a skip laminotomy have yet to be identified. MATERIALS AND METHODS Participants who underwent SCS paddle placement at Albany Medical Center between 2016 and 2017 were identified. Operative reports were reviewed to identify the paddle type, level of initial laminotomy, target level, and skip laminotomy level. Preoperative thoracic magnetic resonance images (MRIs) were reviewed, and spinal canal diameter, interpedicular distance, and dorsal cerebral spinal fluid thickness were measured for each participant when available. RESULTS A total of 106 participants underwent thoracic SCS placement. Of these, 97 had thoracic MRIs available for review. Thirty-eight participants required a skip laminotomy for placement of the paddle compared with 68 participants who did not. There was no significant difference in demographic features including age, sex, body mass index, and surgical history. Univariate analyses that suggested trends were selected for further analysis using binary logistic regression. Level of initial laminotomy (odds ratio [OR] = 1.51, p = 0.028), spinal canal diameter (OR = 0.71, p = 0.015), and dorsal cerebrospinal fluid thickness (OR = 0.61, p = 0.011) were correlated with skip laminotomy. Target level (OR = 1.27, p = 0.138) and time from trial (1.01, p = 0.117) suggested potential association. The multivariate regression was statistically significant, X2(10) = 28.02, p = 0.002. The model explained 38.3% of the variance (Nagelkerke R2) and predicted skip laminectomy correctly in 73.3% of cases. However, for the multivariate regression, only a decrease in spinal canal diameter (OR = 0.59, p = 0.041) was associated with a greater odds of skip laminotomy. CONCLUSIONS This study aims to characterize the patient and radiographic factors that may predict the need to perform a skip laminotomy during the initial placement of SCS paddles. Here, we show that radiographic and anatomic variables, primarily spinal canal diameter, play an important role in predicting the need for a skip laminotomy. Furthermore, we suggest that target level for placement and level of initial laminotomy also may contribute. Further investigation of the predictive factors for performing a skip laminotomy would help optimize surgical planning and preoperative patient selection and counseling.
Collapse
Affiliation(s)
- Tessa A Harland
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Michael D Staudt
- Department of Neurosurgery, Beaumont Neuroscience Center, Royal Oak, MI, USA
| | - Sruti Bandlamuri
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Ankit Juneja
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Vishad V Sukul
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA.
| |
Collapse
|
10
|
Mongay-Ochoa N, Pareto D, Alberich M, Tintore M, Montalban X, Rovira À, Sastre-Garriga J. Validation of a New Semiautomated Segmentation Pipeline Based on the Spinal Cord Toolbox DeepSeg Algorithm to Estimate the Cervical Canal Area. AJNR Am J Neuroradiol 2023; 44:867-872. [PMID: 37290816 PMCID: PMC10337626 DOI: 10.3174/ajnr.a7899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND PURPOSE As in the brain reserve concept, a larger cervical canal area may also protect against disability. In this context, a semiautomated pipeline has been developed to obtain quantitative estimations of the cervical canal area. The aim of the study was to validate the pipeline, to evaluate the consistency of the cervical canal area measurements during a 1-year period, and to compare cervical canal area estimations obtained from brain and cervical MRI acquisitions. MATERIALS AND METHODS Eight healthy controls and 18 patients with MS underwent baseline and follow-up 3T brain and cervical spine sagittal 3D MPRAGE. The cervical canal area was measured in all acquisitions, and estimations obtained with the proposed pipeline were compared with manual segmentations performed by 1 evaluator using the Dice similarity coefficient. The cervical canal area estimations obtained on baseline and follow-up T1WI were compared; brain and cervical cord acquisitions were also compared using the individual and average intraclass correlation coefficients. RESULTS The agreement between the manual cervical canal area masks and the masks provided by the proposed pipeline was excellent, with a mean Dice similarity coefficient mean of 0.90 (range, 0.73-0.97). The cervical canal area estimations obtained from baseline and follow-up scans showed a good level of concordance (intraclass correlation coefficient = 0.76; 95% CI, 0.44-0.88); estimations obtained from brain and cervical MRIs also had good agreement (intraclass correlation coefficient = 0.77; 95% CI, 0.45-0.90). CONCLUSIONS The proposed pipeline is a reliable tool to estimate the cervical canal area. The cervical canal area is a stable measure across time; moreover, when cervical sequences are not available, the cervical canal area could be estimated using brain T1WI.
Collapse
Affiliation(s)
- N Mongay-Ochoa
- From the Department of Neurology (N.M.-O., M.T., X.M., J.S.-G.), Multiple Sclerosis Centre of Catalonia
| | - D Pareto
- Section of Neuroradiology (D.P., M.A., À.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M Alberich
- Section of Neuroradiology (D.P., M.A., À.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - M Tintore
- From the Department of Neurology (N.M.-O., M.T., X.M., J.S.-G.), Multiple Sclerosis Centre of Catalonia
| | - X Montalban
- From the Department of Neurology (N.M.-O., M.T., X.M., J.S.-G.), Multiple Sclerosis Centre of Catalonia
| | - À Rovira
- Section of Neuroradiology (D.P., M.A., À.R.), Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - J Sastre-Garriga
- From the Department of Neurology (N.M.-O., M.T., X.M., J.S.-G.), Multiple Sclerosis Centre of Catalonia
| |
Collapse
|
11
|
Schading S, Seif M, Leutritz T, Hupp M, Curt A, Weiskopf N, Freund P. Reliability of spinal cord measures based on synthetic T 1-weighted MRI derived from multiparametric mapping (MPM). Neuroimage 2023; 271:120046. [PMID: 36948280 DOI: 10.1016/j.neuroimage.2023.120046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023] Open
Abstract
Short MRI acquisition time, high signal-to-noise ratio, and high reliability are crucial for image quality when scanning healthy volunteers and patients. Cross-sectional cervical cord area (CSA) has been suggested as a marker of neurodegeneration and potential outcome measure in clinical trials and is conventionally measured on T1-weigthed 3D Magnetization Prepared Rapid Acquisition Gradient-Echo (MPRAGE) images. This study aims to reduce the acquisition time for the comprehensive assessment of the spinal cord, which is typically based on MPRAGE for morphometry and multi-parameter mapping (MPM) for microstructure. The MPRAGE is replaced by a synthetic T1-w MRI (synT1-w) estimated from the MPM, in order to measure CSA. SynT1-w images were reconstructed using the MPRAGE signal equation based on quantitative maps of proton density (PD), longitudinal (R1) and effective transverse (R2*) relaxation rates. The reliability of CSA measurements from synT1-w images was determined within a multi-center test-retest study format and validated against acquired MPRAGE scans by assessing the agreement between both methods. The response to pathological changes was tested by longitudinally measuring spinal cord atrophy following spinal cord injury (SCI) for synT1-w and MPRAGE using linear mixed effect models. CSA measurements based on the synT1-w MRI showed high intra-site (Coefficient of variation [CoV]: 1.43% to 2.71%) and inter-site repeatability (CoV: 2.90% to 5.76%), and only a minor deviation of -1.65 mm2 compared to MPRAGE. Crucially, by assessing atrophy rates and by comparing SCI patients with healthy controls longitudinally, differences between synT1-w and MPRAGE were negligible. These results demonstrate that reliable estimates of CSA can be obtained from synT1-w images, thereby reducing scan time significantly.
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
12
|
Trolle C, Goldberg E, Linnman C. Spinal cord atrophy after spinal cord injury - A systematic review and meta-analysis. Neuroimage Clin 2023; 38:103372. [PMID: 36931004 PMCID: PMC10026037 DOI: 10.1016/j.nicl.2023.103372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Cervical spinal cord atrophy occurs after spinal cord injury. The atrophy and how level of injury affects atrophy differs between studies. A systematic review and metaanalysis were done after systematic searches of PubMed, CINAHL, APA PsycInfo and Web of Science. English language original studies analyzing MRI cervical spinal cord cross-sectional area in adults with spinal cord injury were included. Atrophy and correlation between injury level and atrophy were estimated with random-effects models, standardized mean differences, and 95% confidence intervals. 24 studies were identified. 13/24 studies had low risk of bias. Cord atrophy meta-analysis of 18 articles corresponded to a standardized mean difference of -1.48 (95% CI -1.78 to -1.19) with moderate to large interstudy heterogeneity. Logarithmic time since injury influenced heterogeneity. Longitudinal atrophy was best described by a logarithmic model, indicating that rate of spinal atrophy decreases over time. Meta-correlation of eight studies indicated more severe atrophy in more rostral injuries (0.41, 95% CI 0.20-0.59). Larger and preferably longitudinal studies, data sharing, and standardized protocols are warranted.
Collapse
Affiliation(s)
- Carl Trolle
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Medical Sciences, Rehabilitation Medicine, Uppsala University, Uppsala, Sweden.
| | - Estee Goldberg
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Clas Linnman
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Block VJ, Cheng S, Juwono J, Cuneo R, Kirkish G, Alexander AM, Khan M, Akula A, Caverzasi E, Papinutto N, Stern WA, Pletcher MJ, Marcus GM, Olgin JE, Hauser SL, Gelfand JM, Bove R, Cree BAC, Henry RG. Association of daily physical activity with brain volumes and cervical spinal cord areas in multiple sclerosis. Mult Scler 2023; 29:363-373. [PMID: 36573559 PMCID: PMC9972237 DOI: 10.1177/13524585221143726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Remote activity monitoring has the potential to evaluate real-world, motor function, and disability at home. The relationships of daily physical activity with spinal cord white matter and gray matter (GM) areas, multiple sclerosis (MS) disability and leg function, are unknown. OBJECTIVE Evaluate the association of structural central nervous system pathology with ambulatory disability. METHODS Fifty adults with progressive or relapsing MS with motor disability who could walk >2 minutes were assessed using clinician-evaluated, patient-reported outcomes, and quantitative brain and spinal cord magnetic resonance imaging (MRI) measures. Fitbit Flex2, worn on the non-dominant wrist, remotely assessed activity over 30 days. Univariate and multivariate analyses were performed to assess correlations between physical activity and other disability metrics. RESULTS Mean age was 53.3 years and median Expanded Disability Status Scale (EDSS) was 4.0. Average daily step counts (STEPS) were highly correlated with EDSS and walking measures. Greater STEPS were significantly correlated with greater C2-C3 spinal cord GM areas (ρ = 0.39, p = 0.04), total cord area (TCA; ρ = 0.35, p = 0.04), and cortical GM volume (ρ = 0.32, p = 0.04). CONCLUSION These results provide preliminary evidence that spinal cord GM area is a neuroanatomical substrate associated with STEPS. STEPS could serve as a proxy to alert clinicians and researchers to possible changes in structural nervous system pathology.
Collapse
Affiliation(s)
- Valerie J Block
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA/Department of Physical Therapy and Rehabilitation
Science, University of California San Francisco, San Francisco, CA,
USA
| | - Shuiting Cheng
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Jeremy Juwono
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Richard Cuneo
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Gina Kirkish
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Amber M Alexander
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Mahir Khan
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Amit Akula
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA/Department of Brain and Behavioral Sciences, University
of Pavia, Pavia, Italy
| | - Nico Papinutto
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | | | - Mark J Pletcher
- Department of Epidemiology and Biostatistics,
University of California San Francisco, San Francisco, CA, USA/Department of
Medicine, University of California San Francisco, San Francisco, CA,
USA
| | - Gregory M Marcus
- Department of Epidemiology and Biostatistics,
University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Department of Epidemiology and Biostatistics,
University of California San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Jeffrey M Gelfand
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Riley Bove
- UCSF Weill Institute for Neurosciences,
Department of Neurology, University of California San Francisco, San
Francisco, CA, USA
| | - Bruce AC Cree
- BAC Cree UCSF Weill Institute for
Neurosciences, Department of Neurology, University of California, 1651 4th St
Suite 252, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
14
|
Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis. Mult Scler Relat Disord 2023; 71:104545. [PMID: 36758461 DOI: 10.1016/j.msard.2023.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although cervical spinal cord (cSC) area is an established biomarker in MS, there is currently a lack of longitudinal assessments of cSC gray and white matter areas. OBJECTIVE We conducted an explorative analysis of longitudinal changes of cSC gray and white matter areas in MS patients. METHODS 65 MS patients (33 relapsing-remitting; 20 secondary progressive and 12 primary progressive) and 20 healthy controls (HC) received clinical and upper cSC MRI assessments over 1.10±0.28 years. cSC compartments were quantified on MRI using the novel averaged magnetization inversion recovery acquisitions sequence (in-plane resolution=0.67 × 0.67mm2), and in-house developed post-processing methods. Patients were stratified regarding clinical progression. RESULTS Patients with clinical progression showed faster reduction of cSC areas over time at the level of cSC enlargement (approximate vertebral level C4-C5) compared to stable patients (p<0.05). In addition, when compared to the rostral-cSC (approximate vertebral level C2-C3), a preferential reduction of cSC and white matter areas over time at the level of cSC enlargement (p<0.05 and p<0.01, respectively) was demonstrated only in patients with clinical progression, but not in stable MS patients and HC. Compared to HC, MS patients showed comparable changes over time in all cSC compartments. CONCLUSIONS MS patients with clinical disease progression demonstrate subtle signs of a more pronounced tissue loss at the level of cSC enlargement. Future studies should consider larger sample sizes and more extended observation periods.
Collapse
|
15
|
Tsagkas C, Horvath-Huck A, Haas T, Amann M, Todea A, Altermatt A, Müller J, Cagol A, Leimbacher M, Barakovic M, Weigel M, Pezold S, Sprenger T, Kappos L, Bieri O, Granziera C, Cattin P, Parmar K. Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis. AJNR Am J Neuroradiol 2023; 44:218-227. [PMID: 36702504 PMCID: PMC9891337 DOI: 10.3174/ajnr.a7756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Fully automatic quantification methods of spinal cord compartments are needed to study pathologic changes of the spinal cord GM and WM in MS in vivo. We propose a novel method for automatic spinal cord compartment segmentation (SCORE) in patients with MS. MATERIALS AND METHODS The cervical spinal cords of 24 patients with MS and 24 sex- and age-matched healthy controls were scanned on a 3T MR imaging system, including an averaged magnetization inversion recovery acquisition sequence. Three experienced raters manually segmented the spinal cord GM and WM, anterior and posterior horns, gray commissure, and MS lesions. Subsequently, manual segmentations were used to train neural segmentation networks of spinal cord compartments with multidimensional gated recurrent units in a 3-fold cross-validation fashion. Total intracranial volumes were quantified using FreeSurfer. RESULTS The intra- and intersession reproducibility of SCORE was high in all spinal cord compartments (eg, mean relative SD of GM and WM: ≤ 3.50% and ≤1.47%, respectively) and was better than manual segmentations (all P < .001). The accuracy of SCORE compared with manual segmentations was excellent, both in healthy controls and in patients with MS (Dice similarity coefficients of GM and WM: ≥ 0.84 and ≥0.92, respectively). Patients with MS had lower total WM areas (P < .05), and total anterior horn areas (P < .01 respectively), as measured with SCORE. CONCLUSIONS We demonstrate a novel, reliable quantification method for spinal cord tissue segmentation in healthy controls and patients with MS and other neurologic disorders affecting the spinal cord. Patients with MS have reduced areas in specific spinal cord tissue compartments, which may be used as MS biomarkers.
Collapse
Affiliation(s)
- C Tsagkas
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
| | - A Horvath-Huck
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - T Haas
- Department of Medicine and Biomedical Engineering; Division of Radiological Physics (T.H., M.W., O.B.)
| | - M Amann
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
- Medical Image Analysis Center AG (M.A., A.A.), Basel, Switzerland
| | - A Todea
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
- Department of Radiology; Department of Neuroradiology (A.T.), Clinic for Radiology & Nuclear Medicine; and Research Center for Clinical Neuroimmunology
| | - A Altermatt
- Medical Image Analysis Center AG (M.A., A.A.), Basel, Switzerland
| | - J Müller
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
| | - A Cagol
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - M Leimbacher
- Medical Faculty (M.L., P.C.), University of Basel, Basel, Switzerland
| | - M Barakovic
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - M Weigel
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
- Department of Medicine and Biomedical Engineering; Division of Radiological Physics (T.H., M.W., O.B.)
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - S Pezold
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - T Sprenger
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Wiesbaden, Germany
| | - L Kappos
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Neuroscience Basel (RC2NB) (L.K.), Departments of Medicine, Clinical Research, and Biomedical Imaging, University Hospital Basel and University of Basel, Basel, Switzerland
| | - O Bieri
- Department of Medicine and Biomedical Engineering; Division of Radiological Physics (T.H., M.W., O.B.)
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - C Granziera
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
| | - P Cattin
- Department of Biomedical Engineering (A.H.-H., M.A., A.C., M.B., M.W., S.P., O.B., C.G., P.C.), University of Basel, Allschwil, Switzerland
- Medical Faculty (M.L., P.C.), University of Basel, Basel, Switzerland
| | - K Parmar
- From the Neurologic Clinic and Policlinic, Departments of Medicine (C.T., M.A., J.M., M.W., T.S., L.K., C.G., K.P.), Clinical Research and Biomedical Engineering
- Translational Imaging in Neurology Basel (C.T., A.T., J.M., A.C., M.B., M.W., C.G., K.P.)
- Reha Rheinfelden (K.P.), Rheinfelden, Switzerland
| |
Collapse
|
16
|
Bédard S, Cohen-Adad J. Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction. FRONTIERS IN NEUROIMAGING 2022; 1:1031253. [PMID: 37555172 PMCID: PMC10406309 DOI: 10.3389/fnimg.2022.1031253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 08/10/2023]
Abstract
Spinal cord cross-sectional area (CSA) is a relevant biomarker to assess spinal cord atrophy in neurodegenerative diseases. However, the considerable inter-subject variability among healthy participants currently limits its usage. Previous studies explored factors contributing to the variability, yet the normalization models required manual intervention and used vertebral levels as a reference, which is an imprecise prediction of the spinal levels. In this study we implemented a method to measure CSA automatically from a spatial reference based on the central nervous system (the pontomedullary junction, PMJ), we investigated factors to explain variability, and developed normalization strategies on a large cohort (N = 804). Following automatic spinal cord segmentation, vertebral labeling and PMJ labeling, the spinal cord CSA was computed on T1w MRI scans from the UK Biobank database. The CSA was computed using two methods. For the first method, the CSA was computed at the level of the C2-C3 intervertebral disc. For the second method, the CSA was computed at 64 mm caudally from the PMJ, this distance corresponding to the average distance between the PMJ and the C2-C3 disc across all participants. The effect of various demographic and anatomical factors was explored, and a stepwise regression found significant predictors; the coefficients of the best fit model were used to normalize CSA. CSA measured at C2-C3 disc and using the PMJ differed significantly (paired t-test, p-value = 0.0002). The best normalization model included thalamus, brain volume, sex and the interaction between brain volume and sex. The coefficient of variation went down for PMJ CSA from 10.09 (without normalization) to 8.59%, a reduction of 14.85%. For CSA at C2-C3, it went down from 9.96 to 8.42%, a reduction of 15.13 %. This study introduces an end-to-end automatic pipeline to measure and normalize cord CSA from a neurological reference. This approach requires further validation to assess atrophy in longitudinal studies. The inter-subject variability of CSA can be partly accounted for by demographics and anatomical factors.
Collapse
Affiliation(s)
- Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), University of Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
17
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
18
|
Anatomy of the Spinal Cord, Coverings, and Nerves. Neuroimaging Clin N Am 2022; 32:903-914. [DOI: 10.1016/j.nic.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Sartoretti T, Ganley RP, Ni R, Freund P, Zeilhofer HU, Klohs J. Structural MRI Reveals Cervical Spinal Cord Atrophy in the P301L Mouse Model of Tauopathy: Gender and Transgene-Dosing Effects. Front Aging Neurosci 2022; 14:825996. [PMID: 35585865 PMCID: PMC9108240 DOI: 10.3389/fnagi.2022.825996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
In primary tauopathies, the deposition of tau neurofibrillary tangles and threads as well as neurodegenerative changes have been found within the brain and spinal cord. While degenerative changes have been intensively studied in the brain using structural magnetic resonance imaging (MRI), MRI studies investigating the spinal cord are still scarce. In the present study, we acquired ex vivo high resolution structural MRI of the cervical spinal cord of 8.5–9 month old hemizygous and homozygous P301L mice and non-transgenic littermates of both genders. We assessed the total cross-sectional area, and the gray and white matter anterior-posterior width and left-right width that are established imaging marker of spinal cord degeneration. We observed significant tissue-specific reductions in these parameters in female P301L mice that were stronger in homozygous than in hemizygous P301L mice, indicating both an effect of gender and transgene expression on cervical spinal cord atrophy. Moreover, atrophy was stronger in the gray matter than in the white matter. Immunohistochemical analysis revealed neurodegenerative and neuroinflammatory changes in the cervical spinal cord in both the gray and white matter of P301L mice. Collectively, our results provide evidence for cervical spinal cord atrophy that may directly contribute to the motor signs associated with tauopathy.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Robert P. Ganley
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Patrick Freund
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- *Correspondence: Jan Klohs
| |
Collapse
|
20
|
Cohen‐Adad J, Alonso‐Ortiz E, Alley S, Lagana MM, Baglio F, Vannesjo SJ, Karbasforoushan H, Seif M, Seifert AC, Xu J, Kim J, Labounek R, Vojtíšek L, Dostál M, Valošek J, Samson RS, Grussu F, Battiston M, Gandini Wheeler‐Kingshott CAM, Yiannakas MC, Gilbert G, Schneider T, Johnson B, Prados F. Comparison of multicenter
MRI
protocols for visualizing the spinal cord gray matter. Magn Reson Med 2022; 88:849-859. [DOI: 10.1002/mrm.29249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Julien Cohen‐Adad
- NeuroPoly Lab Institute of Biomedical Engineering, Polytechnique Montreal Montreal Canada
- Functional Neuroimaging Unit, CRIUGM University of Montreal Montreal Canada
- Mila ‐ Quebec AI Institute Montreal Canada
| | - Eva Alonso‐Ortiz
- NeuroPoly Lab Institute of Biomedical Engineering, Polytechnique Montreal Montreal Canada
| | - Stephanie Alley
- NeuroPoly Lab Institute of Biomedical Engineering, Polytechnique Montreal Montreal Canada
| | | | | | - Signe Johanna Vannesjo
- Wellcome Center for Integrative Neuroimaging, FMRIB University of Oxford, John Radcliffe Hospital Oxford UK
- Department of Physics Norwegian University of Science and Technology Trondheim Norway
| | - Haleh Karbasforoushan
- Interdepartmental Neuroscience Program Northwestern University School of Medicine Chicago IL USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine Stanford University Stanford CA USA
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital University of Zurich Zurich Switzerland
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - Junqian Xu
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - Joo‐Won Kim
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - René Labounek
- Departments of Neurology and Biomedical Engineering University Hospital Olomouc Olomouc Czech Republic
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics Masonic Institute for the Developing Brain, University of Minnesota Minneapolis MN USA
| | - Lubomír Vojtíšek
- Central European Institute of Technology Masaryk University Brno Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine University Hospital Brno Brno Czech Republic
| | - Jan Valošek
- Departments of Neurology and Biomedical Engineering University Hospital Olomouc Olomouc Czech Republic
| | - Rebecca S. Samson
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London UK
| | - Francesco Grussu
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London UK
- Radiomics Group, Vall d'Hebron Institute of Oncology Vall d'Hebron Barcelona Hospital Campus Barcelona Spain
| | - Marco Battiston
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London UK
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London UK
- Department of Brain and Behavioral Sciences University of Pavia Pavia Italy
- Brain MRI 3T Research Center C. Mondino National Neurological Institute Pavia Italy
| | - Marios C. Yiannakas
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London UK
| | | | | | - Brian Johnson
- MR Clinical Development, Philips North America Gainesville FL USA
| | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences University College London London UK
- e‐Health Center, Universitat Oberta de Catalunya Barcelona Spain
- Center for Medical Imaging Computing, Medical Physics and Biomedical Engineering, University College London London UK
| |
Collapse
|
21
|
Wendebourg MJ, Weigel M, Richter L, Gocheva V, Hafner P, Orsini AL, Crepulja V, Schmidt S, Huck A, Oechtering J, Blatow M, Haas T, Granziera C, Kappos L, Cattin P, Bieri O, Fischer D, Schlaeger R. Spinal Cord Gray Matter Atrophy is associated with functional decline in Post-Polio Syndrome. Eur J Neurol 2022; 29:1435-1445. [PMID: 35102676 PMCID: PMC9310958 DOI: 10.1111/ene.15261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Abstract
Objective To determine if patients with post‐polio syndrome (PPS) show spinal cord gray matter (SCGM) atrophy and to assess associations between SCGM atrophy, muscle strength and patient‐reported functional decline. Methods Twenty patients diagnosed with PPS (March of Dimes criteria) and 20 age‐ and sex‐matched healthy controls (HC) underwent 3T axial 2D‐rAMIRA magnetic resonance imaging at the intervertebral disc levels C2/C3–C6/C7, T9/T10 and the lumbar enlargement level (Tmax) (0.5 × 0.5 mm2 in‐plane resolution). SCGM areas were segmented manually by two independent raters. Muscle strength, self‐reported fatigue, depression and pain measures were assessed. Results Post‐polio syndrome patients showed significantly and preferentially reduced SCGM areas at C2/C3 (p = 0.048), C3/C4 (p = 0.001), C4/C5 (p < 0.001), C5/C6 (p = 0.004) and Tmax (p = 0.041) compared to HC. SCGM areas were significantly associated with muscle strength in corresponding myotomes even after adjustment for fatigue, pain and depression. SCGM areaTmax together with age and sex explained 68% of ankle dorsiflexion strength variance. No associations were found with age at or time since infection. Patients reporting PPS‐related decline in arm function showed significant cervical SCGM atrophy compared to stable patients adjusted for initial disease severity. Conclusions Patients with PPS show significant SCGM atrophy that correlates with muscle strength and is associated with PPS‐related functional decline. Our findings suggest a secondary neurodegenerative process underlying SCGM atrophy in PPS that is not explained by aging or residua of the initial infection alone. Confirmation by longitudinal studies is needed. The described imaging methodology is promising for developing novel imaging surrogates for SCGM diseases.
Collapse
Affiliation(s)
- Maria Janina Wendebourg
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Laura Richter
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Vanya Gocheva
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Patricia Hafner
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Anna-Lena Orsini
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Valentina Crepulja
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Simone Schmidt
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Antal Huck
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Johanna Oechtering
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Maria Blatow
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Dirk Fischer
- Division of Paediatric Neurology, University of Basel Children's Hospital, Basel, Switzerland
| | - Regina Schlaeger
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.,ThINK Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS, Bednarik J, Martin AR, Young A, Takahashi H, Boerger TF, Newcombe VF, Zipser CM, Freund P, Koljonen PA, Rodrigues-Pinto R, Rahimi-Movaghar V, Wilson JR, Kurpad SN, Fehlings MG, Kwon BK, Harrop JS, Guest JD, Curt A, Kotter MRN. A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine J 2022; 12:78S-96S. [PMID: 35174728 PMCID: PMC8859710 DOI: 10.1177/21925682211057546] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Collapse
Affiliation(s)
- Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Aref-Ali Gharooni
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Lindsay Tetreault
- New York University, Langone Health, Graduate Medical Education, 5894Department of Neurology, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Genève, Switzerland
| | - Rana S Dhillon
- Department of Neurosurgery, 60078St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, 37748Masaryk University, Brno, Czech Republic
| | - Allan R Martin
- Department of Neurosurgery, 8789University of California Davis, Sacramento, CA, USA
| | - Adam Young
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, 12978Niigata University, Niigata, Japan
| | - Timothy F Boerger
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Virginia Fj Newcombe
- Division of Anaesthesia, Department of Medicine, 2152University of Cambridge, Cambridge, UK
| | - Carl Moritz Zipser
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, 112085Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- 89239Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6559Thomas Jefferson University, Philadelphia, PA, USA
| | - James D Guest
- Department of Neurosurgery and the Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Lumbar Thecal Sac Dimensions and Axial Spinal Cord Areas on Magnetic Resosnace Imaging in 626 Healthy Subjects. Spine (Phila Pa 1976) 2021; 46:E1327-E1333. [PMID: 34115713 DOI: 10.1097/brs.0000000000004143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cross-sectional study. OBJECTIVE The aim of this study was to investigate the lumbar thecal sac dimensions and spinal cord area on magnetic resonance (MR) imaging in healthy volunteers. SUMMARY OF BACKGROUND DATA There are few reports regarding lumbar spine MRI in healthy subjects, and the difference in spinal canal dimensions by age remains unclear. METHODS A total of 629 healthy volunteers were enrolled, including ≥50 males, females, and subjects in each of the 20s to 70s age decades. The anteroposterior and transverse diameters of the thecal sac and axial areas of the thecal sac and spinal cord were measured at the disc levels on T2-weighted axial MR images. The anteroposterior-to-transverse ratio of the thecal sac (APTR) was calculated. RESULTS The thecal sac area from T12/L1 to L4/5 was reduced in older age group, but there was no significant difference in L5/S1. The thecal sac area was significantly reduced in older age group: 89.9%, 86.0%, 84.6%, 80.3% at T12/L1, L1/2, L2/3, and L3/4, respectively, and 79.9% at L4/5 in subjects in their 70 s relative to that in subjects in their 20 s. The APTR was significantly reduced in older age group from T11/12 to L2/L3 in males and at T10/11, L3/4 and from T11/12 to L2/3 in females. Narrow thecal sac areas <80 mm2 were found in 10 subjects. The spinal cord area was significantly reduced in older age group at T10/11 in males and at T9/10, T10/11, and T11/12 in females. The area was 92.0% at T10/11 in subjects in their 70s relative to the area of subjects in their 20s. CONCLUSION The thecal sac area was reduced in older age group from T12/L1 to L4/5, and the thecal sac area was reduced in the anteroposterior and all directions in the upper and lower lumbar area in age group, respectively. Approximately, 3.0% of healthy population in their 50s or older will have severe asymptomatic stenosis.Level of Evidence: 2.
Collapse
|
24
|
Cohen-Adad J, Alonso-Ortiz E, Abramovic M, Arneitz C, Atcheson N, Barlow L, Barry RL, Barth M, Battiston M, Büchel C, Budde M, Callot V, Combes AJE, De Leener B, Descoteaux M, de Sousa PL, Dostál M, Doyon J, Dvorak A, Eippert F, Epperson KR, Epperson KS, Freund P, Finsterbusch J, Foias A, Fratini M, Fukunaga I, Gandini Wheeler-Kingshott CAM, Germani G, Gilbert G, Giove F, Gros C, Grussu F, Hagiwara A, Henry PG, Horák T, Hori M, Joers J, Kamiya K, Karbasforoushan H, Keřkovský M, Khatibi A, Kim JW, Kinany N, Kitzler HH, Kolind S, Kong Y, Kudlička P, Kuntke P, Kurniawan ND, Kusmia S, Labounek R, Laganà MM, Laule C, Law CS, Lenglet C, Leutritz T, Liu Y, Llufriu S, Mackey S, Martinez-Heras E, Mattera L, Nestrasil I, O'Grady KP, Papinutto N, Papp D, Pareto D, Parrish TB, Pichiecchio A, Prados F, Rovira À, Ruitenberg MJ, Samson RS, Savini G, Seif M, Seifert AC, Smith AK, Smith SA, Smith ZA, Solana E, Suzuki Y, Tackley G, Tinnermann A, Valošek J, Van De Ville D, Yiannakas MC, Weber Ii KA, Weiskopf N, Wise RG, Wyss PO, Xu J. Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Sci Data 2021; 8:219. [PMID: 34400655 PMCID: PMC8368310 DOI: 10.1038/s41597-021-00941-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.
Collapse
Affiliation(s)
- Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
- Mila - Quebec AI Institute, Montreal, QC, Canada.
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Carina Arneitz
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Nicole Atcheson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Laura Barlow
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Markus Barth
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Marco Battiston
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginie Callot
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
| | - Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin De Leener
- Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Canada
- CHU Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Maxime Descoteaux
- Centre de Recherche CHUS, CIMS, Sherbrooke, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Marek Dostál
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adam Dvorak
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Falk Eippert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karla R Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin S Epperson
- Richard M. Lucas Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federico Giove
- IRCCS Santa Lucia Foundation, Rome, Italy
- CREF - Museo storico della fisica e Centro studi e ricerche Enrico Fermi, Rome, Italy
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tomáš Horák
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - James Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Kouhei Kamiya
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | - Haleh Karbasforoushan
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Miloš Keřkovský
- UHB - University Hospital Brno and Masaryk University, Department of Radiology and Nuclear Medicine, Brno, Czech Republic
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joo-Won Kim
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nawal Kinany
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Hagen H Kitzler
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Shannon Kolind
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department Of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | - Yazhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Petr Kudlička
- Multimodal and functional imaging laboratory, Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Slawomir Kusmia
- CUBRIC, Cardiff University, Wales, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Departments of Neurology and Biomedical Engineering, University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Cornelia Laule
- Departments of Radiology, Pathology & Laboratory Medicine, Physics & Astronomy; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Christine S Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Loan Mattera
- Fondation Campus Biotech Genève, 1202, Geneva, Switzerland
| | - Igor Nestrasil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nico Papinutto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Deborah Pareto
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Todd B Parrish
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Pichiecchio
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ferran Prados
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- Centre for Medical Image Computing (CMIC), Medical Physics and Biomedical Engineering Department, University College London, London, UK
- E-health Centre, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Àlex Rovira
- Neuroradiology Section, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Giovanni Savini
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan C Seifert
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex K Smith
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary A Smith
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona, Barcelona, Spain
| | - Y Suzuki
- Department of Radiology, the University of Tokyo, Tokyo, Japan
| | | | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Dimitri Van De Ville
- Institute of Bioengineering/Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Kenneth A Weber Ii
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Richard G Wise
- CUBRIC, Cardiff University, Wales, UK
- Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, Chieti-Pescara, Italy
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Junqian Xu
- BioMedical Engineering and Imaging Institute (BMEII), Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Kesenheimer EM, Wendebourg MJ, Weigel M, Weidensteiner C, Haas T, Richter L, Sander L, Horvath A, Barakovic M, Cattin P, Granziera C, Bieri O, Schlaeger R. Normalization of Spinal Cord Total Cross-Sectional and Gray Matter Areas as Quantified With Radially Sampled Averaged Magnetization Inversion Recovery Acquisitions. Front Neurol 2021; 12:637198. [PMID: 33841307 PMCID: PMC8027254 DOI: 10.3389/fneur.2021.637198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
Background: MR imaging of the spinal cord (SC) gray matter (GM) at the cervical and lumbar enlargements' level may be particularly informative in lower motor neuron disorders, e. g., spinal muscular atrophy, but also in other neurodegenerative or autoimmune diseases affecting the SC. Radially sampled averaged magnetization inversion recovery acquisition (rAMIRA) is a novel approach to perform SC imaging in clinical settings with favorable contrast and is well-suited for SC GM quantitation. However, before applying rAMIRA in clinical studies, it is important to understand (i) the sources of inter-subject variability of total SC cross-sectional areas (TCA) and GM area (GMA) measurements in healthy subjects and (ii) their relation to age and sex to facilitate the detection of pathology-associated changes. In this study, we aimed to develop normalization strategies for rAMIRA-derived SC metrics using skull and spine-based metrics to reduce anatomical variability. Methods: Sixty-one healthy subjects (age range 11–93 years, 37.7% women) were investigated with axial two-dimensional rAMIRA imaging at 3T MRI. Cervical and thoracic levels including the level of the cervical (C4/C5) and lumbar enlargements (Tmax) were examined. SC T2-weighted sagittal images and high-resolution 3D whole-brain T1-weighted images were acquired. TCA and GMAs were quantified. Anatomical variables with associations of |r| > 0.30 in univariate association with SC areas, and age and sex were used to construct normalization models using backward selection with TCAC4/C5 as outcome. The effect of the normalization was assessed by % relative standard deviation (RSD) reductions. Results: Mean inter-individual variability and the SD of the SC area metrics were considerable: TCAC4/5: 8.1%/9.0; TCATmax: 8.9%/6.5; GMAC4/C5: 8.6%/2.2; GMATmax: 12.2%/3.8. Normalization based on sex, brain WM volume, and spinal canal area resulted in RSD reductions of 23.7% for TCAs and 12.0% for GM areas at C4/C5. Normalizations based on the area of spinal canal alone resulted in RSD reductions of 10.2% for TCAs and 9.6% for GM areas at C4/C5, respectively. Discussion: Anatomic inter-individual variability of SC areas is substantial. This study identified effective normalization models for inter-subject variability reduction in TCA and SC GMA in healthy subjects based on rAMIRA imaging.
Collapse
Affiliation(s)
- Eva M Kesenheimer
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maria Janina Wendebourg
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Claudia Weidensteiner
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Laura Richter
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Laura Sander
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antal Horvath
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Regina Schlaeger
- Neurologic Clinic and Policlinic, University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering, Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Toossi A, Bergin B, Marefatallah M, Parhizi B, Tyreman N, Everaert DG, Rezaei S, Seres P, Gatenby JC, Perlmutter SI, Mushahwar VK. Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human. Sci Rep 2021; 11:1955. [PMID: 33479371 PMCID: PMC7820487 DOI: 10.1038/s41598-021-81371-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The overall goal of this work was to create a high-resolution MRI atlas of the lumbosacral enlargement of the spinal cord of the rat (Sprague-Dawley), cat, domestic pig, rhesus monkey, and human. These species were chosen because they are commonly used in basic and translational research in spinal cord injuries and diseases. Six spinal cord specimens from each of the studied species (total of 30 specimens) were fixed, extracted, and imaged. Sizes of the spinal cord segments, cross-sectional dimensions, and locations of the spinal cord gray and white matter were quantified and compared across species. The lumbar enlargement spans spinal cord levels L3-S1 in rats, L4-S1 in cats, L3-S1 in pigs, L2/L3-L7/S1 in monkeys, and T12/L1-S1/S2 in humans. The enlargements in pigs and humans are largest and most similar in size (length and cross-sectional area); followed by monkeys and cats; and followed by rats. The obtained atlas establishes a neuroanatomical reference for the intact lumbosacral spinal cord in these species. It can also be used to guide the planning of surgical procedures of the spinal cord and technology design and development of spinal cord neuroprostheses, as well as precise delivery of cells/drugs into target regions within the spinal cord parenchyma.
Collapse
Affiliation(s)
- Amirali Toossi
- Krembil Research Institute, University Health Network, Toronto, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Bradley Bergin
- Department of Medicine, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Maedeh Marefatallah
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Neil Tyreman
- Department of Medicine, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Dirk G Everaert
- Department of Medicine, University of Alberta, Edmonton, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Sabereh Rezaei
- Department of Materials Science and Engineering, University of Toronto, Toronto, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | | | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, USA
- Washington National Primate Research Centre, Seattle, USA
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada
| | - Vivian K Mushahwar
- Department of Medicine, University of Alberta, Edmonton, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Canada.
| |
Collapse
|
27
|
Papinutto N, Cordano C, Asteggiano C, Caverzasi E, Mandelli ML, Lauricella M, Yabut N, Neylan M, Kirkish G, Gorno-Tempini ML, Henry RG. MRI Measurement of Upper Cervical Spinal Cord Cross-Sectional Area in Children. J Neuroimaging 2020; 30:598-602. [PMID: 32639671 DOI: 10.1111/jon.12758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Neurological and neurodegenerative diseases can affect the spinal cord (SC) of pediatric patients. Magnetic resonance imaging (MRI) allows for in vivo quantification of SC atrophy via cross-sectional area (CSA). The study of CSA values in the general population is important to disentangle disease-related changes from intersubject variability. This study aimed at providing normative values for cervical CSA in children, extending our previous work performed with adults. METHODS Seventy-eight children (age 7-17 years) were selected from a Developmental Dyslexia study. All subjects underwent a 3T brain MRI session and any incidental findings were reported on the scans. A sagittal 1 mm3 3-dimensional T1 -weighted brain acquisition extended to the upper cervical cord was used to measure CSA at C2-C3, as well as spinal canal area and skull volume (V-scale). These three metrics were linearly fitted as a function of age to extract trends and percentage annual changes. Sex differences of CSA were assessed using least squares regression analyses, adjusting for age. We tested normalization strategies proven to be effective in reducing the intersubject variability of adults' CSA. RESULTS CSA changed as a function of age at a faster rate when compared with skull volume (CSA: 1.82% increase, V-scale: .60% reduction). Sex had a statistically significant effect on CSA. Normalization methods based on canal area and skull volume reduced the CSA intersubject variability up to 16.84%. CONCLUSIONS We present CSA normative values in a large cohort of children, reporting on sources of intersubject variability and how to reduce them applying normalization methods previously developed.
Collapse
Affiliation(s)
- Nico Papinutto
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Carlo Asteggiano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Caverzasi
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Maria Luisa Mandelli
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Michael Lauricella
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Nicole Yabut
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Matthew Neylan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Gina Kirkish
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Maria Luisa Gorno-Tempini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| | - Roland G Henry
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, CA
| |
Collapse
|
28
|
Weigel M, Haas T, Wendebourg MJ, Schlaeger R, Bieri O. Imaging of the thoracic spinal cord using radially sampled averaged magnetization inversion recovery acquisitions. J Neurosci Methods 2020; 343:108825. [PMID: 32580062 DOI: 10.1016/j.jneumeth.2020.108825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Spinal cord (SC) gray and white matter atrophy quantification by advanced morphometric MRI can help to better characterize the course of neurodegenerative diseases in vivo, such as e.g. lower motor neuron disorders. Imaging the lower thoracic cord - containing those motor neurons that control leg function - could be particularly informative, however, is challenging due to tissue composition, physiological motion and large field of views. NEW METHOD An "averaged magnetization inversion recovery acquisitions" (AMIRA) approach with a radial k-space acquisition scheme was developed. The method is designed for morphometric SC imaging with a focus on the thoracic SC. RESULTS In a typical setting, radial AMIRA acquires transverse slices with a high 0.50 × 0.50mm2 in-plane resolution and a pronounced positive contrast between thoracic gray and white matter, within typically 2:39 min. Additional proof-of-concept measurements in patients demonstrate that such contrast and resolving capability is indeed necessary to assess potential atrophy of the anterior horns. COMPARISON WITH EXISTING METHOD(S) Radial AMIRA utilizes two benefits of radial MRI techniques: being generally less prone to motion effects and that fold over artifacts can manifest less intrusively. These benefits are united with the original AMIRA approach which allows the contrast to be 'tuned' and improved based on the combination of five simultaneously acquired images of different tissue contrast. CONCLUSIONS Radial AMIRA is a promising approach for in vivo SC gray and white matter atrophy visualization and quantification in lower motor neuron diseases and other autoimmune or genetic diseases involving the entire (not only cervical) spinal cord.
Collapse
Affiliation(s)
- Matthias Weigel
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Maria Janina Wendebourg
- Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Regina Schlaeger
- Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| |
Collapse
|
29
|
Solstrand Dahlberg L, Viessmann O, Linnman C. Heritability of cervical spinal cord structure. Neurol Genet 2020; 6:e401. [PMID: 32185240 PMCID: PMC7061306 DOI: 10.1212/nxg.0000000000000401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/13/2020] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Measures of spinal cord structure can be a useful phenotype to track disease severity and development; this observational study measures the hereditability of cervical spinal cord anatomy and its correlates in healthy human beings. METHODS Twin data from the Human Connectome Project were analyzed with semiautomated spinal cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE model. Relationships between spinal cord metrics, general physical measures, regional brain structural measures, and motor function were assessed. RESULTS We found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and anterior-posterior width (APW) are highly heritable (85%-91%). All measures were highly correlated with the brain volume, and CSA only was positively correlated with thalamic volumes (p = 0.005) but negatively correlated with the occipital cortex area (p = 0.001). LRW was correlated with the participant's height (p = 0.00027). The subjects' sex significantly influenced these metrics. Analyses of a test-retest data set confirmed validity of the approach. CONCLUSIONS This study provides the evidence of genetic influence on spinal cord structure. MRI metrics of cervical spinal cord anatomy are robust and not easily influenced by nonpathological environmental factors, providing a useful metric for monitoring normal development and progression of neurodegenerative disorders affecting the spinal cord, including-but not limited to-spinal cord injury and MS.
Collapse
Affiliation(s)
- Linda Solstrand Dahlberg
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Olivia Viessmann
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - Clas Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine (L.S.D., C.L.), Boston Children's Hospital, Harvard Medical School, MA; Departments of Psychiatry and Radiology (L.S.D., C.L.), Massachusetts General Hospital, Harvard Medical School; Department of Neurology and Neurosurgery (L.S.D.), Montreal Neurological Institute, McGill University, Canada; Athinoula A. Martinos Center for Biomedical Imaging (O.V.), Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Boston; and Spaulding Neuroimaging Lab (C.L.), Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Papinutto N, Asteggiano C, Bischof A, Gundel TJ, Caverzasi E, Stern WA, Bastianello S, Hauser SL, Henry RG. Intersubject Variability and Normalization Strategies for Spinal Cord Total Cross-Sectional and Gray Matter Areas. J Neuroimaging 2019; 30:110-118. [PMID: 31571307 DOI: 10.1111/jon.12666] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The quantification of spinal cord (SC) atrophy by MRI has assumed an important role in assessment of neuroinflammatory/neurodegenerative diseases and traumatic SC injury. Recent technical advances make possible the quantification of gray matter (GM) and white matter tissues in clinical settings. However, the goal of a reliable diagnostic, prognostic or predictive marker is still elusive, in part due to large intersubject variability of SC areas. Here, we investigated the sources of this variability and explored effective strategies to reduce it. METHODS One hundred twenty-nine healthy subjects (mean age: 41.0 ± 15.9) underwent MRI on a Siemens 3T Skyra scanner. Two-dimensional PSIR at the C2-C3 vertebral level and a sagittal 1 mm3 3D T1-weighted brain acquisition extended to the upper cervical cord were acquired. Total cross-sectional area and GM area were measured at C2-C3, as well as measures of the vertebra, spinal canal and the skull. Correlations between the different metrics were explored using Pearson product-moment coefficients. The most promising metrics were used to normalize cord areas using multiple regression analyses. RESULTS The most effective normalization metrics were the V-scale (from SienaX) and the product of the C2-C3 spinal canal diameters. Normalization methods based on these metrics reduced the intersubject variability of cord areas of up to 17.74%. The measured cord areas had a statistically significant sex difference, while the effect of age was moderate. CONCLUSIONS The present work explored in a large cohort of healthy subjects the source of intersubject variability of SC areas and proposes effective normalization methods for its reduction.
Collapse
Affiliation(s)
- Nico Papinutto
- Department of Neurology, University of California, San Francisco, CA
| | - Carlo Asteggiano
- Department of Neurology, University of California, San Francisco, CA.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Antje Bischof
- Department of Neurology, University of California, San Francisco, CA
| | - Tristan J Gundel
- Department of Neurology, University of California, San Francisco, CA
| | - Eduardo Caverzasi
- Department of Neurology, University of California, San Francisco, CA.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - William A Stern
- Department of Neurology, University of California, San Francisco, CA
| | - Stefano Bastianello
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, CA
| | - Roland G Henry
- Department of Neurology, University of California, San Francisco, CA
| |
Collapse
|
31
|
Papinutto N, Henry RG. Evaluation of Intra- and Interscanner Reliability of MRI Protocols for Spinal Cord Gray Matter and Total Cross-Sectional Area Measurements. J Magn Reson Imaging 2019; 49:1078-1090. [PMID: 30198209 PMCID: PMC6620602 DOI: 10.1002/jmri.26269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In vivo quantification of spinal cord atrophy in neurological diseases using MRI has attracted increasing attention. PURPOSE To compare across different platforms the most promising imaging techniques to assess human spinal cord atrophy. STUDY TYPE Test/retest multiscanner study. SUBJECTS Twelve healthy volunteers. FIELD STRENGTH/SEQUENCE Three different 3T scanner platforms (Siemens, Philips, and GE) / optimized phase sensitive inversion recovery (PSIR), T1 -weighted (T1 -w), and T2 *-weighted (T2 *-w) protocols. ASSESSMENT On all images acquired, two operators assessed contrast-to-noise ratio (CNR) between gray matter (GM) and white matter (WM), and between WM and cerebrospinal fluid (CSF); one experienced operator measured total cross-sectional area (TCA) and GM area using JIM and the Spinal Cord Toolbox (SCT). STATISTICAL TESTS Coefficient of variation (COV); intraclass correlation coefficient (ICC); mixed effect models; analysis of variance (t-tests). RESULTS For all the scanners, GM/WM CNR was higher for PSIR than T2 *-w (P < 0.0001) and WM/CSF CNR for T1 -w was the highest (P < 0.0001). For TCA, using JIM, median COVs were smaller than 1.5% and ICC >0.95, while using SCT, median COVs were in the range 2.2-2.75% and ICC 0.79-0.95. For GM, despite some failures of the automatic segmentation, median COVs using SCT on T2 *-w were smaller than using JIM manual PSIR segmentations. In the mixed effect models, the subject was always the main contributor to the variance of area measurements and scanner often contributed to TCA variance (P < 0.05). Using JIM, TCA measurements on T2 *-w were different than on PSIR (P = 0.0021) and T1 -w (P = 0.0018), while using SCT, no notable differences were found between T1 -w and T2 *-w (P = 0.18). JIM and SCT-derived TCA were not different on T1 -w (P = 0.66), while they were different for T2 *-w (P < 0.0001). GM area derived using SCT/T2 *-w versus JIM/PSIR were different (P < 0.0001). DATA CONCLUSION The present work sets reference values for the magnitude of the contribution of different effects to cord area measurement intra- and interscanner variability. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;49:1078-1090.
Collapse
Affiliation(s)
- Nico Papinutto
- Department of NeurologyUniversity of California San Francisco94158San FranciscoCAUSA
| | - Roland G. Henry
- Department of NeurologyUniversity of California San Francisco94158San FranciscoCAUSA
| |
Collapse
|
32
|
Shiratori T, Hotta K, Satoh M. Spinal myoclonus following neuraxial anesthesia: a literature review. J Anesth 2019; 33:140-147. [PMID: 30613902 DOI: 10.1007/s00540-018-02607-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Spinal myoclonus (SM) is a rare neurologic movement disorder following neuraxial anesthesia (NA). SM following NA (SM-NA) has insufficient clinical information and its pathogenesis remains to be elucidated. The aim of this review article was to summarize the past cases and consider SM-NA pathophysiology. Based on our PubMed search, it was revealed that SM-NA develops within several hours after neuraxial local anesthetic (LA) administration and resolves in a day without leaving neurologic compilations. It occurs primarily in the lower extremities, but can sometimes spread upward and affect the upper extremities and trunk. Although statistical adjustments are indispensable, analysis of the previous cases provided important facts that seem to be related with the mechanism of SM-NA. The frequently used LAs for spinal anesthesia were hyperbaric. SM-NA occurrence was more frequent in women. After initiation of spinal anesthesia, intrathecal hyperbaric LA distributes cephalad. In the LA elimination process, the large concentration differences in intrathecal LA may induce the partially functioning spinal neurons, resulting in myoclonus generation. The morphological features of the lumbar spine in women can predispose to a higher LA concentration difference. SM-NA is an unpredictable and rare neural complication following NA and should be confirmed by basic experiments and large-scale researches.
Collapse
Affiliation(s)
- Tohru Shiratori
- Department of Anesthesiology, Ina Central Hospital, 1313-1 Koshiroukubo, Ina, Nagano, 396-8555, Japan.
| | - Kunihisa Hotta
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masaaki Satoh
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
33
|
Guarnieri G, Muto M, Politi LS. Spine and Cord Imaging Anatomy. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Guarnieri G, Muto M, Politi LS. Spine and Cord Imaging Anatomy. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-61423-6_37-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, Ouellette R, Tachibana Y, Hori M, Kamiya K, Chougar L, Stawiarz L, Hillert J, Bannier E, Kerbrat A, Edan G, Labauge P, Callot V, Pelletier J, Audoin B, Rasoanandrianina H, Brisset JC, Valsasina P, Rocca MA, Filippi M, Bakshi R, Tauhid S, Prados F, Yiannakas M, Kearney H, Ciccarelli O, Smith S, Treaba CA, Mainero C, Lefeuvre J, Reich DS, Nair G, Auclair V, McLaren DG, Martin AR, Fehlings MG, Vahdat S, Khatibi A, Doyon J, Shepherd T, Charlson E, Narayanan S, Cohen-Adad J. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 2019; 184:901-915. [PMID: 30300751 PMCID: PMC6759925 DOI: 10.1016/j.neuroimage.2018.09.081] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/05/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.
Collapse
Affiliation(s)
- Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Department of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Dominique Eden
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sara M. Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | - Ren Zhuoquiong
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
| | - Yaou Liu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P. R. China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | | | | | | | - Lydia Chougar
- Juntendo University Hospital, Tokyo, Japan
- Hospital Cochin, Paris, France
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elise Bannier
- CHU Rennes, Radiology Department
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
| | - Anne Kerbrat
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
- CHU Rennes, Neurology Department
| | - Gilles Edan
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Visages U1128, France
- CHU Rennes, Neurology Department
| | - Pierre Labauge
- MS Unit. DPT of Neurology. University Hospital of Montpellier
| | - Virginie Callot
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, CHU Timone, CEMEREM, Marseille, France
| | - Jean Pelletier
- APHM, CHU Timone, CEMEREM, Marseille, France
- APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | - Bertrand Audoin
- APHM, CHU Timone, CEMEREM, Marseille, France
- APHM, Department of Neurology, CHU Timone, APHM, Marseille
| | | | - Jean-Christophe Brisset
- Observatoire Français de la Sclérose en Plaques (OFSEP) ; Univ Lyon, Université Claude Bernard Lyon 1 ; Hospices Civils de Lyon ; CREATIS-LRMN, UMR 5220 CNRS & U 1044 INSERM ; Lyon, France
| | - Paola Valsasina
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, INSPE, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rohit Bakshi
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Shahamat Tauhid
- Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
- Center for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Marios Yiannakas
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | - Hugh Kearney
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | - Olga Ciccarelli
- Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London (UK)
| | | | | | - Caterina Mainero
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA
| | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S. Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | | | | | - Allan R. Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Shahabeddin Vahdat
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Neurology Department, Stanford University, US
| | - Ali Khatibi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | | | | | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
36
|
Yiannakas MC, Liechti MD, Budtarad N, Cullinane P, Yang X, Toosy AT, Panicker JN, Gandini Wheeler-Kingshott CAM. Gray vs. White Matter Segmentation of the Conus Medullaris: Reliability and Variability in Healthy Volunteers. J Neuroimaging 2018; 29:410-417. [PMID: 30582252 DOI: 10.1111/jon.12591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance imaging (MRI)-derived spinal cord (SC) gray and white matter (GM/WM) volume are useful indirect measures of atrophy and neurodegeneration over time, typically obtained in the upper SC. Neuropathological evidence suggests that in certain neurological conditions, early degeneration may occur as low as the sacral SC. In this study, the feasibility of GM/WM segmentation of the conus medullaris (CM) was assessed in vivo. METHODS Twenty-three healthy volunteers (11 female, mean age 47 years) underwent high-resolution 3T MRI of the CM using a 3-dimensional fast field echo sequence. Reproducibility of the volume measurements was assessed in 5 subjects (2 female, 25-37 years) by one rater who repeated the analysis 3 times and also with 2 additional raters working independently in order to calculate the intra- and interrater coefficient of variation (COV), respectively. Furthermore, the influence of age, gender, spine and SC metrics on tissue-specific measures of the CM was investigated. RESULTS Volumetric CM analyses (N = 23) for the SC, GM, and WM revealed a mean (SD) total volume of CM-TV = 1746.9 (296.7) mm3 , CM-GM-TV = 731.2 (106.0) mm3 , and CM-WM-TV = 1014.6 (211.3) mm3 , respectively. The intra-rater COV for measuring the CM-TV and CM-GM-TV was 3.38% and 7.42%, respectively; the interrater COV was 3.43% and 10.80%, respectively. Using age, gender, spine and SC metrics in regression models substantially reduced group variability for CM-TV, CM-WM-TV, and CM-GM-TV by up to 39.2%, 42.7%, and 21.2%, respectively. CONCLUSIONS The results from this study demonstrate the feasibility of obtaining tissue-specific volume measurements in the CM by means of MRI with good reproducibility and provide normative data for future applications in neurological diseases affecting the lower SC.
Collapse
Affiliation(s)
- Marios C Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Martina D Liechti
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, London, United Kingdom
| | - Nuttakarn Budtarad
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Patrick Cullinane
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Xixi Yang
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, London, United Kingdom
| | - Ahmed T Toosy
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jalesh N Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| |
Collapse
|
37
|
Panara V, Navarra R, Mattei PA, Piccirilli E, Bartoletti V, Uncini A, Caulo M. Correlations between cervical spinal cord magnetic resonance diffusion tensor and diffusion kurtosis imaging metrics and motor performance in patients with chronic ischemic brain lesions of the corticospinal tract. Neuroradiology 2018; 61:175-182. [PMID: 30519889 DOI: 10.1007/s00234-018-2139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE To investigate modifications of Magnetic Resonance Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) metrics in lateral white matter (WM) bundles of the cervical spinal cord in patients with previous stroke in the vascular territory of the middle cerebral artery (MCA). METHODS Twenty consecutive patients with a previous ischemic stroke of the MCA territory and a varying degree of upper motor impairment were enrolled. DKI was centered at the C3C4 and C5C6 intervertebral level. RESULTS The fractional anisotropy (FA) values in C3C4 and C5C6 were found to be significantly lower in the lateral WM bundles contralateral to the ischemic lesion and thus, in the WM bundle including the affected corticospinal tract (CST) (p = 0.005 and p = 0.008, respectively), as well as mean kurtosis (MK) and axonal water fraction (AWF) values (p = 0.004 and p = 0.04. respectively). FA values correlated significantly with the Global Motor Index (GMI) both for C3C4 (ρ = 0.61, p = 0.004) and C5C6 (ρ = 0.69, p = 0.002). At C3C4, AWF correlated significantly with GMI (ρ = 0.54, p = 0.03). No correlations were found between lateral WM bundle volumes and GMI. CONCLUSION A reduction of anisotropy and microstructural complexity in the affected lateral WM bundle of the cervical spinal cord was observed in patients with previous ischemic stroke involving the CST. The correlations between these metrics and motor performance were statistically significant.
Collapse
Affiliation(s)
- Valentina Panara
- ITAB-Institute of Advanced Biomedical Technologies, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy. .,Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31 66100, Chieti, CH, Italy.
| | - R Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31 66100, Chieti, CH, Italy
| | - P A Mattei
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31 66100, Chieti, CH, Italy
| | - E Piccirilli
- ITAB-Institute of Advanced Biomedical Technologies, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - V Bartoletti
- ITAB-Institute of Advanced Biomedical Technologies, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - A Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31 66100, Chieti, CH, Italy
| | - M Caulo
- ITAB-Institute of Advanced Biomedical Technologies, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31 66100, Chieti, CH, Italy
| |
Collapse
|
38
|
Olney NT, Bischof A, Rosen H, Caverzasi E, Stern WA, Lomen-Hoerth C, Miller BL, Henry RG, Papinutto N. Measurement of spinal cord atrophy using phase sensitive inversion recovery (PSIR) imaging in motor neuron disease. PLoS One 2018; 13:e0208255. [PMID: 30496320 PMCID: PMC6264489 DOI: 10.1371/journal.pone.0208255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The spectrum of motor neuron disease (MND) includes numerous phenotypes with various life expectancies. The degree of upper and lower motor neuron involvement can impact prognosis. Phase sensitive inversion recovery (PSIR) imaging has been shown to detect in vivo gray matter (GM) and white matter (WM) atrophy in the spinal cord of other patient populations but has not been explored in MND. METHODS In this study, total cord, WM and GM areas of ten patients with a diagnosis within the MND spectrum were compared to those of ten healthy controls (HC). Patients' diagnosis included amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, primary muscular atrophy, facial onset sensory and motor neuronopathy and ALS-Frontotemporal dementia. Axial 2D PSIR images were acquired at four cervical disc levels (C2-C3, C3-C4, C5-C6 and C7-T1) with a short acquisition time (2 minutes) protocol. Total cross-sectional areas (TCA), GM and WM areas were measured using a combination of highly reliable manual and semi-automated methods. Cord areas in MND patients were compared with HC using linear regression analyses adjusted for age and sex. Correlation of WM and GM areas in MND patients was explored to gain insights into underlying atrophy patterns. RESULTS MND patients as a group had significantly smaller cervical cord GM area compared to HC at all four levels (C2-C3: p = .009; C3-C4: p = .001; C5-C6: p = .006; C7-T1: p = .002). WM area at C5-C6 level was significantly smaller (p = .001). TCA was significantly smaller at C3-C4 (p = .018) and C5-C6 (p = .002). No significant GM and WM atrophy was detected in the two patients with predominantly bulbar phenotype. Concomitant GM and WM atrophy was detected in solely upper or lower motor neuron level phenotypes. There was a significant correlation between GM and WM areas at all four levels in this diverse population of MND. CONCLUSION Spinal cord GM and WM atrophy can be detected in vivo in patients within the MND spectrum using a short acquisition time 2D PSIR imaging protocol. PSIR imaging shows promise as a method for quantifying spinal cord involvement and thus may be useful for diagnosis, prognosis and for monitoring disease progression.
Collapse
Affiliation(s)
- Nicholas T. Olney
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco Amyotrophic Lateral Sclerosis Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Antje Bischof
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology and Immunology Clinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Howard Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
| | - Eduardo Caverzasi
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - William A. Stern
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Catherine Lomen-Hoerth
- Department of Neurology, University of California San Francisco Amyotrophic Lateral Sclerosis Center, University of California San Francisco, San Francisco, California, United States of America
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
| | - Roland G. Henry
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Nico Papinutto
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
39
|
Chien C, Scheel M, Schmitz-Hübsch T, Borisow N, Ruprecht K, Bellmann-Strobl J, Paul F, Brandt AU. Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Mult Scler 2018; 25:1926-1936. [PMID: 30475082 DOI: 10.1177/1352458518815596] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal cord (SC) affection is a hallmark symptom of neuromyelitis optica spectrum disorders (NMOSD). Patients with aquaporin-4 (AQP4-IgG+) or myelin oligodendrocyte glycoprotein (MOG-IgG+) antibody seropositivity show this overlapping clinical phenotype. OBJECTIVE Quantitative comparison of SC lesions and atrophy in AQP4-IgG+ and MOG-IgG+ NMOSD. METHODS AQP4-IgG+ (n = 38), MOG-IgG+ (n = 15) NMOSD patients and healthy controls (HC, n = 24) were analysed for SC lesion (prevalence, length, location), atrophy as mean upper cervical cord area (MUCCA), Expanded Disability Status Scale (EDSS), timed 25-foot walk speed (T25FWS) and 9-hole peg test (9HPT) measures. RESULTS In total, 92% (35/38) of AQP4-IgG+ and 53% (8/15) of MOG-IgG+ patients had myelitis attacks (χ2 = 6.47, p = 0.011). 65.8%/26.7% of AQP4-/MOG-IgG+ patients had chronic SC lesions (χ2 = 5.16, p = 0.023), with similar proportions in cervical, upper thoracic and lower thoracic cord, and no length differences. MUCCA was decreased in AQP4-IgG+ (t = -2.27, p = 0.028), but not MOG-IgG+ patients (t = 0.58, p = 0.57) compared to HC. MUCCA associated with myelitis attacks (rho = -0.33, p = 0.016), EDSS (rho = -0.31, p = 0.030), pyramidal functional score (rho = -0.42, p = 0.003), T25FWS (r = 0.43, p = 0.010) and 9HPT Z-score (r = 0.32, p = 0.037), regardless of antibody status. CONCLUSION AQP4-IgG+ patients had more myelitis attacks, SC lesions and SC atrophy was more pronounced than in MOG-IgG+ patients. MUCCA is associated with clinical myelitis attacks and disability in all NMOSD patients.
Collapse
Affiliation(s)
- Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany/Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Borisow
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany/Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany/Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany/ Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany/ Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany/Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
40
|
Bove R, Chitnis T, Cree BA, Tintore M, Naegelin Y, Uitdehaag B, Kappos L, Khoury SJ, Montalban X, Hauser SL, Weiner HL. SUMMIT (Serially Unified Multicenter Multiple Sclerosis Investigation): creating a repository of deeply phenotyped contemporary multiple sclerosis cohorts. Mult Scler 2018; 24:1485-1498. [PMID: 28847219 PMCID: PMC5821573 DOI: 10.1177/1352458517726657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND There is a pressing need for robust longitudinal cohort studies in the modern treatment era of multiple sclerosis. OBJECTIVE Build a multiple sclerosis (MS) cohort repository to capture the variability of disability accumulation, as well as provide the depth of characterization (clinical, radiologic, genetic, biospecimens) required to adequately model and ultimately predict a patient's course. METHODS Serially Unified Multicenter Multiple Sclerosis Investigation (SUMMIT) is an international multi-center, prospectively enrolled cohort with over a decade of comprehensive follow-up on more than 1000 patients from two large North American academic MS Centers (Brigham and Women's Hospital (Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital (CLIMB; BWH)) and University of California, San Francisco (Expression/genomics, Proteomics, Imaging, and Clinical (EPIC))). It is bringing online more than 2500 patients from additional international MS Centers (Basel (Universitätsspital Basel (UHB)), VU University Medical Center MS Center Amsterdam (MSCA), Multiple Sclerosis Center of Catalonia-Vall d'Hebron Hospital (Barcelona clinically isolated syndrome (CIS) cohort), and American University of Beirut Medical Center (AUBMC-Multiple Sclerosis Interdisciplinary Research (AMIR)). RESULTS AND CONCLUSION We provide evidence for harmonization of two of the initial cohorts in terms of the characterization of demographics, disease, and treatment-related variables; demonstrate several proof-of-principle analyses examining genetic and radiologic predictors of disease progression; and discuss the steps involved in expanding SUMMIT into a repository accessible to the broader scientific community.
Collapse
Affiliation(s)
- Riley Bove
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mar Tintore
- Centre d’Esclerosi Mútiple de Catalunya (Cemcat), Barcelona, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Yvonne Naegelin
- Center for MS and Neuroimmunology, Universitätsspital Basel, Basel, Switzerland
| | - Bernard Uitdehaag
- MS Cetner Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Ludwig Kappos
- Center for MS and Neuroimmunology, Universitätsspital Basel, Basel, Switzerland
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Xavier Montalban
- Centre d’Esclerosi Mútiple de Catalunya (Cemcat), Barcelona, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Tsagkas C, Magon S, Gaetano L, Pezold S, Naegelin Y, Amann M, Stippich C, Cattin P, Wuerfel J, Bieri O, Sprenger T, Kappos L, Parmar K. Spinal cord volume loss: A marker of disease progression in multiple sclerosis. Neurology 2018; 91:e349-e358. [PMID: 29950437 DOI: 10.1212/wnl.0000000000005853] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/19/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Cross-sectional studies have shown that spinal cord volume (SCV) loss is related to disease severity in multiple sclerosis (MS). However, long-term data are lacking. Our aim was to evaluate SCV loss as a biomarker of disease progression in comparison to other MRI measurements in a large cohort of patients with relapse-onset MS with 6-year follow-up. METHODS The upper cervical SCV, the total brain volume, and the brain T2 lesion volume were measured annually in 231 patients with MS (180 relapsing-remitting [RRMS] and 51 secondary progressive [SPMS]) over 6 years on 3-dimensional, T1-weighted, magnetization-prepared rapid-acquisition gradient echo images. Expanded Disability Status Scale (EDSS) score and relapses were recorded at every follow-up. RESULTS Patients with SPMS had lower baseline SCV (p < 0.01) but no accelerated SCV loss compared to those with RRMS. Clinical relapses were found to predict SCV loss over time (p < 0.05) in RRMS. Furthermore, SCV loss, but not total brain volume and T2 lesion volume, was a strong predictor of EDSS score worsening over time (p < 0.05). The mean annual rate of SCV loss was the strongest MRI predictor for the mean annual EDSS score change of both RRMS and SPMS separately, while correlating stronger in SPMS. Every 1% increase of the annual SCV loss rate was associated with an extra 28% risk increase of disease progression in the following year in both groups. CONCLUSION SCV loss over time relates to the number of clinical relapses in RRMS, but overall does not differ between RRMS and SPMS. SCV proved to be a strong predictor of physical disability and disease progression, indicating that SCV may be a suitable marker for monitoring disease activity and severity.
Collapse
Affiliation(s)
- Charidimos Tsagkas
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Stefano Magon
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Laura Gaetano
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Simon Pezold
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Yvonne Naegelin
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Michael Amann
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Christoph Stippich
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Philippe Cattin
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Jens Wuerfel
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Oliver Bieri
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Till Sprenger
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Ludwig Kappos
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany
| | - Katrin Parmar
- From the Department of Neurology (C.T., S.M., L.G., Y.N., M.A., T.S., L.K., K.P.), Division of Diagnostic and Interventional Neuroradiology, Department of Radiology (M.A., C.S.), and Division of Radiological Physics, Department of Radiology (O.B.), University Hospital Basel, University of Basel; Medical Image Analysis Center (MIAC AG) (C.T., S.M., L.G., M.A., J.W.), Basel; Department of Biomedical Engineering (S.P., P.C.), University of Basel, Switzerland; and Department of Neurology (T.S.), DKD HELIOS Klinik Wiesbaden, Germany.
| |
Collapse
|
42
|
Tsagkas C, Magon S, Gaetano L, Pezold S, Naegelin Y, Amann M, Stippich C, Cattin P, Wuerfel J, Bieri O, Sprenger T, Kappos L, Parmar K. Preferential spinal cord volume loss in primary progressive multiple sclerosis. Mult Scler 2018; 25:947-957. [PMID: 29781383 DOI: 10.1177/1352458518775006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Little is known on longer term changes of spinal cord volume (SCV) in primary progressive multiple sclerosis (PPMS). OBJECTIVE Longitudinal evaluation of SCV loss in PPMS and its correlation to clinical outcomes, compared to relapse-onset multiple sclerosis (MS) subtypes. METHODS A total of 60 MS age-, sex- and disease duration-matched patients (12 PPMS, each 24 relapsing-remitting (RRMS) and secondary progressive MS (SPMS)) were analysed annually over 6 years of follow-up. The upper cervical SCV was measured on 3D T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images using a semi-automatic software (CORDIAL), along with the total brain volume (TBV), brain T2 lesion volume (T2LV) and Expanded Disability Status Scale (EDSS). RESULTS PPMS showed faster SCV loss over time than RRMS ( p < 0.01) and by trend ( p = 0.066) compared with SPMS. In contrast to relapse-onset MS, in PPMS SCV loss progressed independent of TBV and T2LV changes. Moreover, in PPMS, SCV was the only magnetic resonance imaging (MRI) measurement associated with EDSS increase over time ( p < 0.01), as opposed to RRMS and SPMS. CONCLUSION SCV loss is a strong predictor of clinical outcomes in PPMS and has shown to be faster and independent of brain MRI metrics compared to relapse-onset MS.
Collapse
Affiliation(s)
- Charidimos Tsagkas
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Stefano Magon
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Laura Gaetano
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Simon Pezold
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Amann
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Medical Image Analysis Center (MIAC AG), Basel, Switzerland / Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christoph Stippich
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG), Basel, Switzerland / Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Till Sprenger
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland / Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Ludwig Kappos
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katrin Parmar
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Chien C, Brandt AU, Schmidt F, Bellmann-Strobl J, Ruprecht K, Paul F, Scheel M. MRI-Based Methods for Spinal Cord Atrophy Evaluation: A Comparison of Cervical Cord Cross-Sectional Area, Cervical Cord Volume, and Full Spinal Cord Volume in Patients with Aquaporin-4 Antibody Seropositive Neuromyelitis Optica Spectrum Disorders. AJNR Am J Neuroradiol 2018; 39:1362-1368. [PMID: 29748202 DOI: 10.3174/ajnr.a5665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/13/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Measures for spinal cord atrophy have become increasingly important as imaging biomarkers in the assessment of neuroinflammatory diseases, especially in neuromyelitis optica spectrum disorders. The most commonly used method, mean upper cervical cord area, is relatively easy to measure and can be performed on brain MRIs that capture cervical myelon. Measures of spinal cord volume (eg, cervical cord volume or total cord volume) require longer scanning and more complex analysis but are potentially better suited as spinal cord atrophy measures. This study investigated spinal cord atrophy measures in a cohort of healthy subjects and patients with aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders and evaluated the discriminatory performance of mean upper cervical cord cross-sectional area compared with cervical cord volume and total cord volume. MATERIALS AND METHODS Mean upper cervical cord area, cervical cord volume, and total cord volume were measured using 3T MRIs from healthy subjects (n = 19) and patients with neuromyelitis optica spectrum disorders (n = 30). Group comparison and receiver operating characteristic analyses between healthy controls and patients with neuromyelitis optica spectrum disorders were performed. RESULTS Mean upper cervical cord area, cervical cord volume, and total cord volume measures showed similar and highly significant group differences between healthy control subjects and patients with neuromyelitis optica spectrum disorders (P < .01 for all). All 3 measures showed similar receiver operating characteristic-area under the curve values (mean upper cervical cord area = 0.70, cervical cord volume = 0.75, total cord volume = 0.77) with no significant difference between them. No associations among mean upper cervical cord cross-sectional area, cervical cord volume, or total cord volume with disability measures were found. CONCLUSIONS All 3 measures showed similar discriminatory power between healthy control and neuromyelitis optica spectrum disorders groups. Mean upper cervical cord area is easier to obtain compared with cervical cord volume and total cord volume and can be regarded as an efficient representative measure of spinal cord atrophy in the neuromyelitis optica spectrum disorders context.
Collapse
Affiliation(s)
- C Chien
- From the NeuroCure Clinical Research Center (C.C., A.U.B., F.S., J.B.-S., F.P. M.S.)
| | - A U Brandt
- From the NeuroCure Clinical Research Center (C.C., A.U.B., F.S., J.B.-S., F.P. M.S.)
| | - F Schmidt
- From the NeuroCure Clinical Research Center (C.C., A.U.B., F.S., J.B.-S., F.P. M.S.).,Departments of Neurology (F.S., K.R., F.P.)
| | - J Bellmann-Strobl
- From the NeuroCure Clinical Research Center (C.C., A.U.B., F.S., J.B.-S., F.P. M.S.).,Experimental and Clinical Research Center (J.B.-S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - K Ruprecht
- Departments of Neurology (F.S., K.R., F.P.)
| | - F Paul
- From the NeuroCure Clinical Research Center (C.C., A.U.B., F.S., J.B.-S., F.P. M.S.) .,Departments of Neurology (F.S., K.R., F.P.).,Experimental and Clinical Research Center (J.B.-S., F.P.), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M Scheel
- From the NeuroCure Clinical Research Center (C.C., A.U.B., F.S., J.B.-S., F.P. M.S.).,Neuroradiology (M.S.), Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Tsagkas C, Altermatt A, Bonati U, Pezold S, Reinhard J, Amann M, Cattin P, Wuerfel J, Fischer D, Parmar K, Fischmann A. Reliable and fast volumetry of the lumbar spinal cord using cord image analyser (Cordial). Eur Radiol 2018; 28:4488-4495. [PMID: 29713776 DOI: 10.1007/s00330-018-5431-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To validate the precision and accuracy of the semi-automated cord image analyser (Cordial) for lumbar spinal cord (SC) volumetry in 3D T1w MRI data of healthy controls (HC). MATERIALS AND METHODS 40 3D T1w images of 10 HC (w/m: 6/4; age range: 18-41 years) were acquired at one 3T-scanner in two MRI sessions (time interval 14.9±6.1 days). Each subject was scanned twice per session, allowing determination of test-retest reliability both in back-to-back (intra-session) and scan-rescan images (inter-session). Cordial was applied for lumbar cord segmentation twice per image by two raters, allowing for assessment of intra- and inter-rater reliability, and compared to a manual gold standard. RESULTS While manually segmented volumes were larger (mean: 2028±245 mm3 vs. Cordial: 1636±300 mm3, p<0.001), accuracy assessments between manually and semi-automatically segmented images showed a mean Dice-coefficient of 0.88±0.05. Calculation of within-subject coefficients of variation (COV) demonstrated high intra-session (1.22-1.86%), inter-session (1.26-1.84%), as well as intra-rater (1.73-1.83%) reproducibility. No significant difference was shown between intra- and inter-session reproducibility or between intra-rater reliabilities. Although inter-rater reproducibility (COV: 2.87%) was slightly lower compared to all other reproducibility measures, between rater consistency was very strong (intraclass correlation coefficient: 0.974). CONCLUSION While under-estimating the lumbar SCV, Cordial still provides excellent inter- and intra-session reproducibility showing high potential for application in longitudinal trials. KEY POINTS • Lumbar spinal cord segmentation using the semi-automated cord image analyser (Cordial) is feasible. • Lumbar spinal cord is 40-mm cord segment 60 mm above conus medullaris. • Cordial provides excellent inter- and intra-session reproducibility in lumbar spinal cord region. • Cordial shows high potential for application in longitudinal trials.
Collapse
Affiliation(s)
- Charidimos Tsagkas
- Department of Neurology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
- Medical Image Analysis Center (MIAC AG), Basel, Mittlere Strasse 83, CH - 4031, Basel, Switzerland
| | - Anna Altermatt
- Medical Image Analysis Center (MIAC AG), Basel, Mittlere Strasse 83, CH - 4031, Basel, Switzerland
- Center for medical Image Analysis & Navigation (CIAN), Department of Bioengineering, University Basel, Gewerbestrasse 14, CH-4123, Allschwil, Switzerland
| | - Ulrike Bonati
- Division of Neuropediatrics, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056, Basel, Switzerland
| | - Simon Pezold
- Center for medical Image Analysis & Navigation (CIAN), Department of Bioengineering, University Basel, Gewerbestrasse 14, CH-4123, Allschwil, Switzerland
| | - Julia Reinhard
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Michael Amann
- Department of Neurology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
- Medical Image Analysis Center (MIAC AG), Basel, Mittlere Strasse 83, CH - 4031, Basel, Switzerland
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
| | - Philippe Cattin
- Center for medical Image Analysis & Navigation (CIAN), Department of Bioengineering, University Basel, Gewerbestrasse 14, CH-4123, Allschwil, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center (MIAC AG), Basel, Mittlere Strasse 83, CH - 4031, Basel, Switzerland
- Center for medical Image Analysis & Navigation (CIAN), Department of Bioengineering, University Basel, Gewerbestrasse 14, CH-4123, Allschwil, Switzerland
| | - Dirk Fischer
- Division of Neuropediatrics, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056, Basel, Switzerland
| | - Katrin Parmar
- Department of Neurology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland.
| | - Arne Fischmann
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
- Division of Neuroradiology, Hirslanden Klinik St. Anna, St. Anna-Strasse 32, CH-6006, Luzern, Switzerland
| |
Collapse
|
45
|
Kougias DG, Das T, Perez AB, Pereira SL. A role for nutritional intervention in addressing the aging neuromuscular junction. Nutr Res 2018; 53:1-14. [PMID: 29804584 DOI: 10.1016/j.nutres.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to discuss the structural and physiological changes that underlie age-related neuromuscular dysfunction and to summarize current evidence on the potential role of nutritional interventions on neuromuscular dysfunction-associated pathways. Age-related neuromuscular deficits are known to coincide with distinct changes in the central and peripheral nervous system, in the neuromuscular system, and systemically. Although many features contribute to the age-related decline in neuromuscular function, a comprehensive understanding of their integration and temporal relationship is needed. Nonetheless, many nutrients and ingredients show promise in modulating neuromuscular output by counteracting the age-related changes that coincide with neuromuscular dysfunction. In particular, dietary supplements, such as vitamin D, omega-3 fatty acids, β-hydroxy-β-methylbutyrate, creatine, and dietary phospholipids, demonstrate potential in ameliorating age-related neuromuscular dysfunction. However, current evidence seldom directly assesses neuromuscular outcomes and is not always in the context of aging. Additional clinical research studies are needed to confirm the benefits of dietary supplements on neuromuscular function, as well as to define the appropriate population, dosage, and duration for intervention.
Collapse
Affiliation(s)
- Daniel G Kougias
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA; Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA.
| | - Tapas Das
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA.
| | | | - Suzette L Pereira
- Abbott Nutrition, Strategic Research, 3300 Stelzer Road, Columbus, OH, USA.
| |
Collapse
|
46
|
Gros C, De Leener B, Dupont SM, Martin AR, Fehlings MG, Bakshi R, Tummala S, Auclair V, McLaren DG, Callot V, Cohen-Adad J, Sdika M. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Med Image Anal 2017; 44:215-227. [PMID: 29288983 DOI: 10.1016/j.media.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/29/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
During the last two decades, MRI has been increasingly used for providing valuable quantitative information about spinal cord morphometry, such as quantification of the spinal cord atrophy in various diseases. However, despite the significant improvement of MR sequences adapted to the spinal cord, automatic image processing tools for spinal cord MRI data are not yet as developed as for the brain. There is nonetheless great interest in fully automatic and fast processing methods to be able to propose quantitative analysis pipelines on large datasets without user bias. The first step of most of these analysis pipelines is to detect the spinal cord, which is challenging to achieve automatically across the broad range of MRI contrasts, field of view, resolutions and pathologies. In this paper, a fully automated, robust and fast method for detecting the spinal cord centerline on MRI volumes is introduced. The algorithm uses a global optimization scheme that attempts to strike a balance between a probabilistic localization map of the spinal cord center point and the overall spatial consistency of the spinal cord centerline (i.e. the rostro-caudal continuity of the spinal cord). Additionally, a new post-processing feature, which aims to automatically split brain and spine regions is introduced, to be able to detect a consistent spinal cord centerline, independently from the field of view. We present data on the validation of the proposed algorithm, known as "OptiC", from a large dataset involving 20 centers, 4 contrasts (T2-weighted n = 287, T1-weighted n = 120, T2∗-weighted n = 307, diffusion-weighted n = 90), 501 subjects including 173 patients with a variety of neurologic diseases. Validation involved the gold-standard centerline coverage, the mean square error between the true and predicted centerlines and the ability to accurately separate brain and spine regions. Overall, OptiC was able to cover 98.77% of the gold-standard centerline, with a mean square error of 1.02 mm. OptiC achieved superior results compared to a state-of-the-art spinal cord localization technique based on the Hough transform, especially on pathological cases with an averaged mean square error of 1.08 mm vs. 13.16 mm (Wilcoxon signed-rank test p-value < .01). Images containing brain regions were identified with a 99% precision, on which brain and spine regions were separated with a distance error of 9.37 mm compared to ground-truth. Validation results on a challenging dataset suggest that OptiC could reliably be used for subsequent quantitative analyses tasks, opening the door to more robust analysis on pathological cases.
Collapse
Affiliation(s)
- Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sara M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Rohit Bakshi
- Laboratory for Neuroimaging Research, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Subhash Tummala
- Laboratory for Neuroimaging Research, Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | - Virginie Callot
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Hôpital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Michaël Sdika
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69100, Lyon, France.
| |
Collapse
|
47
|
Paquin MÊ, El Mendili MM, Gros C, Dupont SM, Cohen-Adad J, Pradat PF. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis. AJNR Am J Neuroradiol 2017; 39:184-192. [PMID: 29122760 DOI: 10.3174/ajnr.a5427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/17/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. MATERIALS AND METHODS Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. RESULTS Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls (P = .004) compared with spinal cord atrophy (P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline (R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores (R2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas (R2 = 0.74). CONCLUSIONS Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- M-Ê Paquin
- From the Faculté de Médecine (M.-Ê.P.).,NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - M M El Mendili
- Sorbonne Universités (M.M.E.M., P.-F.P.) UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,Department of Neurology (M.M.E.M.), Icahn School of Medicine, Mount Sinai, New York, New York
| | - C Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - S M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - J Cohen-Adad
- Functional Neuroimaging Unit, CRIUGM (J.C.-A.), Université de Montréal, Montreal, Quebec, Canada .,NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal (M.-Ê.P., C.G., S.M.D., J.C.-A.), Montreal, Quebec, Canada
| | - P-F Pradat
- Sorbonne Universités (M.M.E.M., P.-F.P.) UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,Département des Maladies du Système Nerveux (P.-F.P.), Centre Référent Maladie Rare SLA, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
48
|
Weigel M, Bieri O. Spinal cord imaging using averaged magnetization inversion recovery acquisitions. Magn Reson Med 2017; 79:1870-1881. [PMID: 28714105 DOI: 10.1002/mrm.26833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To establish a novel approach for fast high-resolution spinal cord (SC) imaging using averaged magnetization inversion recovery acquisitions (AMIRA). METHODS The AMIRA concept is based on an inversion recovery (IR) prepared, segmented, and time-limited cine balanced steady state free precession sequence. Typically, for the fastest SC imaging without any signal averaging, eight consecutive images in time with an in-plane resolution of 0.67 × 0.67 mm2 and 6 mm to 8 mm slice thickness are acquired in 51 s. AMIRA does not require parallel acquisition techniques. RESULTS AMIRA measures eight images of remarkable tissue contrast variation between spinal cord gray (GM) and white matter (WM) and cerebrospinal fluid (CSF). Following the AMIRA concept, averaging the first IR contrast images not only improves the signal-to-noise ratio but also offers a surprising enhancement of the contrast-to-noise ratio between GM and WM, whereas averaging the last images considerably improves the contrast-to-noise ratio between WM and CSF. These observations are supported by quantitative data. CONCLUSION The AMIRA concept provides 2D spinal cord imaging with multiple tissue contrasts and enhanced contrast-to-noise ratios with a typical 0.67 × 0.67 mm2 in-plane resolution and a slice thickness between 4 mm and 8 mm acquired in only 1 to 2 min per slice. Magn Reson Med 79:1870-1881, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Matthias Weigel
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Tummala S, Singhal T, Oommen VV, Kim G, Khalid F, Healy BC, Bakshi R. Spinal Cord as an Adjunct to Brain Magnetic Resonance Imaging in Defining "No Evidence of Disease Activity" in Multiple Sclerosis. Int J MS Care 2017; 19:158-164. [PMID: 28603465 DOI: 10.7224/1537-2073.2016-068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Monitoring patients with multiple sclerosis (MS) for “no evidence of disease activity” (NEDA) may help guide disease-modifying therapy (DMT) management decisions. Whereas surveillance brain magnetic resonance imaging (MRI) is common, the role of spinal cord monitoring for NEDA is unknown. Objective To evaluate the role of brain and spinal cord 3T MRI in the 1-year evaluation of NEDA. Methods Of 61 study patients (3 clinically isolated syndrome, 56 relapsing-remitting, 2 secondary progressive), 56 (91.8%) were receiving DMT. The MRI included brain fluid-attenuated inversion recovery and cervical/thoracic T2-weighted fast spin echo images. On MRI, NEDA was defined as the absence of new or enlarging T2 lesions at 1 year. Results Thirty-nine patients (63.9%) achieved NEDA by brain MRI, only one of whom had spinal cord activity. This translates to a false-positive rate for NEDA based on the brain of 2.6% (95% CI, 0.1%–13.5%). Thirty-eight patients (62.3%) had NEDA by brain and spinal cord MRI. Fifty-five patients (90.2%) had NEDA by spinal cord MRI, 17 of whom had brain activity. Of the 22 patients (36.1%) with brain changes, 5 had spinal cord changes. No evidence of disease activity was sustained in 48.3% of patients at 1 year and was the same with the addition of spinal cord MRI. Patients with MRI activity in either the brain or the spinal cord only were more likely to have activity in the brain (P = .0001). Conclusions Spinal cord MRI had a low diagnostic yield as an adjunct to brain MRI at 3T in monitoring patients with MS for NEDA over 1 year. Studies with larger data sets are needed to confirm these findings.
Collapse
|
50
|
De Leener B, Mangeat G, Dupont S, Martin AR, Callot V, Stikov N, Fehlings MG, Cohen-Adad J. Topologically preserving straightening of spinal cord MRI. J Magn Reson Imaging 2017; 46:1209-1219. [PMID: 28130805 DOI: 10.1002/jmri.25622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. MATERIALS AND METHODS The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T2 - and T1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). RESULTS The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). CONCLUSION A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219.
Collapse
Affiliation(s)
- Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Gabriel Mangeat
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sara Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France.,AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|