1
|
Chen B, Wang Y, Wu Y, Xu T. Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells. Curr Cancer Drug Targets 2024; 24:987-1004. [PMID: 38284713 DOI: 10.2174/0115680096266981231215111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
High-risk HPV infection accounts for 99.7% of cervical cancer, over 90% of anal cancer, 50% of head and neck cancers, 40% of vulvar cancer, and some cases of vaginal and penile cancer, contributing to approximately 5% of cancers worldwide. The development of cancer is a complex, multi-step process characterized by dysregulation of signaling pathways and alterations in metabolic pathways. Extensive research has demonstrated that metabolic reprogramming plays a key role in the progression of various cancers, such as cervical, head and neck, bladder, and prostate cancers, providing the material and energy foundation for rapid proliferation and migration of cancer cells. Metabolic reprogramming of tumor cells allows for the rapid generation of ATP, aiding in meeting the high energy demands of HPV-related cancer cell proliferation. The interaction between Human Papillomavirus (HPV) and its associated cancers has become a recent focus of investigation. The impact of HPV on cellular metabolism has emerged as an emerging research topic. A significant body of research has shown that HPV influences relevant metabolic signaling pathways, leading to cellular metabolic alterations. Exploring the underlying mechanisms may facilitate the discovery of biomarkers for diagnosis and treatment of HPV-associated diseases. In this review, we introduced the molecular structure of HPV and its replication process, discussed the diseases associated with HPV infection, described the energy metabolism of normal cells, highlighted the metabolic features of tumor cells, and provided an overview of recent advances in potential therapeutic targets that act on cellular metabolism. We discussed the potential mechanisms underlying these changes. This article aims to elucidate the role of Human Papillomavirus (HPV) in reshaping cellular metabolism and the application of metabolic changes in the research of related diseases. Targeting cancer metabolism may serve as an effective strategy to support traditional cancer treatments, as metabolic reprogramming is crucial for malignant transformation in cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yishi Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Xia Y, Wang X, Liu Y, Shapiro E, Lepor H, Tang MS, Sun TT, Wu XR. PKM2 Is Essential for Bladder Cancer Growth and Maintenance. Cancer Res 2022; 82:571-585. [PMID: 34903602 PMCID: PMC8857058 DOI: 10.1158/0008-5472.can-21-0403] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Pyruvate kinase M2 (PKM2) has been shown to promote tumorigenesis by facilitating the Warburg effect and enhancing the activities of oncoproteins. However, this paradigm has recently been challenged by studies in which the absence of PKM2 failed to inhibit and instead accelerated tumorigenesis in mouse models. These results seem inconsistent with the fact that most human tumors overexpress PKM2. To further elucidate the role of PKM2 in tumorigenesis, we investigated the effect of PKM2 knockout in oncogenic HRAS-driven urothelial carcinoma. While PKM2 ablation in mouse urothelial cells did not affect tumor initiation, it impaired the growth and maintenance of HRAS-driven tumors. Chemical inhibition of PKM2 recapitulated these effects. Both conditions substantially reduced complex formation of PKM2 with STAT3, their nuclear translocation, and HIF1α- and VEGF-related angiogenesis. The reduction in nuclear STAT3 in the absence of PKM2 also correlated with decreased autophagy and increased apoptosis. Time-controlled, inducible PKM2 overexpression in simple urothelial hyperplasia did not trigger tumorigenesis, while overexpression of PKM2, but not PKM1, in nodular urothelial hyperplasia with angiogenesis strongly accelerated tumorigenesis. Finally, in human patients, PKM2 was overexpressed in low-grade nonmuscle-invasive and high-grade muscle-invasive bladder cancer. Based on these data, PKM2 is not required for tumor initiation but is essential for tumor growth and maintenance by enhancing angiogenesis and metabolic addiction. The PKM2-STAT3-HIF1α/VEGF signaling axis may play a critical role in bladder cancer and may serve as an actionable therapeutic target. SIGNIFICANCE Genetic manipulation and pharmacologic inhibition of PKM2 in mouse urothelial lesions highlight its essential role in promoting angiogenesis and metabolic addiction, events indispensable for tumor growth and maintenance.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Animals
- Apoptosis/genetics
- Autophagy/genetics
- Carcinogenesis/genetics
- Carcinoma, Transitional Cell/blood supply
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Mice
Collapse
Affiliation(s)
- Yong Xia
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Xing Wang
- Department of Urology, New York University School of Medicine, New York, NY 10016
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010
| | - Yan Liu
- Department of Urology, New York University School of Medicine, New York, NY 10016
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Moon-shong Tang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016
| | - Tung-Tien Sun
- Department of Urology, New York University School of Medicine, New York, NY 10016
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY 10016
- Department of Pathology, New York University School of Medicine, New York, NY 10016
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010
| |
Collapse
|
3
|
Kozal K, Jóźwiak P, Krześlak A. Contemporary Perspectives on the Warburg Effect Inhibition in Cancer Therapy. Cancer Control 2021; 28:10732748211041243. [PMID: 34554006 PMCID: PMC8474311 DOI: 10.1177/10732748211041243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the 1920s, Otto Warburg observed the phenomenon of altered glucose metabolism
in cancer cells. Although the initial hypothesis suggested that the alteration
resulted from mitochondrial damage, multiple studies of the subject revealed a
precise, multistage process rather than a random pattern. The phenomenon of
aerobic glycolysis emerges not only from mitochondrial abnormalities common in
cancer cells, but also results from metabolic reprogramming beneficial for their
sustenance. The Warburg effect enables metabolic adaptation of cancer cells to
grow and proliferate, simultaneously enabling their survival in hypoxic
conditions. Altered glucose metabolism of cancer cells includes, inter alia,
qualitative and quantitative changes within glucose transporters, enzymes of the
glycolytic pathway, such as hexokinases and pyruvate kinase, hypoxia-inducible
factor, monocarboxylate transporters, and lactate dehydrogenase. This review
summarizes the current state of knowledge regarding inhibitors of cancer glucose
metabolism with a focus on their clinical potential. The altered metabolic
phenotype of cancer cells allows for targeting of specific mechanisms, which
might improve conventional methods in anti-cancer therapy. However, several
problems such as drug bioavailability, specificity, toxicity, the plasticity of
cancer cells, and heterogeneity of cells in tumors have to be overcome when
designing therapies based on compounds targeted in cancer cell energy
metabolism.
Collapse
Affiliation(s)
- Karolina Kozal
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
| | - Anna Krześlak
- Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz, Lodz, Poland
- Anna Krzeslak Faculty of Biology and
Environmental Protection, Department of Cytobiochemistry, University of Lodz,
Pomorska 141/143, Lodz 90-131, Poland.
| |
Collapse
|
4
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
5
|
Proteomic Profiling Change and Its Implies in the Early Mycosis Fungoides (MF) Using Isobaric Tags for Relative and Absolute Quantification (iTRAQ). BIOMED RESEARCH INTERNATIONAL 2020; 2020:9237381. [PMID: 33299887 PMCID: PMC7707953 DOI: 10.1155/2020/9237381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022]
Abstract
Purpose Mycosis fungoides (MF) is the most common T-cell lymphoma, with indolent biologic behavior in the early stage and features of invasive in the tumor stage. The diagnosis of MF is still ambiguous and difficult. We focused on the proteomic profiling change in the pathogenesis of early MF and identified candidate biomarkers for early diagnosis. Methods We collected peripheral blood samples of MF patients and healthy individuals (HI) performed proteomic profiling analysis using isobaric tags for relative and absolute quantification (iTRAQ) platform. Differently expressed proteins (DEPs) were filtered, and involved biological functions were analyzed through Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) software. Results We identified 78 DEPs including fifty proteins were upregulated and 28 proteins were downregulated in the MF group with HI as a control. Total DEPs were analyzed according to the biological regulation and metabolic process through GO analysis. The pathways of LXR/RXR activation and FXR/RXR activation were significantly activated, in which APOH, CLU, and ITIH4 were involved. The top annotated disease and function network was (Cancer, Organismal Injury and Abnormalities, Reproductive System Disease), with a key node CLU. These DEPs were involved in cancer, including thyroid carcinoma, head and neck carcinoma, and cancer of secretory structure, in which CLU, GNAS, and PKM played an indirect role in the occurrence and development of cancer. Relevant causal network was IL12 (family), which is related to GNAS, PKM, and other DEPs. Conclusion Proteomic profiling of early-stage MF provided candidate protein biomarkers such as CLU, GNAS, and PKM, which benefit the early diagnosis and understanding of the mechanism of MF development. Besides, lipid metabolism may be one of the pathogenesis of MF, and IL12 was a potential marker for the diagnosis and treatment of early MF.
Collapse
|
6
|
Identification of Differentially Expressed Genes in Different Types of Broiler Skeletal Muscle Fibers Using the RNA-seq Technique. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9478949. [PMID: 32695825 PMCID: PMC7362283 DOI: 10.1155/2020/9478949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022]
Abstract
The difference in muscle fiber types is very important to the muscle development and meat quality of broilers. At present, the molecular regulation mechanisms of skeletal muscle fiber-type transformation in broilers are still unclear. In this study, differentially expressed genes between breast and leg muscles in broilers were analyzed using RNA-seq. A total of 767 DEGs were identified. Compared with leg muscle, there were 429 upregulated genes and 338 downregulated genes in breast muscle. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in cellular processes, single organism processes, cells, and cellular components, as well as binding and catalytic activity. KEGG analysis shows that a total of 230 DEGs were mapped to 126 KEGG pathways and significantly enriched in the four pathways of glycolysis/gluconeogenesis, starch and sucrose metabolism, insulin signalling pathways, and the biosynthesis of amino acids. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differential expression of 7 selected DEGs, and the results were consistent with RNA-seq data. In addition, the expression profile of MyHC isoforms in chicken skeletal muscle cells showed that with the extension of differentiation time, the expression of fast fiber subunits (types IIA and IIB) gradually increased, while slow muscle fiber subunits (type I) showed a downward trend after 4 days of differentiation. The differential genes screened in this study will provide some new ideas for further understanding the molecular mechanism of skeletal muscle fiber transformation in broilers.
Collapse
|
7
|
Aberrant DNA methylation defines isoform usage in cancer, with functional implications. PLoS Comput Biol 2019; 15:e1007095. [PMID: 31329578 PMCID: PMC6675117 DOI: 10.1371/journal.pcbi.1007095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/01/2019] [Accepted: 05/12/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative transcript isoforms are common in tumors and act as potential drivers of cancer. Mechanisms determining altered isoform expression include somatic mutations in splice regulatory sites or altered splicing factors. However, since DNA methylation is known to regulate transcriptional isoform activity in normal cells, we predicted the highly dysregulated patterns of DNA methylation present in cancer also affect isoform activity. We analyzed DNA methylation and RNA-seq isoform data from 18 human cancer types and found frequent correlations specifically within 11 cancer types. Examining the top 25% of variable methylation sites revealed that the location of the methylated CpG site in a gene determined which isoform was used. In addition, the correlated methylation-isoform patterns classified tumors into known subtypes and predicted distinct protein functions between tumor subtypes. Finally, methylation-correlated isoforms were enriched for oncogenes, tumor suppressors, and cancer-related pathways. These findings provide new insights into the functional impact of dysregulated DNA methylation in cancer and highlight the relationship between the epigenome and transcriptome. In eukaryotes, one gene can be transcribed into multiple RNA sequences (or isoforms) that are subsequently translated into proteins with different functions in response to specific cellular needs. Recent studies showed that cancer cells can obtain abnormal functions via expressing different isoforms. In normal cells, isoform expression can be regulated by DNA methylation–a molecular signature with attached methyl groups on DNA sequences. Given that dysregulation of DNA methylation is a cancer hallmark, we suspect the same regulation holds in cancer and contributes to cancer progression. In this study, we analyzed data from 18 human cancer types and found frequent correlations in 11 cancer types between specific isoform usage and DNA methylation depending on the location of the methylated site in a gene. These correlation patterns can classify heterogeneous tumors in a cancer type into homogeneous subtypes and are predicted to change protein functions via isoform switching between subtypes. Finally, we found cancer-related genes often harbored more DNA methylation-isoform correlations than genes not implicated in cancer. This finding could help us to better understand the functional impact of DNA methylation alterations via regulation of isoform expression in tumorigenesis and to further improve the cancer treatment.
Collapse
|
8
|
Belousov PV, Afanasyeva MA, Gubernatorova EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM, Kopylov AT, Demin DE, Tatosyan KA, Ustiugova AS, Prokofjeva MM, Lanshchakov KV, Vanushko VE, Zaretsky AR, Severskaia NV, Dvinskikh NY, Abrosimov AY, Kuprash DV, Schwartz AM. Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRAS Q61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer Lett 2019; 467:96-106. [PMID: 31326556 DOI: 10.1016/j.canlet.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.
Collapse
Affiliation(s)
- Pavel V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Genetics and Life Sciences, Educational Center «Sirius», Sochi, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Denis E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Lanshchakov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; Central Clinical Hospital of the Presidential Administration of the Russian Federation, Moscow, Russia
| | - Vladimir E Vanushko
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Shemyakin-Ovchinnikov Research Institute for Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Evrogen Lab LLC, Moscow, Russia
| | - Natalya V Severskaia
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Nina Y Dvinskikh
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Alexander Y Abrosimov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; National University of Science & Technology «MISIS», Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
10
|
Kim Y, Lee YS, Kang SW, Kim S, Kim TY, Lee SH, Hwang SW, Kim J, Kim EN, Ju JS, Park YY, Kweon MN. Loss of PKM2 in Lgr5 + intestinal stem cells promotes colitis-associated colorectal cancer. Sci Rep 2019; 9:6212. [PMID: 30996297 PMCID: PMC6470145 DOI: 10.1038/s41598-019-42707-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/03/2019] [Indexed: 01/15/2023] Open
Abstract
The regulatory properties of pyruvate kinase M2 isoform (PKM2), the key glycolytic enzyme, influence altered energy metabolism including glycolysis in cancer. In this study, we found that PKM2 was highly expressed in patients with ulcerative colitis or colorectal cancer (CRC). We then investigated the effectiveness of conditionally ablating PKM2 in Lgr5+ intestinal stem cells (ISC) using a mouse model of colitis-associated CRC (AOM plus DSS). Tamoxifen-inducible Lgr5-driven deletion of PKM2 in ISC (PKM2ΔLgr5-Tx) significantly promoted tumor incidence and size in the colon and lower body weight compared with findings in vehicle-treated mice (PKM2ΔLgr5-Veh). Histopathologic analysis revealed considerable high-grade dysplasia and adenocarcinoma in the colon of PKM2ΔLgr5-Tx mice while PKM2ΔLgr5-Veh mice had low- and high-grade dysplasia. Loss of PKM2 was associated with dominant expression of PKM1 in Lgr5+ ISC and their progeny cells. Further, the organoid-forming efficiency of whole cancer cells or Lgr5+ cells obtained from colon polyps of PKM2ΔLgr5-Tx mice was significantly increased when compared with PKM2ΔLgr5-Veh mice. Cancer organoids from PKM2ΔLgr5-Tx mice exhibited increased mitochondrial oxygen consumption and a shift of metabolites involved in energy metabolism. These findings suggest that loss of PKM2 function in ISC promotes colitis-associated CRC.
Collapse
Affiliation(s)
- Yeji Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sung Wan Kang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Pathology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Eun Na Kim
- Department of Pathology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Jin-Sung Ju
- Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yun-Yong Park
- Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Kurihara-Shimomura M, Sasahira T, Nakashima C, Kuniyasu H, Shimomura H, Kirita T. The Multifarious Functions of Pyruvate Kinase M2 in Oral Cancer Cells. Int J Mol Sci 2018; 19:ijms19102907. [PMID: 30257458 PMCID: PMC6213602 DOI: 10.3390/ijms19102907] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancies worldwide. OSCC frequently leads to oral dysfunction, which worsens a patient’s quality of life. Moreover, its prognosis remains poor. Unlike normal cells, tumor cells preferentially metabolize glucose by aerobic glycolysis. Pyruvate kinase (PK) catalyzes the final step in glycolysis, and the transition from PKM1 to PKM2 is observed in many cancer cells. However, little is known about PKM expression and function in OSCC. In this study, we investigated the expression of PKM in OSCC specimens and performed a functional analysis of human OSCC cells. We found that the PKM2/PKM1 ratio was higher in OSCC cells than in adjacent normal mucosal cells and in samples obtained from dysplasia patients. Furthermore, PKM2 expression was strongly correlated with OSCC tumor progression on immunohistochemistry. PKM2 expression was higher during cell growth, invasion, and apoptosis in HSC3 cells, which show a high energy flow and whose metabolism depends on aerobic glycolysis and oxidative phosphorylation. PKM2 expression was also associated with the production of reactive oxygen species (ROS) and integration of glutamine into lactate. Our results suggested that PKM2 has a variety of tumor progressive functions in OSCC cells.
Collapse
Affiliation(s)
- Miyako Kurihara-Shimomura
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Hiroyuki Shimomura
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
12
|
Bao Q, Gong L, Wang J, Wen J, Shen Y, Zhang W. Extracellular Vesicle RNA Sequencing Reveals Dramatic Transcriptomic Alterations Between Metastatic and Primary Osteosarcoma in a Liquid Biopsy Approach. Ann Surg Oncol 2018; 25:2642-2651. [PMID: 29981024 DOI: 10.1245/s10434-018-6642-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a highly metastasizing bone malignancy despite wide surgical resection of the primary lesion. A liquid biopsy approach to detect residual disease and identify therapeutic targets is still lacking. In this report, we aimed to track the metastasis of OS via extracellular vesicle (EV) RNA profiling in a non-invasive manner. METHODS We applied RNA sequencing for 10 matched metastatic and primary OS EV samples, including two pairs of cell lines and three pairs of plasma, and compared the expressed mutation, gene expression, fusion transcript, and alternative splicing (AS) between metastatic and primary OS at the transcriptome-wide level. Additional paired tissue/EVs were sequenced and public datasets were used to validate the EV-based metastatic biopsy. RESULTS EVs were characterized through size-profiling, immunolabeling, and morphological examination. A drastic increase of mutation burden was observed in metastatic OS versus the non-metastatic counterpart. Hierarchical clustering of the expression profiles differentiated the metastatic EVs from the non-metastatic, with a signature enriched in cell-adhesion signaling and tyrosine kinase pathways. Moreover, 30 cancer-related gene fusions were identified in EV RNA as AS events tend to be more frequently observed in metastatic EVs. Further investigation suggested that over 70% of expressed point mutations from EVs could be validated in paired cell line/EV and tissue/EV analyses, and the expression signature significantly predicted 5-year survivorship of 42 patients from a public dataset. CONCLUSION We have demonstrated a liquid biopsy-based approach for tracking cancer transcriptomic alterations, which is a promising source of prognostic and therapeutic biomarkers for metastatic OS. CLINICAL TRIAL REGISTRATION NCT03108677.
Collapse
Affiliation(s)
- Qiyuan Bao
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liangzhi Gong
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junxiang Wen
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weibin Zhang
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget 2018; 7:38908-38926. [PMID: 26918353 PMCID: PMC5122440 DOI: 10.18632/oncotarget.7676] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Xun Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene 2018; 37:1730-1742. [DOI: 10.1038/s41388-017-0086-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/11/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
|
15
|
Metabolic Pathways of the Warburg Effect in Health and Disease: Perspectives of Choice, Chain or Chance. Int J Mol Sci 2017; 18:ijms18122755. [PMID: 29257069 PMCID: PMC5751354 DOI: 10.3390/ijms18122755] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Focus on the Warburg effect, initially descriptive of increased glycolysis in cancer cells, has served to illuminate mitochondrial function in many other pathologies. This review explores our current understanding of the Warburg effect’s role in cancer, diabetes and ageing. We highlight how it can be regulated through a chain of oncogenic events, as a chosen response to impaired glucose metabolism or by chance acquisition of genetic changes associated with ageing. Such chain, choice or chance perspectives can be extended to help understand neurodegeneration, such as Alzheimer’s disease, providing clues with scope for therapeutic intervention. It is anticipated that exploration of Warburg effect pathways in extreme conditions, such as deep space, will provide further insights crucial for comprehending complex metabolic diseases, a frontier for medicine that remains equally significant for humanity in space and on earth.
Collapse
|
16
|
He X, Du S, Lei T, Li X, Liu Y, Wang H, Tong R, Wang Y. PKM2 in carcinogenesis and oncotherapy. Oncotarget 2017; 8:110656-110670. [PMID: 29299177 PMCID: PMC5746412 DOI: 10.18632/oncotarget.22529] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/28/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor cell metabolism is characterized by abundant glucose consumption and aerobic glycolysis. And pyruvate kinase M2 (PKM2) plays a decisive role in glycolysis, significantly contributing to the Warburg effect, tumor growth, angiogenesis, cell division, metastasis and apoptosis. To date, researchers have unraveled the potential of pyruvate kinase M2 as an antitumor target, which suggests a new orientation for oncotherapy. Herein, we focus on the role of pyruvate kinase M2 in tumor cell development and its function as a potential new therapeutic target for tumor treatment. Besides, research actuality on pyruvate kinase M2-dependent glycometabolism and signaling pathway in tumors is also summarized, providing valuable suggestions for further study in this field.
Collapse
Affiliation(s)
- Xia He
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Suya Du
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xiang Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yilong Liu
- Department of Pharmacy, The People's Hospital of Leshan, Leshan, Sichuan 614000, China
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yi Wang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| |
Collapse
|
17
|
Pkm2 can enhance pluripotency in ESCs and promote somatic cell reprogramming to iPSCs. Oncotarget 2017; 8:84276-84284. [PMID: 29137422 PMCID: PMC5663594 DOI: 10.18632/oncotarget.20685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023] Open
Abstract
Aerobic glycolysis is one of the most important common characteristics in both cancer cells and stem cells. Metabolism switch has been discovered as an important early event in the process of reprogramming somatic cells to induced pluripotent stem cells (iPSCs). As a rate limiting kinase in glycolysis, Pkm2 has been reported playing critical roles in many tumors, yet its role in stem cells and iPSCs induction is poorly defined. In the present study, we showed that Pkm2 is a predominant pyruvate kinase in embryonic stem cells (ESCs), and its expression increases many pluripotent genes. During somatic cell reprogramming, up-regulation of Pkm2 can be observed and over-expression of Pkm2 can facilitate iPSCs induction, while Pkm1 or a mutant form of Pkm2 (Pkm2K422R) showed no enhancement role in iPSCs induction. Therefore, our data demonstrated that Pkm2 enhances the pluripotency maintenance in ESCs and promotes the pluripotency acquisition during somatic cell reprogramming.
Collapse
|
18
|
Audet-Delage Y, Rouleau M, Rouleau M, Roberge J, Miard S, Picard F, Têtu B, Guillemette C. Cross-Talk between Alternatively Spliced UGT1A Isoforms and Colon Cancer Cell Metabolism. Mol Pharmacol 2017; 91:167-177. [PMID: 28049773 DOI: 10.1124/mol.116.106161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2023] Open
Abstract
Alternative splicing at the human glucuronosyltransferase 1 gene locus (UGT1) produces alternate isoforms UGT1A_i2s that control glucuronidation activity through protein-protein interactions. Here, we hypothesized that UGT1A_i2s function as a complex protein network connecting other metabolic pathways with an influence on cancer cell metabolism. This is based on a pathway enrichment analysis of proteomic data that identified several high-confidence candidate interaction proteins of UGT1A_i2 proteins in human tissues-namely, the rate-limiting enzyme of glycolysis pyruvate kinase (PKM), which plays a critical role in cancer cell metabolism and tumor growth. The partnership of UGT1A_i2 and PKM2 was confirmed by coimmunoprecipitation in the HT115 colon cancer cells and was supported by a partial colocalization of these two proteins. In support of a functional role for this partnership, depletion of UGT1A_i2 proteins in HT115 cells enforced the Warburg effect, with a higher glycolytic rate at the expense of mitochondrial respiration, and led to lactate accumulation. Untargeted metabolomics further revealed a significantly altered cellular content of 58 metabolites, including many intermediates derived from the glycolysis and tricarboxylic acid cycle pathways. These metabolic changes were associated with a greater migration potential. The potential relevance of our observations is supported by the down-regulation of UGT1A_i2 mRNA in colon tumors compared with normal tissues. Alternate UGT1A variants may thus be part of the expanding compendium of metabolic pathways involved in cancer biology directly contributing to the oncogenic phenotype of colon cancer cells. Findings uncover new aspects of UGT functions diverging from their transferase activity.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Michèle Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Mélanie Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Joannie Roberge
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Stéphanie Miard
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Frédéric Picard
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Bernard Têtu
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy (Y.A.-D., Mi.R., Me.R., J.R., C.G.), Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (S.M., F.P.), and Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine (B.T.), Laval University, Québec, Canada
| |
Collapse
|
19
|
Zhan C, Yan L, Wang L, Jiang W, Zhang Y, Xi J, Jin Y, Chen L, Shi Y, Lin Z, Wang Q. Landscape of expression profiles in esophageal carcinoma by The Cancer Genome Atlas data. Dis Esophagus 2016; 29:920-928. [PMID: 26402921 DOI: 10.1111/dote.12416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we explored the gene and microRNA (miRNA) expressions profile of esophageal carcinoma. The expression data for messenger RNAs and miRNAs in normal and cancerous esophageal tissues were obtained from the Cancer Genome Atlas database and then the differentially expressed genes and miRNAs were identified. As a result, we identified 2962 genes and 45 miRNAs differentially expressed in esophageal carcinoma compared with normal esophageal tissues. Subsequently, the altered gene functions and signaling pathways were investigated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and these differentially expressed genes were significantly enriched in the cell cycle, cell migration, mitogen-activated protein kinase (MAPK) and toll-like receptor signaling pathway, and so on. Then the regulatory relationships between the differentially expressed miRNAs and genes were examined with Targetscan and Miranda, and the potential target sites of transcription factors (TFs) in the promoter regions of these miRNAs and genes were identified using the TRANSFAC database. Finally the TF-miRNA-gene network in esophageal cancer was established, summarizing the regulatory links among the TFs, differentially expressed miRNAs and differentially expressed genes. Factors such as core promoter-binding protein (CPBP), nuclear factor of activated T-cells 1 (NFAT-1), miR-30c-5p, were located in the central hub of this network, highlighting their vital roles in esophageal tumorigenesis. These findings may extend our understanding of the molecular mechanisms underlying esophageal carcinoma and promote new perspectives for prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- C Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - L Yan
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - L Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - W Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - J Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - L Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Z Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Q Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Alves-Filho JC, Pålsson-McDermott EM. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation. Front Immunol 2016; 7:145. [PMID: 27148264 PMCID: PMC4838608 DOI: 10.3389/fimmu.2016.00145] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signaling pathways, affecting both the enzymatic activity of PKM2 as a PK and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for this protein as a therapeutic target in inflammatory disorders.
Collapse
Affiliation(s)
- Jose C Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo , Ribeirao Preto , Brazil
| | - Eva M Pålsson-McDermott
- Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
21
|
Abstract
Cancer is a disease characterized by uncontrolled growth. Metabolic demands to sustain rapid proliferation must be compelling since aerobic glycolysis is the first as well as the most commonly shared characteristic of cancer. During the last decade, the significance of metabolic reprogramming of cancer has been at the center of attention. Nonetheless, despite all the knowledge gained on cancer biology, the field is not able to reach agreement on the issue of mitochondria: Are damaged mitochondria the cause for aerobic glycolysis in cancer? Warburg proposed the damaged mitochondria theory over 80 years ago; the field has been testing the theory equally long. In this review, we will discuss alterations in metabolic fluxes of cancer cells, and provide an opinion on the damaged mitochondria theory.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea
| |
Collapse
|
22
|
Abstract
Tumor heterogeneity is the topic de jour, partly because molecular biologists and researchers are identifying it using sophisticated gene/DNA analysis techniques. Clinicians and pathologists are well acquainted with marked variability in clinical presentations, tumor histology, and, more importantly, clinical outcomes of their patients. In this review, we address these issues head-on and document that tumor heterogeneity is an old friend (or, more correctly, a foe). We described heterogeneity that exists at all levels—clinical, histologic, and molecular—and briefly outline the strategies that have been used by clinicians and pathologists to tackle this complicated issue.
Collapse
|