1
|
Age-Related Changes of Gene Expression Profiles in Drosophila. Genes (Basel) 2021; 12:genes12121982. [PMID: 34946931 PMCID: PMC8701748 DOI: 10.3390/genes12121982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
An individual’s gene expression profile changes throughout their life. This change in gene expression is shaped by differences in physiological needs and functions between the younger and older organism. Despite intensive studies, the aging process is not fully understood, and several genes involved in this process may remain to be identified. Here we report a transcriptomic analysis of Drosophila melanogaster using microarrays. We compared the expression profiles of two-day-old female adult flies with those of 45-day-old flies. We identified 1184 genes with pronounced differences in expression level between young and old age groups. Most genes involved in muscle development/maintenance that display different levels of expression with age were downregulated in older flies. Many of these genes contributed to sarcomere formation and function. Several of these genes were functionally related to direct and indirect flight muscles; some of them were exclusively expressed in these muscles. Conversely, several genes involved in apoptosis processes were upregulated in aging flies. In addition, several genes involved in resistance to toxic chemicals were upregulated in aging flies, which is consistent with a global upregulation of the defense response system in aging flies. Finally, we randomly selected 12 genes among 232 genes with unknown function and generated transgenic flies expressing recombinant proteins fused with GFP protein to determine their subcellular expression. We also found that the knockdown of some of those 12 genes can affect the lifespan of flies.
Collapse
|
2
|
Bordet G, Lodhi N, Guo D, Kossenkov A, Tulin AV. Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila. Sci Rep 2020; 10:21151. [PMID: 33273587 PMCID: PMC7712786 DOI: 10.1038/s41598-020-78116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme involved in DNA repair and transcription regulation, among other processes. Malignant transformations, tumor progression, the onset of some neuropathies and other disorders have been linked to misregulation of PARP-1 activity. Despite intensive studies during the last few decades, the role of PARP-1 in transcription regulation is still not well understood. In this study, a transcriptomic analysis in Drosophila melanogaster third instar larvae was carried out. A total of 602 genes were identified, showing large-scale changes in their expression levels in the absence of PARP-1 in vivo. Among these genes, several functional gene groups were present, including transcription factors and cytochrome family members. The transcription levels of genes from the same functional group were affected by the absence of PARP-1 in a similar manner. In the absence of PARP-1, all misregulated genes coding for transcription factors were downregulated, whereas all genes coding for members of the cytochrome P450 family were upregulated. The cytochrome P450 proteins contain heme as a cofactor and are involved in oxidoreduction. Significant changes were also observed in the expression of several mobile elements in the absence of PARP-1, suggesting that PARP-1 may be involved in regulating the expression of mobile elements.
Collapse
Affiliation(s)
- Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | - Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | | | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA.
| |
Collapse
|
3
|
Post-transcriptional modulation of cytochrome P450s, Cyp6g1 and Cyp6g2, by miR-310s cluster is associated with DDT-resistant Drosophila melanogaster strain 91-R. Sci Rep 2020; 10:14394. [PMID: 32873850 PMCID: PMC7463240 DOI: 10.1038/s41598-020-71250-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The role of miRNAs in mediating insecticide resistance remains largely unknown, even for the model species Drosophila melanogaster. Building on prior research, this study used microinjection of synthetic miR-310s mimics into DDT-resistant 91-R flies and observed both a significant transcriptional repression of computationally-predicted endogenous target P450 detoxification genes, Cyp6g1 and Cyp6g2, and also a concomitant increase in DDT susceptibility. Additionally, co-transfection of D. melanogaster S2 cells with dual luciferase reporter constructs validated predictions that miR-310s bind to target binding sites in the 3ʹ untranslated regions (3ʹ-UTR) of both Cyp6g1 and Cyp6g2 in vitro. Findings in the current study provide empirical evidence for a link between reduced miRNA expression and an insecticidal resistance phenotype through reduced targeted post-transcriptional suppression of transcripts encoding proteins involved in xenobiotic detoxification. These insights are important for understanding the breadth of adaptive molecular changes that have contributed to the evolution of DDT resistance in D. melanogaster.
Collapse
|
4
|
Bartolo G, Gonzalez LO, Alameh S, Valencia CA, Martchenko Shilman M. Identification of glucocorticoid receptor in Drosophila melanogaster. BMC Microbiol 2020; 20:161. [PMID: 32539689 PMCID: PMC7296755 DOI: 10.1186/s12866-020-01848-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vertebrate glucocorticoid receptor (GR) is an evolutionary-conserved cortisol-regulated nuclear receptor that controls key metabolic and developmental pathways. Upon binding to cortisol, GR acts as an immunosuppressive transcription factor. Drosophila melanogaster, a model organism to study innate immunity, can also be immunosuppressed by glucocorticoids. However, while the genome of fruit fly harbors 18 nuclear receptor genes, the functional homolog of vertebrate GR has not been identified. RESULTS In this study, we demonstrated that while D. melanogaster is susceptible to Saccharomyces cerevisiae oral infection, the oral exposure to cortisol analogs, cortisone acetate or estrogen, increases fly sensitivity to yeast challenge. To understand the mechanism of this steroid-induced immunosuppression, we identified the closest genetic GR homolog as D. melanogaster Estrogen Related Receptor (ERR) gene. We discovered that Drosophila ERR is necessary for cortisone acetate- and estrogen-mediated increase in sensitivity to fungal infection: while ERR mutant flies are as sensitive to the fungal challenge as the wildtype flies, the yeast-sensitivity of ERR mutants is not increased by these steroids. Interestingly, the fungal cortisone analog, ergosterol, did not increase the susceptibility of Drosophila to yeast infection. The immunosuppressive effect of steroids on the sensitivity of flies to fungi is evolutionary conserved in insects, as we show that estrogen significantly increases the yeast-sensitivity of Culex quinquefasciatus mosquitoes, whose genome contains a close ortholog of the fly ERR gene. CONCLUSIONS This study identifies a D. melanogaster gene that structurally resembles vertebrate GR and is functionally necessary for the steroid-mediated immunosuppression to fungal infections.
Collapse
Affiliation(s)
- Gloria Bartolo
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Leandra O Gonzalez
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Saleem Alameh
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - C Alexander Valencia
- Aperiomics, Inc., Sterling, VA, 20166, USA
- Lake Erie College of Osteopathic Medicine, 1858 W Grandview Blvd, Erie, PA, 16509, USA
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | |
Collapse
|
5
|
Zhang G, Zhang W. Protein-protein interaction network analysis of insecticide resistance molecular mechanism in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21523. [PMID: 30478906 DOI: 10.1002/arch.21523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/15/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
The problem of resistance has not been solved fundamentally at present, because the development speed of new insecticides can not keep pace with the development speed of resistance, and the lack of understanding of molecular mechanism of resistance. Here we collected seed genes and their interacting proteins involved in insecticide resistance molecular mechanism in Drosophila melanogaster by literature mining and the String database. We identified a total of 528 proteins and 13514 protein-protein interactions. The protein interaction network was constructed by String and Pajek, and we analyzed the topological properties, such as degree centrality and eigenvector centrality. Proteasome complexes and drug metabolism-cytochrome P450 were an enrichment by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. This is the first time to explore the insecticide resistance molecular mechanism of D. melanogaster by the methods and tools of network biology, it can provide the bioinformatic foundation for further understanding the mechanisms of insecticide resistance.
Collapse
Affiliation(s)
- GuiLu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Seong KM, Coates BS, Berenbaum MR, Clark JM, Pittendrigh BR. Comparative CYP-omic analysis between the DDT-susceptible and -resistant Drosophila melanogaster strains 91-C and 91-R. PEST MANAGEMENT SCIENCE 2018; 74:2530-2543. [PMID: 29656515 DOI: 10.1002/ps.4936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases (P450s) are involved in the biosynthesis of endogenous intracellular compounds and the metabolism of xenobiotics, including chemical insecticides. We investigated the structural and expression level variance across all P450 genes with respect to the evolution of insecticide resistance under multigenerational dichlorodiphenyltrichloroethane (DDT) selection. RESULTS RNA-sequencing (RNA-seq) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) indicated that the transcript levels of seven P450 genes were significantly up-regulated and three P450 genes were down-regulated in the DDT-resistant strain 91-R, as compared to the control strain 91-C. The overexpression of Cyp6g1 was associated with the presence of an Accord and an HMS-Beagle element insertion in the 5' upstream region in conjunction with copy number variation in the 91-R strain, but not in the 91-C strain. A total of 122 (50.2%) fixed nonsynonymous (amino acid-changing) mutations were found between 91-C and 91-R, and 20 (8.2%) resulted in amino acid changes within functional domains. Three P450 proteins were truncated as a result of premature stop codons and fixed between strains. CONCLUSION Our results demonstrate that a combination of changes in P450 protein-coding regions and transcript levels are possibly associated with DDT resistance, and thereby suggest that selection for variant function may occur within this gene family in response to chronic DDT exposure. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Iowa State University, Ames, IA, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John M Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
7
|
Seong KM, Coates BS, Sun W, Clark JM, Pittendrigh BR. Changes in Neuronal Signaling and Cell Stress Response Pathways are Associated with a Multigenic Response of Drosophila melanogaster to DDT Selection. Genome Biol Evol 2018; 9:3356-3372. [PMID: 29211847 PMCID: PMC5737697 DOI: 10.1093/gbe/evx252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
The adaptation of insect populations to insecticidal control is a continual threat to human health and sustainable agricultural practices, but many complex genomic mechanisms involved in this adaption remain poorly understood. This study applied a systems approach to investigate the interconnections between structural and functional variance in response to dichlorodiphenyltrichloroethane (DDT) within the Drosophila melanogaster strain 91-R. Directional selection in 6 selective sweeps coincided with constitutive gene expression differences in DDT resistant flies, including the most highly upregulated transcript, Unc-115 b, which plays a central role in axon guidance, and the most highly downregulated transcript, the angiopoietin-like CG31832, which is involved in directing vascular branching and dendrite outgrowth but likely may be under trans-regulatory control. Direct functions and protein–protein interactions mediated by differentially expressed transcripts control changes in cell migration, signal transduction, and gene regulatory cascades that impact the nervous system. Although changes to cellular stress response pathways involve 8 different cytochrome P450s, stress response, and apoptosis is controlled by a multifacetted regulatory mechanism. These data demonstrate that DDT selection in 91-R may have resulted in genome-wide adaptations that impacts genetic and signal transduction pathways that converge to modify stress response, cell survival, and neurological functions. This study implicates the involvement of a multigenic mechanism in the adaptation to a chemical insecticide, which impact interconnected regulatory cascades. We propose that DDT selection within 91-R might act systemically, wherein pathway interactions function to reinforce the epistatic effects of individual adaptive changes on an additive or nonadditive basis.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Brad S Coates
- Corn Insects & Crop Genetics Research Unit, USDA-ARS, Iowa State University, Ames, Iowa, USA
| | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - John M Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Barry R Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Guo Y, Chai Y, Zhang L, Zhao Z, Gao LL, Ma R. Transcriptome Analysis and Identification of Major Detoxification Gene Families and Insecticide Targets in Grapholita Molesta (Busck) (Lepidoptera: Tortricidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3075266. [PMID: 28365764 PMCID: PMC5469388 DOI: 10.1093/jisesa/iex014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 05/12/2023]
Abstract
The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is an important pest of most stone and pome fruits and causes serious damage to the fruit industry worldwide. This insect pest has been primarily controlled through the application of insecticides; as a result, G. molesta has developed resistance to many different types of insecticides. To identify detoxification genes, we have, de novo, sequenced the transcriptome of G. molesta (Lepidoptera: Tortricidae) and yielded 58,970 unigenes of which 26,985 unigenes matched to known proteins. In total, 2,040 simple sequence repeats have been identified. The comprehensive transcriptome data set has permitted us to identify members of important gene families related to detoxification in G. molesta, including 77 unigenes of putative cytochrome P450s, 28 of glutathione S-transferases, 46 of Carboxylesterases, and 31 of insecticide targets. Orthologs of some of these unigenes have shown to play a pivotal role in insecticide resistance in other insect species and those unigenes likely have similar functions in G. molesta.
Collapse
Affiliation(s)
- Yanqiong Guo
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Yanping Chai
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Lijun Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Zhiguo Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Ling-Ling Gao
- CSIRO Agriculture & Food, Private Bag 5, Wembley, WA 6913, Australia, and
| | - Ruiyan Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| |
Collapse
|
9
|
Van Leeuwen T, Dermauw W. The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:475-98. [PMID: 26982444 DOI: 10.1146/annurev-ento-010715-023907] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, revealed expansions and radiations in all major detoxification gene families, including P450 monooxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters. Novel gene families that are not well studied in other arthropods, such as major facilitator family transporters and lipocalins, also reflect the evolution of xenobiotic adaptation. The acquisition of genes by horizontal gene transfer provided new routes to handle toxins, for example, the β-cyanoalanine synthase enzyme that metabolizes cyanide. The availability of genomic resources for other mite species has allowed researchers to study the lineage specificity of these gene family expansions and the distinct evolution of genes involved in xenobiotic metabolism in mites. Genome-based tools have been crucial in supporting the idiosyncrasies of mite detoxification and will further support the expanding field of mite-plant interactions.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; ,
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; ,
| |
Collapse
|
10
|
Najarro MA, Hackett JL, Smith BR, Highfill CA, King EG, Long AD, Macdonald SJ. Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila. PLoS Genet 2015; 11:e1005663. [PMID: 26619284 PMCID: PMC4664282 DOI: 10.1371/journal.pgen.1005663] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
Natural populations exhibit a great deal of interindividual genetic variation in the response to toxins, exemplified by the variable clinical efficacy of pharmaceutical drugs in humans, and the evolution of pesticide resistant insects. Such variation can result from several phenomena, including variable metabolic detoxification of the xenobiotic, and differential sensitivity of the molecular target of the toxin. Our goal is to genetically dissect variation in the response to xenobiotics, and characterize naturally-segregating polymorphisms that modulate toxicity. Here, we use the Drosophila Synthetic Population Resource (DSPR), a multiparent advanced intercross panel of recombinant inbred lines, to identify QTL (Quantitative Trait Loci) underlying xenobiotic resistance, and employ caffeine as a model toxic compound. Phenotyping over 1,700 genotypes led to the identification of ten QTL, each explaining 4.5-14.4% of the broad-sense heritability for caffeine resistance. Four QTL harbor members of the cytochrome P450 family of detoxification enzymes, which represent strong a priori candidate genes. The case is especially strong for Cyp12d1, with multiple lines of evidence indicating the gene causally impacts caffeine resistance. Cyp12d1 is implicated by QTL mapped in both panels of DSPR RILs, is significantly upregulated in the presence of caffeine, and RNAi knockdown robustly decreases caffeine tolerance. Furthermore, copy number variation at Cyp12d1 is strongly associated with phenotype in the DSPR, with a trend in the same direction observed in the DGRP (Drosophila Genetic Reference Panel). No additional plausible causative polymorphisms were observed in a full genomewide association study in the DGRP, or in analyses restricted to QTL regions mapped in the DSPR. Just as in human populations, replicating modest-effect, naturally-segregating causative variants in an association study framework in flies will likely require very large sample sizes.
Collapse
Affiliation(s)
- Michael A. Najarro
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Jennifer L. Hackett
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Chad A. Highfill
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Elizabeth G. King
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Anthony D. Long
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|