1
|
Zakharova YA, Ivashchenko IA, Bolgarova EV. To the question of the relevance of the development and prospects for the use of the bacteriophage <i>Streptococcus pneumoniae</i>. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction. The prevalence of Streptococcus pneumoniae strains causing invasive forms of pneumococcal infection and the growing rates of antibiotic resistance of individual serotypes of the pathogen pose a number of urgent and socially significant tasks the search for new antimicrobial agents for prevention and treatment.
Objective. To analyze the data of scientific publications of domestic and foreign authors on the problems of practical use and prospects for the development of the bacteriophage S. pneumoniae drug aimed at the actual serotypes of the pathogen.
Results. Analysis of literary sources in scientific electronic databases and publishing houses eLibrary.Ru, ScienceDirect, Scopus, PubMed, Springerlink, Wiley Online Library, Annual reviews allowed us to summarize information about four isolated lytic bacteriophages of S. pneumoniae and their endolysins, as well as about two lysogenic phages, to present data on the clinical efficacy of streptococcal bacteriophage in pneumococcal infection in animals and humans. The results of search queries on the most significant and widespread serotypes of S. pneumoniae in the territory of the Russian Federation have established the predominance in the structure of variants 19F, 14, 9V/A, 15 A/F, 6 A/B/C/D, 3 and 23F. Some of them are characterized by a high level of antibiotic resistance and cause invasive forms of the disease, and serotypes 15 A/F/C, 6 C/D are not represented in modern vaccines, which increases the relevance of the development and use of pneumococcal bacteriophage, including intraspecific typing of significant and common serotypes.
Conclusion. Based on the analysis of the current state of the issue of pneumococcal bacteriophages, the information obtained on the circulation of topical strains of S. pneumoniae on the territory of the Russian Federation and their serotype landscape, it is concluded that the development of the bacteriophage S. pneumoniae drug is relevant as a means of targeted action for the prevention, diagnosis and personalized therapy of human diseases of pneumococcal etiology.
Collapse
|
2
|
Streptococcus mitis septic arthritis after leucocyte-rich platelet-rich plasma injection for the knee osteoarthritis: A case report. Turk J Phys Med Rehabil 2022; 68:146-148. [PMID: 35949970 PMCID: PMC9305634 DOI: 10.5606/tftrd.2022.7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
A 62-year-old female patient having comorbidities of hypertension, hyperlipidemia, obesity, peptic ulcer, and bilateral Grade II knee osteoarthritis was admitted with a complaint of knee pain. An intra-articular leukocyte-rich platelet-rich plasma (LR-PRP) injection was administered to both knees after clinical and laboratory examinations. Three days later, the pain increased and synovial effusion developed in her left knee. The patient was diagnosed with Streptococcus mitis-induced septic arthritis. Clinical and laboratory improvement was obtained with immediate ceftriaxone treatment in addition to irrigation and debridement. This is the first case report in the literature describing septic arthritis developing after intra-articular injection LR-PRP injection.
Collapse
|
3
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
4
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Methylation Warfare: Interaction of Pneumococcal Bacteriophages with Their Host. J Bacteriol 2019; 201:JB.00370-19. [PMID: 31285240 PMCID: PMC6755750 DOI: 10.1128/jb.00370-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection. Virus-host interactions are regulated by complex coevolutionary dynamics. In Streptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogen S. pneumoniae. IMPORTANCE With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.
Collapse
|
6
|
Santoro F, Iannelli F, Pozzi G. Genomics and Genetics of Streptococcus pneumoniae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0025-2018. [PMID: 31111814 PMCID: PMC11315030 DOI: 10.1128/microbiolspec.gpp3-0025-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/20/2022] Open
Abstract
Ninety years after the discovery of pneumococcal Transformation, and 74 years after the work of Avery and colleagues that identified DNA as the genetic material, Streptococcus pneumoniae is still one of the most important model organism to understand Bacterial Genetics and Genomics. In this Chapter special emphasis has been given to Genomics and to Mobile Genetic Elements (the Mobilome) which greatly contribute to the dynamic variation of pneumococcal genomes by horizontal gene transfer. Other topics include molecular mechanisms of Genetic Transformation, Restriction/Modification Systems, Mismatch DNA Repair, and techniques for construction of genetically engineered pneumococcal strains.
Collapse
Affiliation(s)
- Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Mol Oral Microbiol 2017; 33:1-12. [PMID: 28727895 DOI: 10.1111/omi.12192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
Streptococci are a diverse group of Gram-positive microorganisms sharing common virulence traits and similar strategies to escape the oral niche and establish an infection in other parts of the host organism. Invasive infection with oral streptococci is "a perfect storm" that requires the concerted action of multiple biotic and abiotic factors. Our understanding of streptococcal pathogenicity and infectivity should probably be less mechanistic and driven not only by the identification of novel virulence factors. The observed diversity of the genus, including the range of virulence and pathogenicity mechanisms, is most likely the result of interspecies interactions, a massive horizontal gene transfer between streptococci within a shared oral niche, recombination events, selection of specialized clones, and modification of regulatory circuits. Selective pressure by the host and bacterial communities is a driving force for the selection of virulence traits and shaping the streptococcal genome. Global regulatory events driving niche adaptation and interactions with bacterial communities and the host steer research interests towards attempts to define the oral interactome on the transcriptional level and define signal cross-feeding and co-expression and co-regulation of virulence genes.
Collapse
Affiliation(s)
- I Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
8
|
Complete Genome Sequence of Streptococcus pneumoniae Virulent Phage MS1. GENOME ANNOUNCEMENTS 2017; 5:5/28/e00333-17. [PMID: 28705957 PMCID: PMC5511896 DOI: 10.1128/genomea.00333-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The lytic Streptococcus pneumoniae phage MS1 was isolated from a throat swab of a patient with symptoms of upper respiratory tract infection. The genome of this siphophage has 56,075 bp, 42.3% G+C content, and 77 open reading frames, including queuosine biosynthesis genes. Phage MS1 is related to pneumococcal phage Dp-1.
Collapse
|
9
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
10
|
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med 2016; 16:174. [PMID: 27919253 PMCID: PMC5139081 DOI: 10.1186/s12890-016-0339-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The airways of patients with cystic fibrosis (CF) are highly complex, subject to various environmental conditions as well as a distinct microbiota. Pseudomonas aeruginosa is recognized as one of the most important pulmonary pathogens and the predominant cause of morbidity and mortality in CF. A multifarious interplay between the host, pathogens, microbiota, and the environment shapes the course of the disease. There have been several excellent reviews detailing CF pathology, Pseudomonas and the role of environment in CF but only a few reviews connect these entities with regards to influence on the overall course of the disease. A holistic understanding of contributing factors is pertinent to inform new research and therapeutics. Discussion In this article, we discuss the deterministic alterations in lung physiology as a result of CF. We also revisit the impact of those changes on the microbiota, with special emphasis on P. aeruginosa and the influence of other non-genetic factors on CF. Substantial past and current research on various genetic and non-genetic aspects of cystic fibrosis has been reviewed to assess the effect of different factors on CF pulmonary infection. A thorough review of contributing factors in CF and the alterations in lung physiology indicate that CF lung infection is multi-factorial with no isolated cause that should be solely targeted to control disease progression. A combinatorial approach may be required to ensure better disease outcomes. Conclusion CF lung infection is a complex disease and requires a broad multidisciplinary approach to improve CF disease outcomes. A holistic understanding of the underlying mechanisms and non-genetic contributing factors in CF is central to development of new and targeted therapeutic strategies.
Collapse
|
11
|
Leprohon P, Gingras H, Ouennane S, Moineau S, Ouellette M. A genomic approach to understand interactions between Streptococcus pneumoniae and its bacteriophages. BMC Genomics 2015; 16:972. [PMID: 26582495 PMCID: PMC4652380 DOI: 10.1186/s12864-015-2134-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bacteriophage replication depends on bacterial proteins and inactivation of genes coding for such host factors should interfere with phage infection. To gain further insights into the interactions between S. pneumoniae and its pneumophages, we characterized S. pneumoniae mutants selected for resistance to the virulent phages SOCP or Dp-1. RESULTS S. pneumoniae R6-SOCP(R) and R6-DP1(R) were highly resistant to the phage used for their selection and no cross-resistance between the two phages was detected. Adsorption of SOCP to R6-SOCP(R) was partly reduced whereas no difference in Dp-1 adsorption was noted on R6-DP1(R). The replication of SOCP was completely inhibited in R6-SOCP(R) while Dp-1 was severely impaired in R6-DP1(R). Genome sequencing identified 8 and 2 genes mutated in R6-SOCP(R) and R6-DP1(R), respectively. Resistance reconstruction in phage-sensitive S. pneumoniae confirmed that mutations in a GntR-type regulator, in a glycerophosphoryl phosphodiesterase and in a Mur ligase were responsible for resistance to SOCP. The three mutations were additive to increase resistance to SOCP. In contrast, resistance to Dp-1 in R6-DP1(R) resulted from mutations in a unique gene coding for a type IV restriction endonuclease. CONCLUSION The characterization of mutations conferring resistance to pneumophages highlighted that diverse host genes are involved in the replication of phages from different families.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| | - Hélène Gingras
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| | - Siham Ouennane
- Département de Biochimie, Microbiologie et Bio-informatique and PROTEO, Faculté des Sciences et Génie, Université Laval, Québec, QC, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| | - Sylvain Moineau
- Département de Biochimie, Microbiologie et Bio-informatique and PROTEO, Faculté des Sciences et Génie, Université Laval, Québec, QC, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| | - Marc Ouellette
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| |
Collapse
|