1
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Activation of the GTPase ARF6 regulates invasion of human vascular smooth muscle cells by stimulating MMP14 activity. Sci Rep 2022; 12:9532. [PMID: 35680971 PMCID: PMC9184495 DOI: 10.1038/s41598-022-13574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Hormones and growth factors stimulate vascular smooth muscle cells (VSMC) invasive capacities during the progression of atherosclerosis. The GTPase ARF6 is an important regulator of migration and proliferation of various cell types, but whether this small G protein can be activated by a variety of stimuli to promote invasion of VSMC remains unknown. Here, we aimed to define whether Platelet-derived growth factor (PDGF), a mitogenic stimulant of vascular tissues, and Angiotensin II (Ang II), a potent vasoactive peptide, can result in the activation of ARF6 in a human model of aortic SMC (HASMC). We demonstrate that these two stimuli can promote loading of GTP on this ARF isoform. Knockdown of ARF6 reduced the ability of both PDGF and Ang II to promote invasion suggesting that this GTPase regulates key molecular mechanisms mediating degradation of the extracellular matrix and migration. We report that PDGF-BB-mediated stimulation of ARF6 results in the activation of the MAPK/ERK1/2, PI3K/AKT and PAK pathways essential for invasion of HASMC. However, Ang II-mediated stimulation of ARF6 only promotes signaling through the MAPK/ERK1/2 and PAK pathways. These ARF6-mediated events lead to activation of MMP14, a membrane-bound collagenase upregulated in atherosclerosis. Moreover, ARF6 depletion decreases the release of MMP2 in the extracellular milieu. Altogether, our findings demonstrate that the GTPase ARF6 acts as a molecular switch to regulate specific signaling pathways that coordinate invasiveness of HASMC.
Collapse
|
4
|
Swiatlowska P, Sit B, Feng Z, Marhuenda E, Xanthis I, Zingaro S, Ward M, Zhou X, Xiao Q, Shanahan C, Jones GE, Yu CH, Iskratsch T. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. SCIENCE ADVANCES 2022; 8:eabm3471. [PMID: 35427166 PMCID: PMC9012473 DOI: 10.1126/sciadv.abm3471] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play a central role in the progression of atherosclerosis, where they switch from a contractile to a synthetic phenotype. Because of their role as risk factors for atherosclerosis, we sought here to systematically study the impact of matrix stiffness and (hemodynamic) pressure on VSMCs. Thereby, we find that pressure and stiffness individually affect the VSMC phenotype. However, only the combination of hypertensive pressure and matrix compliance, and as such mechanical stimuli that are prevalent during atherosclerosis, leads to a full phenotypic switch including the formation of matrix-degrading podosomes. We further analyze the molecular mechanism in stiffness and pressure sensing and identify a regulation through different but overlapping pathways culminating in the regulation of the actin cytoskeleton through cofilin. Together, our data show how different pathological mechanical signals combined but through distinct pathways accelerate a phenotypic switch that will ultimately contribute to atherosclerotic disease progression.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Brian Sit
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
- School of Biomedical Sciences, Hong Kong University, Hong Kong, Hong Kong
| | - Zhen Feng
- School of Biomedical Sciences, Hong Kong University, Hong Kong, Hong Kong
| | - Emilie Marhuenda
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Ioannis Xanthis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Simona Zingaro
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Matthew Ward
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Xinmiao Zhou
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cathy Shanahan
- School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Gareth E. Jones
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Cheng-han Yu
- School of Biomedical Sciences, Hong Kong University, Hong Kong, Hong Kong
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| |
Collapse
|
5
|
Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci 2022; 18:923-941. [PMID: 35173527 PMCID: PMC8771847 DOI: 10.7150/ijbs.63819] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease. Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis. Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.
Collapse
Affiliation(s)
- Shafiu A. Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Clinical Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - FengXu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| | - YongMei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| |
Collapse
|
6
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
7
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
8
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Chi Q, Shan J, Ding X, Yin T, Wang Y, Jia D, Wang G. Smart mechanosensing machineries enable migration of vascular smooth muscle cells in atherosclerosis-relevant 3D matrices. Cell Biol Int 2017; 41:586-598. [PMID: 28328100 DOI: 10.1002/cbin.10764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/19/2017] [Indexed: 11/05/2022]
Abstract
At the early stage of atherosclerosis, neointima is formed due to the migration of vascular smooth muscle cells (VSMCs) from the media to the intima. VSMCs are surrounded by highly adhesive 3D matrices. They take specific strategies to cross various 3D matrices in the media, including heterogeneous collagen and mechanically strong basement membrane. Migration of VSMCs is potentially caused by biomechanical mechanism. Most in vitro studies focus on cell migration on 2D substrates in response to biochemical factors. How the cells move through 3D matrices under the action of mechanosensing machineries remains unexplored. In this review, we propose that several interesting tension-dependent machineries act as "tractor"-posterior myosin II accumulation, and "wrecker"-anterior podosome maintaining, to power VSMCs ahead. VSMCs embedded in 3D matrices may accumulate a minor myosin II isoform, myosin IIB, at the cell rear. Anisotropic myosin IIB distribution creates cell rear, polarizes cell body, pushes the nucleus and reshapes the cell body, and cooperates with a uniformly distributed myosin IIA to propel the cell forward. On the other hand, matrix digestion by podosome further promote the migration when the matrix becomes denser. Actomyosin tension activates Src to induce podosome in soft 3D matrices and retain the podosome integrity to steadily digest the matrix.
Collapse
Affiliation(s)
- Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Jieling Shan
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, Hubei, China
| | - Xiaorong Ding
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Yazhou Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Meddens MBM, Pandzic E, Slotman JA, Guillet D, Joosten B, Mennens S, Paardekooper LM, Houtsmuller AB, van den Dries K, Wiseman PW, Cambi A. Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat Commun 2016; 7:13127. [PMID: 27721497 PMCID: PMC5062568 DOI: 10.1038/ncomms13127] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022] Open
Abstract
Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area.
Collapse
Affiliation(s)
- Marjolein B M Meddens
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Elvis Pandzic
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Johan A Slotman
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Dominique Guillet
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Svenja Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Paul W Wiseman
- Departments of Physics and Chemistry, McGill University Otto Maass (OM) Chemistry Building, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
11
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|