1
|
Gallman K, Rastogi A, North O, O'Gorman M, Hutton P, Lloyd E, Warren WC, Kowalko JE, Duboue ER, Rohner N, Keene AC. Postprandial Sleep in Short-Sleeping Mexican Cavefish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1084-1096. [PMID: 39539086 PMCID: PMC11579814 DOI: 10.1002/jez.2880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations of A. mexicanus. Larval surface and cave populations of A. mexicanus increase sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.
Collapse
Affiliation(s)
- Kathryn Gallman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Aakriti Rastogi
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Owen North
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan O'Gorman
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Pierce Hutton
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | - Evan Lloyd
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Johanna E. Kowalko
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erik R. Duboue
- Harriet Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Nicolas Rohner
- Stowers Institute for Medical ResearchKansas CityMissouriUSA
| | - Alex C. Keene
- Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
2
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
3
|
Sifuentes-Romero I, Aviles AM, Carter JL, Chan-Pong A, Clarke A, Crotty P, Engstrom D, Meka P, Perez A, Perez R, Phelan C, Sharrard T, Smirnova MI, Wade AJ, Kowalko JE. Trait Loss in Evolution: What Cavefish Have Taught Us about Mechanisms Underlying Eye Regression. Integr Comp Biol 2023; 63:393-406. [PMID: 37218721 PMCID: PMC10445413 DOI: 10.1093/icb/icad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Reduction or complete loss of traits is a common occurrence throughout evolutionary history. In spite of this, numerous questions remain about why and how trait loss has occurred. Cave animals are an excellent system in which these questions can be answered, as multiple traits, including eyes and pigmentation, have been repeatedly reduced or lost across populations of cave species. This review focuses on how the blind Mexican cavefish, Astyanax mexicanus, has been used as a model system for examining the developmental, genetic, and evolutionary mechanisms that underlie eye regression in cave animals. We focus on multiple aspects of how eye regression evolved in A. mexicanus, including the developmental and genetic pathways that contribute to eye regression, the effects of the evolution of eye regression on other traits that have also evolved in A. mexicanus, and the evolutionary forces contributing to eye regression. We also discuss what is known about the repeated evolution of eye regression, both across populations of A. mexicanus cavefish and across cave animals more generally. Finally, we offer perspectives on how cavefish can be used in the future to further elucidate mechanisms underlying trait loss using tools and resources that have recently become available.
Collapse
Affiliation(s)
- Itzel Sifuentes-Romero
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ari M Aviles
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Joseph L Carter
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Allen Chan-Pong
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Anik Clarke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Patrick Crotty
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - David Engstrom
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Pranav Meka
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Alexandra Perez
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Riley Perez
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Christine Phelan
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Taylor Sharrard
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Maria I Smirnova
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Stiles–Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Amanda J Wade
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Batista da Silva I, Aciole Barbosa D, Kavalco KF, Nunes LR, Pasa R, Menegidio FB. Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae). Sci Rep 2023; 13:12051. [PMID: 37491348 PMCID: PMC10368750 DOI: 10.1038/s41598-023-34198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 07/27/2023] Open
Abstract
Astyanax mexicanus is a well-known model species, that has two morphotypes, cavefish, from subterranean rivers and surface fish, from surface rivers. They are morphologically distinct due to many troglomorphic traits in the cavefish, such as the absence of eyes. Most studies on A. mexicanus are focused on eye development and protein-coding genes involved in the process. However, lncRNAs did not get the same attention and very little is known about them. This study aimed to fill this knowledge gap, identifying, describing, classifying, and annotating lncRNAs expressed in the embryo's eye tissue of cavefish and surface fish. To do so, we constructed a concise workflow to assemble and evaluate transcriptomes, annotate protein-coding genes, ncRNAs families, predict the coding potential, identify putative lncRNAs, map them and predict interactions. This approach resulted in the identification of 33,069 and 19,493 putative lncRNAs respectively mapped in cavefish and surface fish. Thousands of these lncRNAs were annotated and identified as conserved in human and several species of fish. Hundreds of them were validated in silico, through ESTs. We identified lncRNAs associated with genes related to eye development. This is the case of a few lncRNAs associated with sox2, which we suggest being isomorphs of the SOX2-OT, a lncRNA that can regulate the expression of sox2. This work is one of the first studies to focus on the description of lncRNAs in A. mexicanus, highlighting several lncRNA targets and opening an important precedent for future studies focusing on lncRNAs expressed in A. mexicanus.
Collapse
Affiliation(s)
- Iuri Batista da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - David Aciole Barbosa
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil.
| | - Fabiano B Menegidio
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
5
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
6
|
Kozol RA, Yuiska A, Han JH, Tolentino B, Lopatto A, Lewis P, Paz A, Keene AC, Kowalko JE, Duboué ER. Novel Husbandry Practices Result in Rapid Rates of Growth and Sexual Maturation Without Impacting Adult Behavior in the Blind Mexican Cavefish. Zebrafish 2023; 20:86-94. [PMID: 37071855 PMCID: PMC10123811 DOI: 10.1089/zeb.2023.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Animal model systems are dependent on the standardization of husbandry protocols that maximize growth and reduce generation time. The Mexican tetra, Astyanax mexicanus, exists as eyed surface and blind cave dwelling populations. The opportunity for comparative approaches between independently evolved populations has led to the rapid growth of A. mexicanus as a model for evolution and biomedical research. However, a slow and inconsistent growth rate remains a major limitation to the expanded application of A. mexicanus. Fortunately, this temporal limitation can be addressed through husbandry changes that accelerate growth rates while maintaining optimal health outcomes. Here, we describe a husbandry protocol that produces rapid growth rates through changes in diet, feeding frequency, growth sorting and progressive changes in tank size. This protocol produced robust growth rates and decreased the age of sexual maturity in comparison to our previous protocol. To determine whether changes in feeding impacted behavior, we tested fish in exploration and schooling assays. We found no difference in behavior between the two groups, suggesting that increased feeding and rapid growth will not impact the natural variation in behavioral traits. Taken together, this standardized husbandry protocol will accelerate the development of A. mexicanus as a genetic model.
Collapse
Affiliation(s)
- Robert A. Kozol
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Anders Yuiska
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Ji Heon Han
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Bernadeth Tolentino
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - Arthur Lopatto
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Peter Lewis
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Alexandra Paz
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M, College Station, Texas, USA
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Erik R. Duboué
- College of Arts and Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
7
|
TALEN-Mediated Gene Editing of slc24a5 (Solute Carrier Family 24, Member 5) in Kawakawa, Euthynnus affinis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus.
Collapse
|
8
|
O'Gorman M, Thakur S, Imrie G, Moran RL, Choy S, Sifuentes-Romero I, Bilandžija H, Renner KJ, Duboué E, Rohner N, McGaugh SE, Keene AC, Kowalko JE. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr Biol 2021; 31:3694-3701.e4. [PMID: 34293332 DOI: 10.1016/j.cub.2021.06.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/22/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
Adaptation to novel environments often involves the evolution of multiple morphological, physiological, and behavioral traits. One striking example of multi-trait evolution is the suite of traits that has evolved repeatedly in cave animals, including regression of eyes, loss of pigmentation, and enhancement of non-visual sensory systems.1,2 The Mexican tetra, Astyanax mexicanus, consists of fish that inhabit at least 30 caves in Mexico and ancestral-like surface fish that inhabit the rivers of Mexico and southern Texas.3 Cave A. mexicanus are interfertile with surface fish and have evolved a number of traits, including reduced pigmentation, eye loss, and alterations to behavior.4-6 To define relationships between different cave-evolved traits, we phenotyped 208 surface-cave F2 hybrid fish for numerous morphological and behavioral traits. We found differences in sleep between pigmented and albino hybrid fish, raising the possibility that these traits share a genetic basis. In cavefish and other species, mutations in oculocutaneous albinism 2 (oca2) cause albinism.7-12 Surface fish with mutations in oca2 displayed both albinism and reduced sleep. Further, this mutation in oca2 fails to complement sleep loss when surface fish harboring this engineered mutation are crossed to independently evolved populations of albino cavefish with naturally occurring mutations in oca2. Analysis of the oca2 locus in wild-caught cave and surface fish suggests that oca2 is under positive selection in 3 cave populations. Taken together, these findings identify oca2 as a novel regulator of sleep and suggest that a pleiotropic function of oca2 underlies the adaptive evolution of albinism and sleep loss.
Collapse
Affiliation(s)
- Morgan O'Gorman
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Sunishka Thakur
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gillian Imrie
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Rachel L Moran
- Department of Ecology, Evolution, and Behavior. University of Minnesota, St. Paul, MN 55108, USA
| | - Stefan Choy
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | | | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Erik Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior. University of Minnesota, St. Paul, MN 55108, USA
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Johanna E Kowalko
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Warren WC, Boggs TE, Borowsky R, Carlson BM, Ferrufino E, Gross JB, Hillier L, Hu Z, Keene AC, Kenzior A, Kowalko JE, Tomlinson C, Kremitzki M, Lemieux ME, Graves-Lindsay T, McGaugh SE, Miller JT, Mommersteeg MTM, Moran RL, Peuß R, Rice ES, Riddle MR, Sifuentes-Romero I, Stanhope BA, Tabin CJ, Thakur S, Yamamoto Y, Rohner N. A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nat Commun 2021; 12:1447. [PMID: 33664263 PMCID: PMC7933363 DOI: 10.1038/s41467-021-21733-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, Institute for Data Science and Informatics, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Department of Surgery, Institute for Data Science and Informatics, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Tyler E Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Brian M Carlson
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, USA
| | - Estephany Ferrufino
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zhilian Hu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | | | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | | | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jeffrey T Miller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | | | - Rachel L Moran
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Edward S Rice
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Misty R Riddle
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biology, University of Nevada, Reno, NV, USA
| | | | - Bethany A Stanhope
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Clifford J Tabin
- Genetics Department, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sunishka Thakur
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, USA
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular & Integrative Physiology, KU Medical Center, Kansas City, KS, USA.
| |
Collapse
|
10
|
Kowalko JE, Franz-Odendaal TA, Rohner N. Introduction to the special issue-cavefish-adaptation to the dark. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:393-396. [PMID: 33258551 DOI: 10.1002/jez.b.23014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Abstract
The small teleost fish Astyanax mexicanus has emerged as an outstanding model for studying many biological topics in the context of evolution. A major attribute is conspecific surface dwelling (surface fish) and blind cave dwelling (cavefish) morphs that can be raised in the laboratory and spawn large numbers of transparent and synchronously developing embryos. More than 30 cavefish populations have been discovered, mostly in northeastern Mexico, and some are thought to have evolved independently from surface fish ancestors, providing excellent models of parallel and convergent evolution. Cavefish have evolved eye and pigmentation regression, as well as modifications in brain morphology, behaviors, heart regenerative capacity, metabolic processes, and craniofacial organization. Thus, the Astyanax model provides researchers with natural "mutants" to study life in the challenging cave environment. The application of powerful genetic approaches based on hybridization between the two morphs and between the different cavefish populations are key advantages for deciphering the developmental and genetic mechanisms regulating trait evolution. QTL analysis has revealed the genetic architectures of gained and lost traits. In addition, some cavefish traits resemble human diseases, offering novel models for biomedical research. Astyanax research is supported by genome assemblies, transcriptomes, tissue and organ transplantation, gene manipulation and editing, and stable transgenesis, and benefits from a welcoming and interactive research community that conducts integrated community projects and sponsors the International Astyanax Meeting (AIM).
Collapse
Affiliation(s)
- William R. Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
12
|
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Johanna E Kowalko
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Erik Duboué
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Peter Lewis
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Alex C Keene
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
13
|
Kowalko J. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 2020; 223:223/Suppl_1/jeb208835. [DOI: 10.1242/jeb.208835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Colonization of novel habitats often results in the evolution of diverse behaviors. Comparisons between individuals from closely related populations that have evolved divergent behaviors in different environments can be used to investigate behavioral evolution. However, until recently, functionally connecting genotypes to behavioral phenotypes in these evolutionarily relevant organisms has been difficult. The development of gene editing tools will facilitate functional genetic analysis of genotype–phenotype connections in virtually any organism, and has the potential to significantly transform the field of behavioral genetics when applied to ecologically and evolutionarily relevant organisms. The blind cavefish Astyanax mexicanus provides a remarkable example of evolution associated with colonization of a novel habitat. These fish consist of a single species that includes sighted surface fish that inhabit the rivers of Mexico and southern Texas and at least 29 populations of blind cavefish from the Sierra Del Abra and Sierra de Guatemala regions of Northeast Mexico. Although eye loss and albinism have been studied extensively in A. mexicanus, derived behavioral traits including sleep loss, alterations in foraging and reduction in social behaviors are now also being investigated in this species to understand the genetic and neural basis of behavioral evolution. Astyanax mexicanus has emerged as a powerful model system for genotype–phenotype mapping because surface and cavefish are interfertile. Further, the molecular basis of repeated trait evolution can be examined in this species, as multiple cave populations have independently evolved the same traits. A sequenced genome and the implementation of gene editing in A. mexicanus provides a platform for gene discovery and identification of the contributions of naturally occurring variation to behaviors. This review describes the current knowledge of behavioral evolution in A. mexicanus with an emphasis on the molecular and genetic underpinnings of evolved behaviors. Multiple avenues of new research that can be pursued using gene editing tools are identified, and how these will enhance our understanding of behavioral evolution is discussed.
Collapse
Affiliation(s)
- Johanna Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Program of Neurogenetics, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Courtier-Orgogozo V, Martin A. The coding loci of evolution and domestication: current knowledge and implications for bio-inspired genome editing. J Exp Biol 2020; 223:223/Suppl_1/jeb208934. [DOI: 10.1242/jeb.208934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
One promising application of CRISPR/Cas9 is to create targeted mutations to introduce traits of interest into domesticated organisms. However, a major current limitation for crop and livestock improvement is to identify the precise genes and genetic changes that must be engineered to obtain traits of interest. Here, we discuss the advantages of bio-inspired genome editing, i.e. the engineered introduction of natural mutations that have already been associated with traits of interest in other lineages (breeds, populations or species). To obtain a landscape view of potential targets for genome editing, we used Gephebase (www.gephebase.org), a manually curated database compiling published data about the genes responsible for evolutionary and domesticated changes across eukaryotes, and examined the >1200 mutations that have been identified in the coding regions of more than 700 genes in animals, plants and yeasts. We observe that our genetic knowledge is relatively important for certain traits, such as xenobiotic resistance, and poor for others. We also note that protein-null alleles, often owing to nonsense and frameshift mutations, represent a large fraction of the known loci of domestication (42% of identified coding mutations), compared with intraspecific (27%) and interspecific evolution (11%). Although this trend may be subject to detection, publication and curation biases, it is consistent with the idea that breeders have selected large-effect mutations underlying adaptive traits in specific settings, but that these mutations and associated phenotypes would not survive the vagaries of changing external and internal environments. Our compilation of the loci of evolution and domestication uncovers interesting options for bio-inspired and transgene-free genome editing.
Collapse
Affiliation(s)
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
15
|
Developmental Transcriptomic Analysis of the Cave-Dwelling Crustacean, Asellus aquaticus. Genes (Basel) 2019; 11:genes11010042. [PMID: 31905778 PMCID: PMC7016750 DOI: 10.3390/genes11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
Cave animals are a fascinating group of species often demonstrating characteristics including reduced eyes and pigmentation, metabolic efficiency, and enhanced sensory systems. Asellus aquaticus, an isopod crustacean, is an emerging model for cave biology. Cave and surface forms of this species differ in many characteristics, including eye size, pigmentation, and antennal length. Existing resources for this species include a linkage map, mapped regions responsible for eye and pigmentation traits, sequenced adult transcriptomes, and comparative embryological descriptions of the surface and cave forms. Our ultimate goal is to identify genes and mutations responsible for the differences between the cave and surface forms. To advance this goal, we decided to use a transcriptomic approach. Because many of these changes first appear during embryonic development, we sequenced embryonic transcriptomes of cave, surface, and hybrid individuals at the stage when eyes and pigment become evident in the surface form. We generated a cave, a surface, a hybrid, and an integrated transcriptome to identify differentially expressed genes in the cave and surface forms. Additionally, we identified genes with allele-specific expression in hybrid individuals. These embryonic transcriptomes are an important resource to assist in our ultimate goal of determining the genetic underpinnings of the divergence between the cave and surface forms.
Collapse
|
16
|
Torres-Paz J, Hyacinthe C, Pierre C, Rétaux S. Towards an integrated approach to understand Mexican cavefish evolution. Biol Lett 2019; 14:rsbl.2018.0101. [PMID: 30089659 DOI: 10.1098/rsbl.2018.0101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The Mexican tetra, Astyanax mexicanus, comes in two forms: a classical river-dwelling fish and a blind and depigmented cave-dwelling fish. The two morphotypes are used as models for evolutionary biology, to decipher mechanisms of morphological and behavioural evolution in response to environmental change. Over the past 40 years, insights have been obtained from genetics, developmental biology, physiology and metabolism, neuroscience, genomics, population biology and ecology. Here, we promote the idea that A. mexicanus, as a model, has reached a stage where an integrated approach or a multi-disciplinary method of analysis, whereby a phenomenon is examined from several angles, is a powerful tool that can be applied to understand general evolutionary processes. Mexican cavefish have undergone considerable selective pressure and extreme morphological evolution, an obvious advantage to contribute to our understanding of evolution through comparative analyses and to pinpoint the specific traits that may have helped their ancestors to colonize caves.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Constance Pierre
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Avenue de la terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
17
|
Stahl BA, Peuß R, McDole B, Kenzior A, Jaggard JB, Gaudenz K, Krishnan J, McGaugh SE, Duboue ER, Keene AC, Rohner N. Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system. Dev Dyn 2019; 248:679-687. [PMID: 30938001 DOI: 10.1002/dvdy.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Astyanax mexicanus is a well-established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. RESULTS Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, a Cntnap2-mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. CONCLUSION The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype-phenotype gap.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Brittnee McDole
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | | | - James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | - Karin Gaudenz
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Florida.,Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Florida.,Jupiter Life Science Initiative, Florida Atlantic University, Florida
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
Riddle M, Martineau B, Peavey M, Tabin C. Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. J Vis Exp 2018. [PMID: 30638199 DOI: 10.3791/58972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
River and cave-adapted populations of Astyanax mexicanus show differences in morphology, physiology, and behavior. Research focused on comparing adult forms has revealed the genetic basis of some of these differences. Less is known about how the populations differ at post-larval stages (at the onset of feeding). Such studies may provide insight into how cavefish survive through adulthood in their natural environment. Methods for comparing post-larval development in the laboratory require standardized aquaculture and feeding regimes. Here we describe how to raise fish on a diet of nutrient-rich rotifers in non-recirculating water for up to two-weeks post fertilization. We demonstrate how to collect post-larval fish from this nursery system and perform whole-mount immunostaining. Immunostaining is an attractive alternative to transgene expression analysis for investigating development and gene function in A. mexicanus. The nursery method can also be used as a standard protocol for establishing density-matched populations for growth into adults.
Collapse
|
19
|
Gross JB, Powers AK. A Natural Animal Model System of Craniofacial Anomalies: The Blind Mexican Cavefish. Anat Rec (Hoboken) 2018; 303:24-29. [PMID: 30365238 DOI: 10.1002/ar.23998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Natural model systems evolving under extreme environmental pressures provide the opportunity to advance our knowledge of how the craniofacial complex evolves in nature. Unlike traditional models, natural systems are less inbred, and, therefore, better model the complex variation of the human population. Owing to the nature of certain craniofacial aberrations in blind Mexican cavefish, we suggest that this organism can provide new insights to a variety of craniofacial changes. Diverse cranial features have evolved in natural cave-dwelling Astyanax fish, which have thrived in the unforgiving darkness and nutrient-poor environment of the cave for countless generations. While the genetic and environmental underpinnings of various cranial anomalies have been investigated for decades, a comprehensive characterization of their molecular and developmental origins remains incomplete. Cavefish provide numerous advantages given the availability of genomic resources, developmental and molecular tools, and the presence of a normative surface-dwelling "ancestral" surrogate for comparative studies. By leveraging the frequency of abnormal and asymmetric cranial features in cavefish, we anticipate advances in our knowledge of the etiologies of irregular cranial features. Extreme adaptations in cavefish are expected to offer new insights into the complex and multifactorial nature of craniofacial disorders and facial asymmetry. Anat Rec, 2018. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| | - Amanda K Powers
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Rieveschl Hall Room 711B, Cincinnati, Ohio
| |
Collapse
|
20
|
Atukorala ADS, Bhatia V, Ratnayake R. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model. Dev Dyn 2018; 248:153-161. [PMID: 30450697 DOI: 10.1002/dvdy.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atukorallaya Devi Sewvandini Atukorala
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vikram Bhatia
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ravindra Ratnayake
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Mojaddidi H, Fernandez FE, Erickson PA, Protas ME. Embryonic origin and genetic basis of cave associated phenotypes in the isopod crustacean Asellus aquaticus. Sci Rep 2018; 8:16589. [PMID: 30409988 PMCID: PMC6224564 DOI: 10.1038/s41598-018-34405-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
Characteristics common to animals living in subterranean environments include the reduction or absence of eyes, lessened pigmentation and enhanced sensory systems. How these characteristics have evolved is poorly understood for the majority of cave dwelling species. In order to understand the evolution of these changes, this study uses an invertebrate model system, the freshwater isopod crustacean, Asellus aquaticus, to examine whether adult differences between cave and surface dwelling individuals first appear during embryonic development. We hypothesized that antennal elaboration, as well as eye reduction and pigment loss, would be apparent during embryonic development. We found that differences in pigmentation, eye formation, and number of segments of antenna II were all present by the end of embryonic development. In addition, we found that cave and surface hatchlings do not significantly differ in the relative size of antenna II and the duration of embryonic development. To investigate whether the regions responsible for eye and pigment differences could be genetically linked to differences in article number, we genotyped F2 hybrids for the four previously mapped genomic regions associated with eye and pigment differences and phenotyped these F2 hybrids for antenna II article number. We found that the region previously known to be responsible for both presence versus absence of pigment and eye size also was significantly associated with article number. Future experiments will address whether pleiotropy and/or genetic linkage play a role in the evolution of cave characteristics in Asellus aquaticus.
Collapse
Affiliation(s)
- Hafasa Mojaddidi
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA
| | - Franco E Fernandez
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA
| | | | - Meredith E Protas
- Dominican University of California, 50 Acacia Ave, San Rafael, CA, 94901, USA.
| |
Collapse
|
22
|
Lloyd E, Olive C, Stahl BA, Jaggard JB, Amaral P, Duboué ER, Keene AC. Evolutionary shift towards lateral line dependent prey capture behavior in the blind Mexican cavefish. Dev Biol 2018; 441:328-337. [PMID: 29772227 PMCID: PMC6450390 DOI: 10.1016/j.ydbio.2018.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Feeding strategies are dependent on multi-modal sensory processing, that integrates visual, chemosensory, and mechanoreceptive cues. In many fish species, local environments and food availability dramatically influence the evolution of sensory and morphological traits that underlie feeding. The Mexican cavefish, Astyanax mexicanus, have developed robust changes in sensory-dependent behaviors, but the impact on prey detection and feeding behavior is not known. In the absence of eyes, cavefish have evolved enhanced sensitivity of the lateral line, comprised of mechanosensory organs that sense water flow and detect prey. Here, we identify evolved differences in prey capture behavior of larval cavefish that are dependent on lateral line sensitivity. Under lighted conditions, cavefish strike Artemia prey at a wider angle than surface fish; however, this difference is diminished under dark conditions. In addition, the strike distance is greater in cavefish than surface fish, revealing an ability to capture, and likely detect, prey at greater distances. Experimental ablation of the lateral line disrupts prey capture in cavefish under both light and dark conditions, while it only impacts surface fish under dark conditions. Together, these findings identify an evolutionary shift towards a dependence on the lateral line for prey capture in cavefish, providing a model for investigating how loss of visual cues impacts multi-modal sensory behaviors.
Collapse
Affiliation(s)
- Evan Lloyd
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Courtney Olive
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stahl
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - James B Jaggard
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Paloma Amaral
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
23
|
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol 2018; 441:313-318. [DOI: 10.1016/j.ydbio.2018.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 01/02/2023]
|
24
|
Ma L, Strickler AG, Parkhurst A, Yoshizawa M, Shi J, Jeffery WR. Maternal genetic effects in Astyanax cavefish development. Dev Biol 2018; 441:209-220. [PMID: 30031754 DOI: 10.1016/j.ydbio.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
The role of maternal factors in the evolution of development is poorly understood. Here we describe the use of reciprocal hybridization between the surface dwelling (surface fish, SF) and cave dwelling (cavefish, CF) morphs of the teleost Astyanax mexicanus to investigate the roles of maternal genetic effects in cavefish development. Reciprocal hybridization, a procedure in which F1 hybrids are generated by fertilizing SF eggs with CF sperm (SF × CF hybrids) and CF eggs with SF sperm (CF × SF hybrids), revealed that the CF degenerative eye phenotype showed maternal genetic effects. The eyes of CF × SF hybrids resembled the degenerate eyes of CF in showing ventral reduction of the retina and corresponding displacement of the lens within the optic cup, a smaller lens and eyeball, more lens apoptosis, a smaller cartilaginous sclera, and lens-specific gene expression characteristics compared to SF × CF hybrids, which showed eye and lens gene expression phenotypes resembling SF. In contrast, reciprocal hybridization failed to support roles for maternal genetic effects in the CF regressive pigmentation phenotype or in CF constructive changes related to enhanced jaw development. Maternal transcripts encoded by the pou2f1b, runx2b, and axin1 genes, which are involved in determining ventral embryonic fates, were increased in unfertilized CF eggs. In contrast, maternal mRNAs encoded by the ß-catenin and syntabulin genes, which control dorsal embryonic fates, showed similar expression levels in unfertilized SF and CF eggs. Furthermore, maternal transcripts of a sonic hedgehog gene were detected in SF and CF eggs and early cleaving embryos. This study reveals that CF eye degeneration is controlled by changes in maternal factors produced during oogenesis and introduces A. mexicanus as a model system for studying the role of maternal changes in the evolution of development.
Collapse
Affiliation(s)
- Li Ma
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Allen G Strickler
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Amy Parkhurst
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Masato Yoshizawa
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Janet Shi
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Fumey J, Hinaux H, Noirot C, Thermes C, Rétaux S, Casane D. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol Biol 2018; 18:43. [PMID: 29665771 PMCID: PMC5905186 DOI: 10.1186/s12862-018-1156-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cavefish populations belonging to the Mexican tetra species Astyanax mexicanus are outstanding models to study the tempo and mode of adaptation to a radical environmental change. They are currently assigned to two main groups, the so-called "old" and "new" lineages, which would have populated several caves independently and at different times. However, we do not have yet accurate estimations of the time frames of evolution of these populations. RESULTS We reanalyzed the geographic distribution of mitochondrial and nuclear DNA polymorphisms and we found that these data do not support the existence of two cavefish lineages. Using IMa2, a program that allows dating population divergence in addition to demographic parameters, we found that microsatellite polymorphism strongly supports a very recent origin of cave populations (< 20,000 years). We identified a large number of single-nucleotide polymorphisms (SNPs) in transcript sequences of pools of embryos (Pool-seq) belonging to Pachón cave population and a surface population from Texas. Based on summary statistics that can be computed with this SNP data set together with simulations of evolution of SNP polymorphisms in two recently isolated populations, we looked for sets of demographic parameters that allow the computation of summary statistics with simulated populations that are similar to the ones with the sampled populations. In most simulations for which we could find a good fit between the summary statistics of observed and simulated data, the best fit occurred when the divergence between simulated populations was less than 30,000 years. CONCLUSIONS Although it is often assumed that some cave populations have a very ancient origin, a recent origin of these populations is strongly supported by our analyses of independent sets of nuclear DNA polymorphism. Moreover, the observation of two divergent haplogroups of mitochondrial and nuclear genes with different geographic distributions support a recent admixture of two divergent surface populations, before the isolation of cave populations. If cave populations are indeed only several thousand years old, many phenotypic changes observed in cavefish would thus have mainly involved the fixation of genetic variants present in surface fish populations and within a very short period of time.
Collapse
Affiliation(s)
- Julien Fumey
- Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, F-91198, Paris, France
| | - Hélène Hinaux
- DECA group, Paris-Saclay Institute of Neuroscience, UMR 9197, CNRS, Gif sur Yvette, France
| | - Céline Noirot
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées, UBIA, INRA, Auzeville Castanet-Tolosan, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, F-91198, Paris, France
| | - Sylvie Rétaux
- DECA group, Paris-Saclay Institute of Neuroscience, UMR 9197, CNRS, Gif sur Yvette, France
| | - Didier Casane
- Évolution, Génomes, Comportement, Écologie, CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
26
|
Zhu B, Ge W. Genome editing in fishes and their applications. Gen Comp Endocrinol 2018; 257:3-12. [PMID: 28919449 DOI: 10.1016/j.ygcen.2017.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
There have been revolutionary progresses in genome engineering in the past few years. The newly-emerged genome editing technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats associated with Cas9 (CRISPR/Cas9) have enabled biological scientists to perform efficient and precise targeted genome editing in different species. Fish represent the largest group of vertebrates with many species having values for both scientific research and aquaculture industry. Genome editing technologies have found extensive applications in different fish species for basic functional studies as well asapplied research in such fields as disease modeling and aquaculture. This mini-review focuses on recent advancements and applications of the new generation of genome editing technologies in fish species, with particular emphasis on their applications in understanding reproductive functions because the reproductive axis has been most systematically and best studied among others and its function has been difficult to address with reverse genetics approach.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
27
|
Murakami Y, Ansai S, Yonemura A, Kinoshita M. An efficient system for homology-dependent targeted gene integration in medaka ( Oryzias latipes). ZOOLOGICAL LETTERS 2017; 3:10. [PMID: 28694996 PMCID: PMC5500998 DOI: 10.1186/s40851-017-0071-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND The CRISPR/Cas system is a powerful genome editing tool that enables targeted genome modifications in various organisms. In medaka (Oryzias latipes), targeted mutagenesis with small insertions and deletions using this system have become a robust technique and are now widely used. However, to date there have been only a small number of reports on targeted gene integration using this system. We thus sought in the present study to identify factors that enhance the efficiency of targeted gene integration events in medaka. RESULTS We show that longer homology arms (ca. 500 bp) and linearization of circular donor plasmids by cleavage with bait sequences enhances the efficiency of targeted integration of plasmids in embryos. A new bait sequence, BaitD, which we designed and selected by in silico screening, achieved the highest efficiency of the targeted gene integration in vivo. Using this system, donor plasmids integrated precisely at target sites and were efficiently transmitted to progeny. We also report that the genotype of F2 siblings, obtained by mating of individuals harboring two different colors of fluorescent protein genes (e.g. GFP and RFP) in the same locus, can be easily and rapidly determined non-invasively by visual observations alone. CONCLUSION We report that the efficiency of targeted gene integration can be enhanced by using donor vectors with longer homologous arms and linearization using a highly active bait system in medaka. These findings may contribute to the establishment of more efficient systems for targeted gene integration in medaka and other fish species.
Collapse
Affiliation(s)
- Yu Murakami
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Satoshi Ansai
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Present address: Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Akari Yonemura
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
28
|
Li M, Wang D. Gene editing nuclease and its application in tilapia. Sci Bull (Beijing) 2017; 62:165-173. [PMID: 36659401 DOI: 10.1016/j.scib.2017.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Gene editing nucleases including zinc-finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system (CRISPR/Cas9) provide powerful tools that improve our ability to understand the physiological processes and their underlying mechanisms. To date, these approaches have already been widely used to generate knockout and knockin models in a large number of species. Fishes comprise nearly half of extant vertebrate species and provide excellent models for studying many aspects of biology. In this review, we present an overview of recent advances in the use of gene editing nucleases for studies of fish species. We focus particularly on the use of TALENs and CRISPR/Cas9 genome editing for studying sex determination in tilapia.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
29
|
Krishnan J, Rohner N. Cavefish and the basis for eye loss. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150487. [PMID: 27994128 PMCID: PMC5182419 DOI: 10.1098/rstb.2015.0487] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
30
|
Josa S, Seruggia D, Fernández A, Montoliu L. Concepts and tools for gene editing. Reprod Fertil Dev 2017; 29:1-7. [DOI: 10.1071/rd16396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene editing is a relatively recent concept in the molecular biology field. Traditional genetic modifications in animals relied on a classical toolbox that, aside from some technical improvements and additions, remained unchanged for many years. Classical methods involved direct delivery of DNA sequences into embryos or the use of embryonic stem cells for those few species (mice and rats) where it was possible to establish them. For livestock, the advent of somatic cell nuclear transfer platforms provided alternative, but technically challenging, approaches for the genetic alteration of loci at will. However, the entire landscape changed with the appearance of different classes of genome editors, from initial zinc finger nucleases, to transcription activator-like effector nucleases and, most recently, with the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas). Gene editing is currently achieved by CRISPR–Cas-mediated methods, and this technological advancement has boosted our capacity to generate almost any genetically altered animal that can be envisaged.
Collapse
|
31
|
Kowalko JE, Ma L, Jeffery WR. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J Vis Exp 2016. [PMID: 27404092 DOI: 10.3791/54113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.
Collapse
Affiliation(s)
| | - Li Ma
- Department of Biological Sciences, University of Cincinnati
| | | |
Collapse
|
32
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
33
|
Gross JB, Meyer B, Perkins M. The rise of Astyanax cavefish. Dev Dyn 2015; 244:1031-1038. [PMID: 25601346 PMCID: PMC4508244 DOI: 10.1002/dvdy.24253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 01/01/2023] Open
Abstract
Numerous animals have invaded subterranean caverns and evolved remarkably similar features. These features include loss of vision and pigmentation, and gains in nonvisual sensation. This broad convergence echoes smaller-scale convergence, in which members of the same species repeatedly evolve the same cave-associated phenotypes. The blind Mexican tetra of the Sierra de El Abra region of northeastern Mexico has a complex origin, having recurrently colonized subterranean environments through numerous invasions of surface-dwelling fish. These colonizations likely occurred ∼1-5 MYa. Despite evidence of historical and contemporary gene flow between cave and surface forms, the cave-associated phenotype appears to remain quite stable in nature. This model system has provided insight to the mechanisms of phenotypic regression, the genetic basis for constructive trait evolution, and the origin of behavioral novelties. Here, we document the rise of this model system from its discovery by a Mexican surveyor in 1936, to a powerful system for cave biology and contemporary genetic research. The recently sequenced genome provides exciting opportunities for future research, and will help resolve several long-standing biological problems. Developmental Dynamics 244:1031-1038, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua B Gross
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| | - Bradley Meyer
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| | - Molly Perkins
- University of Cincinnati, Department of Biological Sciences, Cincinnati Ohio
| |
Collapse
|
34
|
Yoshizawa M. Behaviors of cavefish offer insight into developmental evolution. Mol Reprod Dev 2015; 82:268-80. [PMID: 25728684 PMCID: PMC5024055 DOI: 10.1002/mrd.22471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures—relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts. Mol. Reprod. Dev. 82: 268–280, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Biology, University of Nevada, Reno, Nevada; Department of Biology, University of Hawaii, Manoa, Hawaii
| |
Collapse
|