1
|
Maeyama R, Segawa R, Onodera R, Hiratsuka M, Hirasawa N. Caspases downregulate nickel and hydrogen peroxide-induced IL-8 production via modification of c-Jun N-terminal kinases. Toxicology 2024; 501:153710. [PMID: 38104653 DOI: 10.1016/j.tox.2023.153710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Nickel (Ni) is a typical hapten in allergic contact dermatitis. However, it has been used in various metal materials due to its usefulness. Although Ni ions induce apoptosis of inflammatory cells and the expression of inflammatory cytokines such as interleukin-8 (IL-8), the effects of the apoptotic pathway on the signaling that induces cytokine production have not been sufficiently clarified. Here, we found that NiCl2-induced IL-8 production was enhanced by the pan-caspase inhibitor Z-VAD-FMK in THP-1 cells. Moreover, Z-VAD-FMK enhanced H2O2-induced and NiCl2-induced IL-8 production, but not TNF-α-induced one. The analyses of signaling pathways apparently showed that NiCl2- and H2O2-induced phosphorylation of c-Jun, but not TNF-α-induced one were enhanced by Z-VAD-FMK. The cleavages of p54c-Jun N-terminal kinase (JNK) as well as PARP was induced by NiCl2 and H2O2 but not by TNF-α. Finally, a JNK inhibitor, SP600125, inhibited Z-VAD-FMK-induced enhancement of IL-8 production. In summary, we showed that caspase activation in the apoptotic pathway actively downregulates the JNK-mediated activation of inflammatory cells. This study highlighted the significance of apoptosis in inflammatory diseases, including Ni-induced dermatitis.
Collapse
Affiliation(s)
- Ryusei Maeyama
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Ryo Onodera
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022; 24:153-170. [PMID: 36606252 PMCID: PMC9793227 DOI: 10.1016/j.bioactmat.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.
Collapse
Affiliation(s)
- Taravat Khodaei
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | | | - Abhinav P. Acharya
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA,Biological Design, Arizona State University, Tempe, AZ, 85281, USA,Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State, University, Tempe, AZ, 85281, USA,Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA,Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA,Corresponding author. Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA.
| |
Collapse
|
3
|
Ju HM, Yu SN, Ahn YW, Ok SM, Ahn SC, Jeong SH. Correlation between Metal Ions and Cytokines in the Saliva of Patients with Oral Lichenoid Lesions. Yonsei Med J 2021; 62:767-775. [PMID: 34296555 PMCID: PMC8298875 DOI: 10.3349/ymj.2021.62.8.767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We aimed to investigate the effect of metal ions from oral prostheses (OPs) released into the saliva of patients with oral lichenoid lesions (OLLs). MATERIALS AND METHODS Subjects (n=183) were divided into four groups according to the presence or absence of OLL and OP. Concentrations of the metal ions titanium, chromium (Cr), cobalt (Co), nickel (Ni), palladium (Pd), silver (Ag), platinum (Pt), gold (Au), and zirconium (Zr) were measured using a laser-ablation microprobe inductively coupled to a plasma mass spectrometer. Saliva levels of interleukin (IL)-6, IL-1β, IL-8, and tumor necrosis factor-α were detected using an enzyme-linked immunosorbent assay. The reticulation/keratosis, erythema, and ulceration (REU) scoring system was used to assess the severity of OLL. RESULTS Mean concentrations of IL-6 and IL-8 were statistically higher in OLL patients with OPs. The concentration of Ni was high in OLL groups. The concentrations of Cr, Ni, and Au ions in the saliva were positively correlated with IL-8. REU scores were positively correlated with salivary concentrations of IL-6 and IL-8, as well as with concentrations of Cr, Ni, and Au. CONCLUSION Increased concentrations of metal ions, especially Ni, in saliva were positively correlated with IL-8 and showed positive correlations with the severity of OLL.
Collapse
Affiliation(s)
- Hye Min Ju
- Department of Oral Medicine, Pusan National University Dental Hospital, Dental Research Institute, Yangsan, Korea
| | - Sun Nyoung Yu
- Department of Microbiology & Immunology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yong Woo Ahn
- Department of Oral Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Dental and Life Science Institute, Yangsan, Korea
| | - Soo Min Ok
- Department of Oral Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Dental and Life Science Institute, Yangsan, Korea
| | - Soon Cheol Ahn
- Department of Microbiology & Immunology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sung Hee Jeong
- Department of Oral Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Dental and Life Science Institute, Yangsan, Korea.
| |
Collapse
|
4
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Guérin T, Massanyi P, Van Loveren H, Baert K, Gergelova P, Nielsen E. Update of the risk assessment of nickel in food and drinking water. EFSA J 2020; 18:e06268. [PMID: 33193868 PMCID: PMC7643711 DOI: 10.2903/j.efsa.2020.6268] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its previous Opinion on nickel in food and drinking water, taking into account new occurrence data, the updated benchmark dose (BMD) Guidance and newly available scientific information. More than 47,000 analytical results on the occurrence of nickel were used for calculating chronic and acute dietary exposure. An increased incidence of post-implantation loss in rats was identified as the critical effect for the risk characterisation of chronic oral exposure and a BMDL 10 of 1.3 mg Ni/kg body weight (bw) per day was selected as the reference point for the establishment of a tolerable daily intake (TDI) of 13 μg/kg bw. Eczematous flare-up reactions in the skin elicited in nickel-sensitised humans, a condition known as systemic contact dermatitis, was identified as the critical effect for the risk characterisation of acute oral exposure. A BMDL could not be derived, and therefore, the lowest-observed-adverse-effect-level of 4.3 μg Ni/kg bw was selected as the reference point. The margin of exposure (MOE) approach was applied and an MOE of 30 or higher was considered as being indicative of a low health concern. The mean lower bound (LB)/upper bound (UB) chronic dietary exposure was below or at the level of the TDI. The 95th percentile LB/UB chronic dietary exposure was below the TDI in adolescents and in all adult age groups, but generally exceeded the TDI in toddlers and in other children, as well as in infants in some surveys. This may raise a health concern in these young age groups. The MOE values for the mean UB acute dietary exposure and for the 95th percentile UB raises a health concern for nickel-sensitised individuals. The MOE values for an acute scenario regarding consumption of a glass of water on an empty stomach do not raise a health concern.
Collapse
|
5
|
Hanieh H, Masuda K, Metwally H, Chalise JP, Mohamed M, Nyati KK, Standley DM, Li S, Higa M, Zaman MM, Kishimoto T. Arid5a stabilizes OX40 mRNA in murine CD4 + T cells by recognizing a stem-loop structure in its 3'UTR. Eur J Immunol 2018; 48:593-604. [PMID: 29244194 DOI: 10.1002/eji.201747109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
Abstract
AT-rich interactive domain-containing protein 5a (Arid5a) is an RNA-binding protein (RBP) required for autoimmunity via stabilization of interleukin-6 (Il6) and signal transducer and activator of transcription 3 (STAT3) mRNAs. However, the roles of Arid5a in Th17 cells and its association with autoimmunity remain unknown. Here, we show that the levels of Arid5a and OX40 are correlated in CD4+ T cells under Th17 conditions in an IL-6-dependent manner. Lack of Arid5a in T cells reduced OX40 expression levels and repressed IL-17 production in response to OX40 ligation. Arid5a stabilized OX40 mRNA by recognizing the alternative decay element (ADE)-like stem-loop (SL) in the 3' untranslated region (3'UTR). Interestingly, Arid5a impaired the RNA-destabilizing functions of Regnase-1 and Roquin-1 on OX40 ADE-like SL. In EAE, Arid5a-deficient mice exhibited resistance to EAE, with reduced OX40 expression in CD4+ T cells, and the number of CD4+ CD45+ T cells was decreased in CNS. Furthermore, ameliorated EAE was induced by adoptive transfer of Arid5a-/- encephalitogenic CD4+ T cells expressing less OX40 mRNA and producing less IL-17. In conclusion, our findings indicate that the Arid5a/OX40 axis in CD4+ T cells may have important implications in pathogenesis of autoimmune diseases such as EAE.
Collapse
Affiliation(s)
- Hamza Hanieh
- Physiology Laboratory, Biological Sciences Department, King Faisal University, 31982, Hofuf, Saudi Arabia.,Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Kazuya Masuda
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.,Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia, PA, 19104, USA
| | - Hozaifa Metwally
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Jaya P Chalise
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Maged Mohamed
- Pharmaceutical Sciences Department, King Faisal University, 31982, Hofuf, Saudi Arabia.,Pharmacognosy Department, Zagazig University, Zagazig, 44519, Egypt
| | - Kishan K Nyati
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Daron M Standley
- Laboratory of System Immunology, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Songling Li
- Laboratory of System Immunology, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Mitsuru Higa
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Mohammad M Zaman
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International-Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Kim YI, Choi KH, Kim SR, Goo TW, Park SW. Bombyx mori hemocyte extract has anti-inflammatory effects on human phorbol myristate acetate-differentiated THP‑1 cells via TLR4-mediated suppression of the NF-κB signaling pathway. Mol Med Rep 2017; 16:4001-4007. [PMID: 28765923 PMCID: PMC5646980 DOI: 10.3892/mmr.2017.7087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
Hemolymph is the circulating fluid of insects and is a key component of their immune system. However, little is known concerning hemocyte identification, development, differentiation and related cellular immune responses. The present study aimed to determine whether a hemocyte extract prepared from Bombyx mori larvae had anti-inflammatory effects; THP-1 (a human monocytic leukemia cell line) cells that had been differentiated into macrophage-like cells by treatment with phorbol myristate acetate (PMA) were used. THP-1 cells were cultured with different concentrations of a B. mori hemocyte extract prior to exposure to lipopolysaccharide (LPS) to induce an inflammatory response. The effects of the B. mori hemocyte extract on anti-inflammatory pathways were determined using reverse transcription-quantitative polymerase chain reaction and western blotting to assess the expression of pro-inflammatory molecules. The B. mori hemocyte extract inhibited the LPS-induced mRNA expression of Toll-like receptor 4 in addition to LPS-induced interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α. Treatment of PMA-differentiated THP-1 cells with B. mori hemocyte extract also inhibited inducible nitric oxide synthase and cyclooxygenase-2 transcription and translation. Nuclear factor-κB activation and phosphorylation also decreased. Further in-depth functional studies are required to understand the mechanism underlying the anti-inflammatory effects of silkworm hemocyte extract.
Collapse
Affiliation(s)
- Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Kwang Ho Choi
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju, Jeollabuk 55365, Republic of Korea
| | - Seong Ryul Kim
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju, Jeollabuk 55365, Republic of Korea
| | - Tae-Won Goo
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan, Gyeongsangbuk 38430, Republic of Korea
| |
Collapse
|
7
|
Uehata T, Takeuchi O. Regnase-1 Is an Endoribonuclease Essential for the Maintenance of Immune Homeostasis. J Interferon Cytokine Res 2017; 37:220-229. [DOI: 10.1089/jir.2017.0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Takuya Uehata
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, AMED-CREST, Kyoto, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, AMED-CREST, Kyoto, Japan
| |
Collapse
|
8
|
Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBPβ Inhibition. PLoS One 2017; 12:e0169531. [PMID: 28056086 PMCID: PMC5215883 DOI: 10.1371/journal.pone.0169531] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Two vital functions of the innate immune system are to initiate inflammation and redistribute micronutrients in favor of the host. Zinc is an essential micronutrient used in host defense. The zinc importer ZIP8 is uniquely induced through stimulation of the NF-κB pathway by LPS in monocytes and functions to regulate inflammation in a zinc-dependent manner. Herein we determined the impact of zinc metabolism following LPS-induced inflammation in human macrophages. We observed that ZIP8 is constitutively expressed in resting macrophages and strikingly elevated following LPS exposure, a response that is unique compared to the 13 other known zinc import proteins. During LPS exposure, extracellular zinc concentrations within the physiological range markedly reduced IL-10 mRNA expression and protein release but increased mRNA expression of TNFα, IL-8, and IL-6. ZIP8 knockdown inhibited LPS-driven cellular accumulation of zinc and prevented zinc-dependent reduction of IL-10 release. Further, zinc supplementation reduced nuclear localization and activity of C/EBPβ, a transcription factor known to drive IL-10 expression. These studies demonstrate for the first time that zinc regulates LPS-mediated immune activation of human macrophages in a ZIP8-dependent manner, reducing IL-10. Based on these findings we predict that macrophage zinc metabolism is important in host defense against pathogens.
Collapse
|