1
|
Piersol KL, Buckman JF. Elevated blood pressure, stroke volume, and vascular tone in young women who use oral contraception. Int J Psychophysiol 2025; 211:112557. [PMID: 40118386 DOI: 10.1016/j.ijpsycho.2025.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Use of hormonal contraception is important to consider as a risk or protective factor in the development of cardiovascular disease. Prior reports of short and long-term effects of hormonal contraception on cardiovascular disease allude to its potential for immediate and delayed cardiovascular effects, but the nature of direct early cardiovascular changes as the result of hormonal contraception use remains understudied. This cross-sectional data analysis add-on study compared differences in cardiovascular function of naturally cycling women (n = 90) and women using oral contraceptive pills (n = 35) at rest and in response to physiological breathing challenges that activated the sympathetic (paced sighing) or parasympathetic (slow paced breathing) nervous systems. Results showed women using oral contraception had elevated resting systolic blood pressure as well as increased stroke volume and shortened pulse transit time (i.e., vasoconstriction) relative to naturally cycling women. Despite resting differences, both groups responded similarly to breathing challenges. Elevated resting blood pressure and altered sympathetic control, even at preclinical levels, may increase physiological wear-and-tear, particularly if hormonal contraceptive use continues over long periods of time. These findings are particularly compelling considering the youth and health of the current sample.
Collapse
Affiliation(s)
- Kelsey L Piersol
- Department of Kinesiology and Health, Rutgers University- New Brunswick, 70 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University- New Brunswick, 70 Lipman Drive, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Asirvatham-Jeyaraj N, Anselmo M, Chantigian DP, Larson M, Lee EJ, Keller-Ross ML. Influence of endogenous and exogenous hormones on the cardiovascular response to lower extremity exercise and group III/IV activation in young females. Am J Physiol Regul Integr Comp Physiol 2024; 327:R379-R388. [PMID: 39034814 PMCID: PMC11483072 DOI: 10.1152/ajpregu.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Oral contraceptive (OC) use can increase resting blood pressure (BP) in females as well as contribute to greater activation of group III/IV afferents during upper body exercise. It is unknown, however, whether an exaggerated BP response occurs during lower limb exercise in OC users. We sought to elucidate the group III/IV afferent activity-mediated BP and heart rate responses while performing lower extremity tasks during early and late follicular phases in young, healthy females. Females not taking OCs (NOC: n = 8; age: 25 ± 4 yr) and those taking OCs (OC: n = 10; age: 23 ± 2 yr) completed a continuous knee extension/flexion passive stretch (mechanoreflex) and cycling exercise with subsystolic cuff occlusion (exercise pressor reflex), which was followed by a 2-min postexercise circulatory occlusion (PECO) (metaboreflex). Data collection occurred on two occasions: once during the early follicular phase (days 1-4) and once during the late follicular phase (days 10-14) of their menstrual cycle (NOC) or during the placebo and active pill phases (OC). Resting mean arterial BP and heart rate were not different between phases in NOC and OC participants (P > 0.05). Hemodynamic responses to metaboreflex, mechanoreflex, and collective exercise pressor reflex activation were not different between phases in both groups (P > 0.05). In conclusion, although OCs are known to increase BP at rest, our findings indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during large, lower limb muscle exercise with or without group III/IV afferent activation in young, healthy females.NEW & NOTEWORTHY Sex differences in the cardiovascular response to exercise have been demonstrated and may be dependent on sex hormone levels. Furthermore, oral contraceptives (OCs) have been shown to exaggerate the blood pressure response to upper extremity exercise. The results of this study indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during lower extremity dynamic exercise or with group III/IV afferent activation in young, healthy females.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- Cardiometabolic and Neuromodulation Research Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Miguel Anselmo
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Daniel P Chantigian
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mia Larson
- Lillehei Clinical Research Unit, University of Minnesota, Cancer and Cardiovascular Research Center, Minnesota, United States
| | - Emma J Lee
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
3
|
D'Souza AC, Wageh M, Williams JS, Colenso-Semple LM, McCarthy DG, McKay AKA, Elliott-Sale KJ, Burke LM, Parise G, MacDonald MJ, Tarnopolsky MA, Phillips SM. Menstrual cycle hormones and oral contraceptives: a multimethod systems physiology-based review of their impact on key aspects of female physiology. J Appl Physiol (1985) 2023; 135:1284-1299. [PMID: 37823207 PMCID: PMC10979803 DOI: 10.1152/japplphysiol.00346.2023] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Hormonal changes around ovulation divide the menstrual cycle (MC) into the follicular and luteal phases. In addition, oral contraceptives (OCs) have active (higher hormone) and placebo phases. Although there are some MC-based effects on various physiological outcomes, we found these differences relatively subtle and difficult to attribute to specific hormones, as estrogen and progesterone fluctuate rather than operating in a complete on/off pattern as observed in cellular or preclinical models often used to substantiate human data. A broad review reveals that the differences between the follicular and luteal phases and between OC active and placebo phases are not associated with marked differences in exercise performance and appear unlikely to influence muscular hypertrophy in response to resistance exercise training. A systematic review and meta-analysis of substrate oxidation between MC phases revealed no difference between phases in the relative carbohydrate and fat oxidation at rest and during acute aerobic exercise. Vascular differences between MC phases are also relatively small or nonexistent. Although OCs can vary in composition and androgenicity, we acknowledge that much more work remains to be done in this area; however, based on what little evidence is currently available, we do not find compelling support for the notion that OC use significantly influences exercise performance, substrate oxidation, or hypertrophy. It is important to note that the study of females requires better methodological control in many areas. Previous studies lacking such rigor have contributed to premature or incorrect conclusions regarding the effects of the MC and systemic hormones on outcomes. While we acknowledge that the evidence in certain research areas is limited, the consensus view is that the impact of the MC and OC use on various aspects of physiology is small or nonexistent.
Collapse
Affiliation(s)
- Alysha C D'Souza
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mai Wageh
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Devin G McCarthy
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Pereira TJ, Bouakkar J, Johnston H, Pakosh M, Drake JD, Edgell H. The effects of oral contraceptives on resting autonomic function and the autonomic response to physiological stressors: a systematic review. Clin Auton Res 2023; 33:859-892. [PMID: 37971640 DOI: 10.1007/s10286-023-00996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This systematic review aimed to summarize how oral contraceptives (OC) affect resting autonomic function and the autonomic response to a variety of physiological stressors. METHODS A search strategy was created to retrieve citations investigating physiological responses comparing OC users to non-users (NOC) in response to autonomic reflex activation. RESULTS A total of 6148 citations were identified across databases from inception to June 2, 2022, and 3870 citations were screened at the abstract level after deduplication. Then, 133 texts were assessed at full-text level, and only 40 studies met eligibility requirements. Included citations were grouped by the aspect of autonomic function assessed, including autonomic reflex (i.e., baroreflex, chemoreflex, mechanoreflex, metaboreflex, and venoarterial reflex), or indicators (i.e., heart rate variability, pulse wave velocity, and sympathetic electrodermal activity), and physiological stressors that may alter autonomic function (i.e., auditory, exercise, mental or orthostatic stress, altitude, cold pressor test, sweat test, and vasodilatory infusions). CONCLUSION OC influence the physiological responses to chemoreflex, mechanoreflex, and metaboreflex activation. In terms of autonomic indices and physiological stressors, there are more inconsistencies within the OC literature, which may be due to estrogen dosage within the OC formulation (i.e., heart rate variability) or the intensity of the stressor (exercise intensity/duration or orthostatic stress). Further research is required to elucidate the effects of OC on these aspects of autonomic function because of the relatively small amount of available research. Furthermore, researchers should more clearly define or stratify OC use by duration, dose, and/or hormone cycling to further elucidate the effects of OC.
Collapse
Affiliation(s)
- T J Pereira
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - J Bouakkar
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - H Johnston
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - M Pakosh
- Library & Information Services, University Health Network, Toronto, ON, Canada
| | - J D Drake
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - H Edgell
- School of Kinesiology and Health Science, York University, 355 Bethune College, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
- Library & Information Services, University Health Network, Toronto, ON, Canada.
- Muscle Health Research Centre, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Teixeira AL, Fernandes IA, Millar PJ, Vianna LC. GABA A receptor activation modulates the muscle sympathetic nerve activity responses at the onset of static exercise in humans. J Appl Physiol (1985) 2021; 131:1138-1147. [PMID: 34410847 DOI: 10.1152/japplphysiol.00423.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise is a well-known sympathoexcitatory stimulus. However, muscle sympathetic nerve activity (MSNA) can decrease during the onset of muscle contraction. Yet, the underlying mechanisms and neurotransmitters involved in the sympathetic responses at the onset of exercise remain unknown. Herein, we tested the hypothesis that GABAA receptors may contribute to the MSNA responses at the onset of static handgrip in humans. Thirteen young, healthy individuals (4 females) performed 30 s of ischemic static handgrip at 30% of maximum volitional contraction before and following oral administration of either placebo or diazepam (10 mg), a benzodiazepine that enhances GABAA activity. MSNA (microneurography), beat-to-beat blood pressure (finger photopletysmography), heart rate (electrocardiogram), and stroke volume (ModelFlow) were continuously measured. Cardiac output (CO = stroke volume × heart rate) and total vascular conductance (TVC = CO/mean blood pressure) were subsequently calculated. At rest, MSNA was reduced while hemodynamic variables were unchanged after diazepam administration. Before diazepam, static handgrip elicited a significant decrease in MSNA burst frequency (Δ-7 ± 2 bursts/min, P < 0.01 vs. baseline) and MSNA burst incidence (Δ-16 ± 2 bursts/100 heart beats, P < 0.01 vs. baseline); however, these responses were attenuated following diazepam administration (Δ-1 ± 2 bursts/min and Δ-7 ± 2 bursts/100 heart beats, respectively; P < 0.01 vs. before diazepam). Diazepam did not affect the increases in heart rate, blood pressure, CO, and TVC at the exercise onset. Importantly, the placebo had no effect on any variable at rest or exercise onset. These findings suggest that GABAA receptor activation modulates the MSNA responses at the onset of static exercise in young, healthy humans.NEW & NOTEWORTHY In this study, we found that the reduction in muscle sympathetic nerve activity at the onset of static handgrip exercise was blunted following GABAA receptor activation with oral administration of diazepam in young, healthy individuals. The present findings provide novel insight into neural circuitry mechanisms controlling muscle sympathetic outflow during exercise in humans.
Collapse
Affiliation(s)
- André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Castanier C, Bougault V, Teulier C, Jaffré C, Schiano-Lomoriello S, Vibarel-Rebot N, Villemain A, Rieth N, Le-Scanff C, Buisson C, Collomp K. The Specificities of Elite Female Athletes: A Multidisciplinary Approach. Life (Basel) 2021; 11:622. [PMID: 34206866 PMCID: PMC8303304 DOI: 10.3390/life11070622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Female athletes have garnered considerable attention in the last few years as more and more women participate in sports events. However, despite the well-known repercussions of female sex hormones, few studies have investigated the specificities of elite female athletes. In this review, we present the current but still limited data on how normal menstrual phases, altered menstrual phases, and hormonal contraception affect both physical and cognitive performances in these elite athletes. To examine the implicated mechanisms, as well as the potential performances and health risks in this population, we then take a broader multidisciplinary approach and report on the causal/reciprocal relationships between hormonal status and mental and physical health in young (18-40 years) healthy females, both trained and untrained. We thus cover the research on both physiological and psychological variables, as well as on the Athlete Biological Passport used for anti-doping purposes. We consider the fairly frequent discrepancies and summarize the current knowledge in this new field of interest. Last, we conclude with some practical guidelines for eliciting improvements in physical and cognitive performance while minimizing the health risks for female athletes.
Collapse
Affiliation(s)
- Carole Castanier
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | | | - Caroline Teulier
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | | | - Sandrine Schiano-Lomoriello
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Nancy Vibarel-Rebot
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Aude Villemain
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Nathalie Rieth
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Christine Le-Scanff
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Corinne Buisson
- Département des Analyses, AFLD, 92290 Chatenay-Malabry, France;
| | - Katia Collomp
- CIAMS, Université Paris-Saclay, 91405 Orsay, France; (C.C.); (C.T.); (S.S.-L.); (N.V.-R.); (A.V.); (N.R.); (C.L.-S.)
- CIAMS, Université d’Orléans, 45067 Orléans, France
- Département des Analyses, AFLD, 92290 Chatenay-Malabry, France;
| |
Collapse
|
7
|
Rael B, Barba-Moreno L, Romero-Parra N, Alfaro-Magallanes VM, Castro EA, Cupeiro R, Peinado AB. Cardiorespiratory response to exercise in endurance-trained premenopausal and postmenopausal females. Eur J Appl Physiol 2021; 121:903-913. [PMID: 33389018 DOI: 10.1007/s00421-020-04574-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/27/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE To assess the influence of different hormonal profiles on the cardiorespiratory response to exercise in endurance-trained females. METHODS Forty-seven eumenorrheic females, 38 low-dose monophasic oral contraceptive (OC) users and 13 postmenopausal women, all of them endurance-trained, participated in this study. A DXA scan, blood sample tests and a maximal aerobic test were performed under similar low-sex hormone levels: early follicular phase for the eumenorrheic females; withdrawal phase for the OC group and at any time for postmenopausal women. Cardiorespiratory variables were measured at resting and throughout the maximal aerobic test (ventilatory threshold 1, 2 and peak values). Heart rate (HR) was continuously monitored with a 12-lead ECG. Blood pressure (BP) was measured with an auscultatory method and a calibrated mercury sphygmomanometer. Expired gases were measured breath-by-breath with the gas analyser Jaeger Oxycon Pro. RESULTS One-way ANCOVA reported a lower peak HR in postmenopausal women (172.4 ± 11.7 bpm) than in eumenorrheic females (180.9 ± 10.6 bpm) (p = 0.024). In addition, postmenopausal women exhibited lower VO2 (39.1 ± 4.9 ml/kg/min) compared to eumenorrheic females (45.1 ± 4.4 ml/kg/min) in ventilatory threshold 2 (p = 0.009). Nonetheless, respiratory variables did not show differences between groups at peak values. Finally, no differences between OC users and eumenorrheic females' cardiorespiratory response were observed in endurance-trained females. CONCLUSIONS Cardiorespiratory system is impaired in postmenopausal women due to physiological changes caused by age and sex hormones' decrement. Although these alterations appear not to be fully compensated by exercise, endurance training could effectively mitigate them. In addition, monophasic OC pills appear not to impact cardiorespiratory response to an incremental running test in endurance-trained females.
Collapse
Affiliation(s)
- Beatriz Rael
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain
| | - Laura Barba-Moreno
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain.
| | - Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain
| | - Víctor M Alfaro-Magallanes
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain
| | - Eliane A Castro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain.,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain
| | - Ana B Peinado
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Martín Fierro, 28040, Madrid, Spain
| | | |
Collapse
|
8
|
Schmalenberger KM, Eisenlohr-Moul TA, Würth L, Schneider E, Thayer JF, Ditzen B, Jarczok MN. A Systematic Review and Meta-Analysis of Within-Person Changes in Cardiac Vagal Activity across the Menstrual Cycle: Implications for Female Health and Future Studies. J Clin Med 2019; 8:jcm8111946. [PMID: 31726666 PMCID: PMC6912442 DOI: 10.3390/jcm8111946] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Interest in cardiac vagal activity (CVA; e.g., parasympathetically-mediated heart rate variability) as a biomarker of physical and mental health has increased exponentially in recent years. However, the understanding of sources of within-person change (i.e., intra-individual variance) in CVA is lagging behind. This systematic review and meta-analysis summarizes and quantifies current empirical evidence of within-person changes in measures of CVA across the menstrual cycle in naturally-cycling premenopausal females. We conducted an extensive literature search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in five databases to identify observational studies with repeated measures of CVA in at least two menstrual cycle phases. A broad meta-analysis (nstudies = 37; nindividuals = 1,004) revealed a significant CVA decrease from the follicular to luteal phase (d = −0.39, 95% CI (−0.67, −0.11)). Furthermore, 21 studies allowed for finer-grained comparisons between each of two cycle phases (menstrual, mid-to-late follicular, ovulatory, early-to-mid luteal, and premenstrual). Significant decreases in CVA were observed from the menstrual to premenstrual (nstudies = 5; nindividuals = 200; d = −1.17, 95% CI (−2.18, −0.17)) and from the mid-to-late follicular to premenstrual phases (nstudies = 8; nindividuals = 280; d = −1.32, 95% CI (−2.35, −0.29)). In conclusion, meta-analyses indicate the presence of CVA fluctuations across the menstrual cycle. Future studies involving CVA should control for cycle phase. Recommendations for covarying or selecting cycle phase are provided.
Collapse
Affiliation(s)
- Katja M. Schmalenberger
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
- Correspondence: (K.M.S.); (M.N.J.); Tel.: +49-6221-56-8148 (K.M.S.); +49-731-500-61810 (M.N.J.)
| | - Tory A. Eisenlohr-Moul
- Women’s Mental Health Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Lena Würth
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
| | - Ekaterina Schneider
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
| | - Julian F. Thayer
- Department of Psychological Science, School of Social Ecology, University of California Irvine, Irvine, CA 92697-7085, USA
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, 69115 Heidelberg, Germany; (L.W.); (E.S.); (B.D.)
| | - Marc N. Jarczok
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany
- Correspondence: (K.M.S.); (M.N.J.); Tel.: +49-6221-56-8148 (K.M.S.); +49-731-500-61810 (M.N.J.)
| |
Collapse
|
9
|
TEIXEIRA ANDRÉL, RITTI-DIAS RAPHAEL, ANTONINO DIEGO, BOTTARO MARTIM, MILLAR PHILIPJ, VIANNA LAUROC. Sex Differences in Cardiac Baroreflex Sensitivity after Isometric Handgrip Exercise. Med Sci Sports Exerc 2018; 50:770-777. [DOI: 10.1249/mss.0000000000001487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Teixeira AL, Ramos PS, Samora M, Sabino-Carvalho JL, Ricardo DR, Colombari E, Vianna LC. GABAergic contribution to the muscle mechanoreflex-mediated heart rate responses at the onset of exercise in humans. Am J Physiol Heart Circ Physiol 2017; 314:H716-H723. [PMID: 29351468 DOI: 10.1152/ajpheart.00557.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have indicated that central GABAergic mechanisms are involved in the heart rate (HR) responses at the onset of exercise. On the basis of previous research that showed similar increases in HR during passive and active cycling, we reasoned that the GABAergic mechanisms involved in the HR responses at the exercise onset are primarily mediated by muscle mechanoreceptor afferents. Therefore, in this study, we sought to determine whether central GABA mechanisms are involved in the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. Twenty-eight healthy subjects (14 men and 14 women) aged between 18 and 35 yr randomly performed three bouts of 5-s passive and active cycling under placebo and after oral administration of diazepam (10 mg), a benzodiazepine that produces an enhancement in GABAA activity. Beat-to-beat HR (electrocardiography) and arterial blood pressure (finger photopletysmography) were continuously measured. Electromyography of the vastus lateralis was obtained to confirm no electrical activity during passive trials. HR increased from rest under placebo and further increased after administration of diazepam in both passive (change: 12 ± 1 vs. 17 ± 1 beats/min, P < 0.01) and active (change: 14 ± 1 vs. 18 ± 1 beats/min, P < 0.01) cycling. Arterial blood pressure increased from rest similarly during all conditions ( P > 0.05). Importantly, no sex-related differences were found in any variables during experiments. These findings demonstrate, for the first time, that the GABAergic mechanisms significantly contribute to the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. NEW & NOTEWORTHY We found that passive and voluntary cycling evokes similar increases in heart rate and that these responses were enhanced after diazepam administration, a benzodiazepine that enhances GABAA activity. These findings suggest that the GABAergic system may contribute to the muscle mechanoreflex-mediated vagal withdrawal at the onset of exercise in humans.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Plinio S Ramos
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil.,Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, Minas Gerais, Brazil
| | - Milena Samora
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Djalma R Ricardo
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, Minas Gerais, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University, UNESP, Araraquara, São Paulo , Brazil
| | - Lauro C Vianna
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
11
|
Antonino D, Teixeira AL, Maia-Lopes PM, Souza MC, Sabino-Carvalho JL, Murray AR, Deuchars J, Vianna LC. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul 2017; 10:875-881. [DOI: 10.1016/j.brs.2017.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023] Open
|
12
|
Teixeira AL, Ramos PS, Vianna LC, Ricardo DR. Heart rate variability across the menstrual cycle in young women taking oral contraceptives. Psychophysiology 2015; 52:1451-5. [PMID: 26332575 DOI: 10.1111/psyp.12510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/09/2015] [Indexed: 12/24/2022]
Abstract
Previous studies have shown that resting heart rate variability (HRV) is modified by different phases of the menstrual cycle in nonusers of oral contraceptive pills (OCP); however, the effect of OCP on autonomic control of the heart remains unclear. The purpose of this study was to investigate HRV during the low hormone (LH-not taking OCP) and during the high hormone (HH-active OCP use) phases of the menstrual cycle in young women. Seventeen healthy women (19-31 years) taking OCP for at least 6 consecutive months were enrolled in this study. Plasma estradiol and progesterone were verified at each visit. HRV was assessed by using one-lead electrocardiography in time and frequency domains, in which participants rested in the supine position for a 20-min period with a breathing rate of 15 cycles/min. In addition, resting heart rate, and systolic and diastolic blood pressure were obtained. Both plasma estradiol (LH: 19.8 ± 4.2 pg/mL vs. HH: 12.4 ± 1.5 pg/mL; p > .05) and progesterone (LH: 0.247 ± 0.58 ng/mL vs. HH: 0.371 ± 0.08 ng/mL; p > .05) (mean ± SE) levels were similar in both phases. No significant difference was obtained for any component of HRV, heart rate, or blood pressure between the LH and HH phases (p > .05). These results provide preliminary evidence that use of OCP does not affect HRV during the menstrual cycle in healthy women.
Collapse
Affiliation(s)
- André L Teixeira
- Maternity Hospital Therezinha de Jesus, Faculty of Medical and Health Sciences-SUPREMA, Juiz de Fora, Brazil.,Postgraduate program, Exercise and Sports Sciences, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Plínio S Ramos
- Maternity Hospital Therezinha de Jesus, Faculty of Medical and Health Sciences-SUPREMA, Juiz de Fora, Brazil
| | - Lauro C Vianna
- Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Djalma R Ricardo
- Maternity Hospital Therezinha de Jesus, Faculty of Medical and Health Sciences-SUPREMA, Juiz de Fora, Brazil
| |
Collapse
|