1
|
Krischek JO, Mannherz HG, Napirei M. Different results despite high homology: Comparative expression of human and murine DNase1 in Pichia pastoris. PLoS One 2025; 20:e0321094. [PMID: 40299953 DOI: 10.1371/journal.pone.0321094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 05/01/2025] Open
Abstract
The prolonged persistence of extracellular chromatin and DNA is a salient feature of diseases like cystic fibrosis, systemic lupus erythematosus and COVID-19 associated microangiopathy. Since deoxyribonuclease I (DNase1) is a major endonuclease involved in DNA-related waste disposal, recombinant DNase1 is an important therapeutic biologic. Recently we described the production of recombinant murine DNase1 (rmDNase1) in Pichia pastoris by employing the α-mating factor prepro signal peptide (αMF-SP) a method, which we now applied to express recombinant human DNASE1 (rhDNASE1). In addition to an impaired cleavage of the αMF pro-peptide, which we also detected previously for mDNase1, expression of hDNASE1 resulted in a 70-80 times lower yield although both orthologues share a high structural and functional homology. Using mDNase1 expression as a guideline, we were able to increase the yield of hDNASE1 fourfold by optimizing parameters like nutrients, cultivation temperature, methanol supply, and codon usage. In addition, post-translational import into the rough endoplasmic reticulum (rER) was changed to co-translational import by employing the signal peptide (SP) of the α-subunit of the Oligosaccharyltransferase complex (Ost1) from Saccharomyces cerevisiae. These improvements resulted in the purification of ~ 8 mg pure mature rmDNase1 and ~ 0.4 mg rhDNASE1 per Liter expression medium of a culture with a cell density of OD600 = 40 in 24 hours. As a main cause for the expression difference, we assume varying folding abilities to reach a native conformation, which induce an elevated unproductive unfolded protein response within the rER during hDNASE1 expression. Concerning functionality, rhDNASE1 expressed in P. pastoris is comparable to Pulmozyme®, i.e. rhDNASE1 produced in Chinese hamster ovary (CHO) cells by Roche - Genentech. With respect to the biochemical effectivity, rmDNase1 is superior to rhDNASE1 due to its higher specific activity in the presence of Ca2 + /Mg2 + and the lower inhibition by monomeric actin.
Collapse
Affiliation(s)
- Jan-Ole Krischek
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Hans Georg Mannherz
- Department of Cellular and Translational Physiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Borčinová M, Raschmanová H, Zamora I, Looser V, Marešová H, Hirsch S, Kyslík P, Kovar K. Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris. Appl Microbiol Biotechnol 2020; 104:5787-5800. [PMID: 32424437 PMCID: PMC7306039 DOI: 10.1007/s00253-020-10669-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
To take full advantage of recombinant Pichia pastoris (Komagataella phaffii) as a production system for heterologous proteins, the complex protein secretory process should be understood and optimised by circumventing bottlenecks. Typically, little or no attention has been paid to the fate of newly synthesised protein inside the cell, or its passage through the secretory pathway, and only the secreted product is measured. However, the system’s productivity (i.e. specific production rate qp), includes productivity of secreted (qp,extra) plus intracellularly accumulated (qp,intra) protein. In bioreactor cultivations with P. pastoris producing penicillin G acylase, we studied the dynamics of product formation, i.e. both the specific product secretion (qp,extra) and product retention (qp,intra) as functions of time, as well as the kinetics, i.e. productivity in relation to specific growth rate (μ). Within the time course, we distinguished (I) an initial phase with constant productivities, where the majority of product accumulated inside the cells, and qp,extra, which depended on μ in a bell-shaped manner; (II) a transition phase, in which intracellular product accumulation reached a maximum and productivities (intracellular, extracellular, overall) were changing; (III) a new phase with constant productivities, where secretion prevailed over intracellular accumulation, qp,extra was linearly related to μ and was up to three times higher than in initial phase (I), while qp,intra decreased 4–6-fold. We show that stress caused by heterologous protein production induces cellular imbalance leading to a secretory bottleneck that ultimately reaches equilibrium. This understanding may help to develop cultivation strategies for improving protein secretion from P. pastoris.Key Points • A novel concept for industrial bioprocess development. • A Relationship between biomass growth and product formation in P. pastoris. • A Three (3) phases of protein production/secretion controlled by the AOX1-promoter. • A Proof of concept in production of industrially relevant penicillin G acylase. |
Collapse
Affiliation(s)
- Martina Borčinová
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland. .,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12840, Prague, Czech Republic.
| | - Hana Raschmanová
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Iwo Zamora
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Infors AG, Rittergasse 27, CH-4103, Bottmingen, Switzerland
| | - Verena Looser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Helena Marešová
- Institute of Microbiology, Czech Academy of Sciences, Videňská 1083, 14220, Prague, Czech Republic
| | - Sven Hirsch
- Institute of Applied Simulation, Zurich University of Applied Sciences, Schloss 1, CH-8820, Wädenswil, Switzerland
| | - Pavel Kyslík
- Institute of Microbiology, Czech Academy of Sciences, Videňská 1083, 14220, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Daspool, Gerberacherweg 24, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
3
|
Raschmanová H, Zamora I, Borčinová M, Meier P, Weninger A, Mächler D, Glieder A, Melzoch K, Knejzlík Z, Kovar K. Single-Cell Approach to Monitor the Unfolded Protein Response During Biotechnological Processes With Pichia pastoris. Front Microbiol 2019; 10:335. [PMID: 30873140 PMCID: PMC6404689 DOI: 10.3389/fmicb.2019.00335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Pichia pastoris (Komagataella sp.) is broadly used for the production of secreted recombinant proteins. Due to the high rate of protein production, incorrectly folded proteins may accumulate in the endoplasmic reticulum (ER). To restore their proper folding, the cell triggers the unfolded protein response (UPR); however, if the proteins cannot be repaired, they are degraded, which impairs process productivity. Moreover, a non-producing/non-secreting subpopulation of cells might occur, which also decreases overall productivity. Therefore, an in depth understanding of intracellular protein fluxes and population heterogeneity is needed to improve productivity. Under industrially relevant cultivation conditions in bioreactors, we cultured P. pastoris strains producing three different recombinant proteins: penicillin G acylase from Escherichia coli (EcPGA), lipase B from Candida antarctica (CaLB) and xylanase A from Thermomyces lanuginosus (TlXynA). Extracellular and intracellular product concentrations were determined, along with flow cytometry-based single-cell measurements of cell viability and the up-regulation of UPR. The cell population was distributed into four clusters, two of which were viable cells with no UPR up-regulation, differing in cell size and complexity. The other two clusters were cells with impaired viability, and cells with up-regulated UPR. Over the time course of cultivation, the distribution of the population into these four clusters changed. After 30 h of production, 60% of the cells producing EcPGA, which accumulated in the cells (50-70% of the product), had up-regulated UPR, but only 13% of the cells had impaired viability. A higher proportion of cells with decreased viability was observed in strains producing CaLB (20%) and TlXynA (27%). The proportion of cells with up-regulated UPR in CaLB-producing (35%) and TlXynA-producing (30%) strains was lower in comparison to the EcPGA-producing strain, and a smaller proportion of CaLB and TlXynA (<10%) accumulated in the cells. These data provide an insight into the development of heterogeneity in a recombinant P. pastoris population during a biotechnological process. A deeper understanding of the relationship between protein production/secretion and the regulation of the UPR might be utilized in bioprocess control and optimization with respect to secretion and population heterogeneity.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia.,Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Iwo Zamora
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Martina Borčinová
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland.,Department of Genetics and Microbiology, Charles University, Prague, Czechia
| | - Patrick Meier
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Dominik Mächler
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Karel Melzoch
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| |
Collapse
|
4
|
Aw R, McKay PF, Shattock RJ, Polizzi KM. Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris. AMB Express 2017; 7:70. [PMID: 28342171 PMCID: PMC5366992 DOI: 10.1186/s13568-017-0372-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/20/2017] [Indexed: 12/25/2022] Open
Abstract
The use of the recombinant expression platform Pichia pastoris to produce pharmaceutically important proteins has been investigated over the past 30 years. Compared to mammalian cultures, expression in P. pastoris is cheaper and faster, potentially leading to decreased costs and process development times. Product yields depend on a number of factors including the secretion signal chosen for expression, which can influence the host cell response to recombinant protein production. VRC01, a broadly neutralising anti-HIV antibody, was expressed in P. pastoris, using the methanol inducible AOX1 promoter for both the heavy and light chains. Titre reached up to 3.05 μg mL−1 in small scale expression. VRC01 was expressed using both the α-mating factor signal peptide from Saccharomyces cerevisiae and the murine IgG1 signal peptide. Surprisingly, using the murine IgG1 signal peptide resulted in higher yield of antibody capable of binding gp140 antigen. Furthermore, we evaluated levels of secretory stress compared to the untransformed wild-type strain and show a reduced level of secretory stress in the murine IgG1 signal peptide strains versus those containing the α-MF signal peptide. As bottlenecks in the secretory pathway are often the limiting factor in protein secretion, reduced levels of secretory stress and the higher yield of functional antibody suggest the murine IgG1 signal peptide may lead to better protein folding and secretion. This work indicates the possibilities for utilising the murine IgG1 signal peptide for a range of antibodies, resulting in high yields and reduced cellular stress.
Collapse
|
5
|
Yu XW, Sun WH, Wang YZ, Xu Y. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci Rep 2017; 7:16249. [PMID: 29176680 PMCID: PMC5701153 DOI: 10.1038/s41598-017-16577-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (Pichia pastoris) has been developed into a highly successful system for heterologous protein expression in both academia and industry. However, overexpression of recombinant protein often leads to severe burden on the physiology of K. phaffii and triggers cellular stress. To elucidate the global effect of protein overexpression, we set out to analyze the differential transcriptome of recombinant strains with 12 copies and a single copy of phospholipase A2 gene (PLA2) from Streptomyces violaceoruber. Through GO, KEGG and heat map analysis of significantly differentially expressed genes, the results indicated that the 12-copy strain suffered heavy cellular stress. The genes involved in protein processing and stress response were significantly upregulated due to the burden of protein folding and secretion, while the genes in ribosome and DNA replication were significantly downregulated possibly contributing to the reduced cell growth rate under protein overexpression stress. Three most upregulated heat shock response genes (CPR6, FES1, and STI1) were co-overexpressed in K. phaffii and proved their positive effect on the secretion of reporter enzymes (PLA2 and prolyl endopeptidase) by increasing the production up to 1.41-fold, providing novel helper factors for rational engineering of K. phaffii.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| | - Wei-Hong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Ying-Zheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| |
Collapse
|
6
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
7
|
Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 2017; 17:4093073. [DOI: 10.1093/femsyr/fox068] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
|
8
|
Jayachandran C, Palanisamy Athiyaman B, Sankaranarayanan M. Cofactor engineering improved CALB production in Pichia pastoris through heterologous expression of NADH oxidase and adenylate kinase. PLoS One 2017; 12:e0181370. [PMID: 28715469 PMCID: PMC5513558 DOI: 10.1371/journal.pone.0181370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
The cofactor engineering strategy can relieve the metabolic stress induced by expression of recombinant protein in cellular metabolism related to cofactor and energy reactions. To study the effect of cofactor regeneration on recombinant protein expression, NADH oxidase (noxE) was engineered in P. pastoris expressing lipase B (GSCALB). Expression of noxE in P. pastoris (GSCALBNOX) increased NAD+ levels by 85% with a concomitant reduction in NADH/NAD+ ratio of 67% compared to GSCALB. The change in the redox level positively influenced the methanol uptake rate and made 34% augment in CALB activity. The decline in NADH level (44%) by noxE expression had lowered the adenylate energy charge (AEC) and ATP level in GSCALBNOX. In order to regenerate ATP in GSCALBNOX, adenylate kinase (ADK1) gene from S. cerevisiae S288c was co-expressed. Expression of ADK1 showed a remarkable increase in AEC and co-expression of both the genes synergistically improved CALB activity. This study shows the importance of maintenance of cellular redox homeostasis and adenylate energy charge during recombinant CALB expression in P. pastoris.
Collapse
|
9
|
Insights into the prevalence and underlying causes of clonal variation through transcriptomic analysis in Pichia pastoris. Appl Microbiol Biotechnol 2017; 101:5045-5058. [PMID: 28534062 PMCID: PMC5486821 DOI: 10.1007/s00253-017-8317-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/04/2017] [Accepted: 04/29/2017] [Indexed: 02/02/2023]
Abstract
Clonal variation, wherein a range of specific productivities of secreted proteins are observed from supposedly identical transformants, is an accepted aspect of working with Pichia pastoris. It means that a significant number of transformants need to be tested to obtain a representative sample, and in commercial protein production, companies regularly screen thousands of transformants to select for the highest secretor. Here, we have undertaken a detailed investigation of this phenomenon by characterising clones transformed with the human serum albumin gene. The titers of nine clones, each containing a single copy of the human serum albumin gene (identified by qPCR), were measured and the clones grouped into three categories, namely, high-, mid- and low-level secretors. Transcriptomic analysis, using microarrays, showed that no regulatory patterns consistently correlated with titer, suggesting that the causes of clonal variation are varied. However, a number of physiological changes appeared to underlie the differences in titer, suggesting there is more than one biochemical signature for a high-secreting strain. An anomalous low-secreting strain displaying high transcript levels that appeared to be nutritionally starved further emphasises the complicated nature of clonal variation.
Collapse
|
10
|
Cámara E, Landes N, Albiol J, Gasser B, Mattanovich D, Ferrer P. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep 2017; 7:44302. [PMID: 28295011 PMCID: PMC5353721 DOI: 10.1038/srep44302] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to reduce cell growth, lipase production and substrate consumption in high-copy strains. To better assess that physiological response, transcriptomics analysis was performed of a subset of strains with 1 to 15 ROL copies. The macroscopic physiological parameters confirm that growth yield and carbon uptake rate are gene dosage dependent, and were supported by the transcriptomic data, showing the impact of increased dosage of AOX1 promoter-regulated expression cassettes on P. pastoris physiology under steady methanolic growth conditions. Remarkably, increased number of cassettes led to transcription attenuation of the methanol metabolism and peroxisome biogenesis in P. pastoris, concomitant with reduced secretion levels of the heterologous product. Moreover, our data also point to a block in ROL mRNA translation in the higher ROL-copies constructs, while the low productivities of multi-copy strains under steady growth conditions do not appear to be directly related to UPR and ERAD induction.
Collapse
Affiliation(s)
- Elena Cámara
- Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain
| | - Nils Landes
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190 Vienna, Austria
| | - Joan Albiol
- Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain
| | - Brigitte Gasser
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology, A-1190 Vienna, Austria
| | - Pau Ferrer
- Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) 08193, Catalonia, Spain
| |
Collapse
|
11
|
Rapid screening of cellular stress responses in recombinant Pichia pastoris strains using metabolite profiling. J Ind Microbiol Biotechnol 2017; 44:413-417. [PMID: 28160205 PMCID: PMC5329079 DOI: 10.1007/s10295-017-1904-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/07/2017] [Indexed: 10/26/2022]
Abstract
Heterologous protein production in the yeast Pichia pastoris can be limited by biological responses to high expression levels; the unfolded protein response (UPR) is a key determinant of the success of protein production in this organism. Here, we used untargeted NMR metabolic profiling (metabolomics) of a number of different recombinant strains, carried out in a miniaturized format suitable for screening-level experiments. We identified a number of metabolites (from both cell extracts and supernatants) which correlated well with UPR-relevant gene transcripts, and so could be potential biomarkers for future high-throughput screening of large numbers of P. pastoris clones.
Collapse
|