1
|
Farag SI, Francis MK, Gurung JM, Wai SN, Stenlund H, Francis MS, Nadeem A. Macrophage innate immune responses delineate between defective translocon assemblies produced by Yersinia pseudotuberculosis YopD mutants. Virulence 2023; 14:2249790. [PMID: 37621095 PMCID: PMC10461508 DOI: 10.1080/21505594.2023.2249790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Translocon pores formed in the eukaryotic cell membrane by a type III secretion system facilitate the translocation of immune-modulatory effector proteins into the host cell interior. The YopB and YopD proteins produced and secreted by pathogenic Yersinia spp. harboring a virulence plasmid-encoded type III secretion system perform this pore-forming translocator function. We had previously characterized in vitro T3SS function and in vivo pathogenicity of a number of strains encoding sited-directed point mutations in yopD. This resulted in the classification of mutants into three different classes based upon the severity of the phenotypic defects. To investigate the molecular and functional basis for these defects, we explored the effectiveness of RAW 264.7 cell line to respond to infection by representative YopD mutants of all three classes. Signature cytokine profiles could separate the different YopD mutants into distinct categories. The activation and suppression of certain cytokines that function as central innate immune response modulators correlated well with the ability of mutant bacteria to alter anti-phagocytosis and programmed cell death pathways. These analyses demonstrated that sub-optimal translocon pores impact the extent and magnitude of host cell responsiveness, and this limits the capacity of pathogenic Yersinia spp. to fortify against attack by both early and late arms of the host innate immune response.
Collapse
Affiliation(s)
- Salah I. Farag
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jyoti M. Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Hans Stenlund
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
- Swedish Metabolomics Centre (SMC), Umeå, Sweden
| | - Matthew S. Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Duncan MC, Herrera NG, Johnson KS, Engel JN, Auerbuch V. Bacterial internalization is required to trigger NIK-dependent NF-κB activation in response to the bacterial type three secretion system. PLoS One 2017; 12:e0171406. [PMID: 28166267 PMCID: PMC5293232 DOI: 10.1371/journal.pone.0171406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/20/2017] [Indexed: 01/11/2023] Open
Abstract
Infection of human cells with Yersinia pseudotuberculosis expressing a functional type III secretion system (T3SS) leads to activation of host NF-κB. We show that the Yersinia T3SS activates distinct NF-κB pathways dependent upon bacterial subcellular localization. We found that wildtype Yersinia able to remain extracellular triggered NF-κB activation independently of the non-canonical NF-κB kinase NIK in HEK293T cells. In contrast, Yersinia lacking the actin-targeting effectors YopEHO, which become internalized into host cells, induce a NIK-dependent response and nuclear entry of the non-canonical NF-κB subunit p52. Blocking actin polymerization and uptake of effector mutant bacteria using cytochalasin D shifted the host NF-κB response from NIK-independent to primarily NIK-dependent. We observed similar results using Pseudomonas aeruginosa, which expresses a related T3SS and the actin-targeting effector ExoT. As the NF-κB response of HEK293T cells to effectorless Yersinia has been used both as a screening tool for chemical inhibitors of the T3SS and for bacterial forward genetic screens, a better understanding of this response is important for tool optimization and interpretation.
Collapse
Affiliation(s)
- Miles C. Duncan
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Natalia G. Herrera
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kevin S. Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joanne N. Engel
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
3
|
Chung LK, Bliska JB. Yersinia versus host immunity: how a pathogen evades or triggers a protective response. Curr Opin Microbiol 2015; 29:56-62. [PMID: 26638030 DOI: 10.1016/j.mib.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 02/09/2023]
Abstract
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe.
Collapse
Affiliation(s)
- Lawton K Chung
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, United States
| | - James B Bliska
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, United States.
| |
Collapse
|
4
|
Correction: Random Mutagenesis Identifies a C-Terminal Region of YopD Important for Yersinia Type III Secretion Function. PLoS One 2015; 10:e0130112. [PMID: 26068664 PMCID: PMC4466347 DOI: 10.1371/journal.pone.0130112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|