1
|
Ortiz‐Acevedo E, Gomez JP, Espeland M, Toussaint EFA, Willmott KR. The roles of wing color pattern and geography in the evolution of Neotropical Preponini butterflies. Ecol Evol 2020; 10:12801-12816. [PMID: 33304495 PMCID: PMC7713932 DOI: 10.1002/ece3.6816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species-level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe's evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.
Collapse
Affiliation(s)
- Elena Ortiz‐Acevedo
- Departamento de Química y BiologíaUniversidad del NorteBarranquillaColombia
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Juan Pablo Gomez
- Departamento de Química y BiologíaUniversidad del NorteBarranquillaColombia
| | | | | | - Keith R. Willmott
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
2
|
Kodandaramaiah U, Murali G. What affects power to estimate speciation rate shifts? PeerJ 2018; 6:e5495. [PMID: 30155369 PMCID: PMC6108317 DOI: 10.7717/peerj.5495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/30/2018] [Indexed: 02/04/2023] Open
Abstract
The development of methods to estimate rates of speciation and extinction from time-calibrated phylogenies has revolutionized evolutionary biology by allowing researchers to correlate diversification rate shifts with causal factors. A growing number of researchers are interested in testing whether the evolution of a trait or a trait variant has influenced speciation rate, and three modelling methods-BiSSE, MEDUSA and BAMM-have been widely used in such studies. We simulated phylogenies with a single speciation rate shift each, and evaluated the power of the three methods to detect these shifts. We varied the degree of increase in speciation rate (speciation rate asymmetry), the number of tips, the tip-ratio bias (ratio of number of tips with each character state) and the relative age in relation to overall tree age when the rate shift occurred. All methods had good power to detect rate shifts when the rate asymmetry was strong and the sizes of the two lineages with the distinct speciation rates were large. Even when lineage size was small, power was good when rate asymmetry was high. In our simulated scenarios, small lineage sizes appear to affect BAMM most strongly. Tip-ratio influenced the accuracy of speciation rate estimation but did not have a strong effect on power to detect rate shifts. Based on our results, we provide suggestions to users of these methods.
Collapse
Affiliation(s)
- Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Gopal Murali
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| |
Collapse
|
3
|
Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. Impact of whole-genome duplication events on diversification rates in angiosperms. AMERICAN JOURNAL OF BOTANY 2018; 105:348-363. [PMID: 29719043 DOI: 10.1002/ajb2.1060] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/12/2017] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Polyploidy or whole-genome duplication (WGD) pervades the evolutionary history of angiosperms. Despite extensive progress in our understanding of WGD, the role of these events in promoting diversification is still not well understood. We seek to clarify the possible association between WGD and diversification rates in flowering plants. METHODS Using a previously published phylogeny spanning all land plants (31,749 tips) and WGD events inferred from analyses of the 1000 Plants (1KP) transcriptome data, we analyzed the association of WGDs and diversification rates following numerous WGD events across the angiosperms. We used a stepwise AIC approach (MEDUSA), a Bayesian mixture model approach (BAMM), and state-dependent diversification analyses (MuSSE) to investigate patterns of diversification. Sister-clade comparisons were used to investigate species richness after WGDs. KEY RESULTS Based on the density of 1KP taxon sampling, 106 WGDs were unambiguously placed on the angiosperm phylogeny. We identified 334-530 shifts in diversification rates. We found that 61 WGD events were tightly linked to changes in diversification rates, and state-dependent diversification analyses indicated higher speciation rates for subsequent rounds of WGD. Additionally, 70 of 99 WGD events showed an increase in species richness compared to the sister clade. CONCLUSIONS Forty-six of the 106 WGDs analyzed appear to be closely associated with upshifts in the rate of diversification in angiosperms. Shifts in diversification do not appear more likely than random within a four-node lag phase following a WGD; however, younger WGD events are more likely to be followed by an upshift in diversification than older WGD events.
Collapse
Affiliation(s)
- Jacob B Landis
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, 92521, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Zheng Li
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Hannah E Marx
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721, USA
| | - David C Tank
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, 83844, USA
- Stillinger Herbarium, University of Idaho, Moscow, Idaho, 83844, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
4
|
Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc Natl Acad Sci U S A 2017; 114:10707-10712. [PMID: 28923944 DOI: 10.1073/pnas.1709058114] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The optix gene has been implicated in butterfly wing pattern adaptation by genetic association, mapping, and expression studies. The actual developmental function of this gene has remained unclear, however. Here we used CRISPR/Cas9 genome editing to show that optix plays a fundamental role in nymphalid butterfly wing pattern development, where it is required for determination of all chromatic coloration. optix knockouts in four species show complete replacement of color pigments with melanins, with corresponding changes in pigment-related gene expression, resulting in black and gray butterflies. We also show that optix simultaneously acts as a switch gene for blue structural iridescence in some butterflies, demonstrating simple regulatory coordination of structural and pigmentary coloration. Remarkably, these optix knockouts phenocopy the recurring "black and blue" wing pattern archetype that has arisen on many independent occasions in butterflies. Here we demonstrate a simple genetic basis for structural coloration, and show that optix plays a deeply conserved role in butterfly wing pattern development.
Collapse
|
5
|
Matos-Maraví P. Investigating the timing of origin and evolutionary processes shaping regional species diversity: Insights from simulated data and neotropical butterfly diversification rates. Evolution 2016; 70:1638-50. [DOI: 10.1111/evo.12960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Pável Matos-Maraví
- School of Biological Sciences, University of South Bohemia and Institute of Entomology; Biology Centre CAS; Ceske Budejovice Czech Republic
| |
Collapse
|
6
|
Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AVL, Brower AVZ. Incompatible Ages for Clearwing Butterflies Based on Alternative Secondary Calibrations. Syst Biol 2015; 64:752-67. [DOI: 10.1093/sysbio/syv032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/20/2015] [Indexed: 11/14/2022] Open
|