1
|
Arrington CE, Westra J, Tintle NL, Shearer GC. The Effect of Fatty Acid Desaturase on Cardiovascular Lipid Biomarkers Depends on Circulating ω-3 and ω-6 Polyunsaturated Fatty Acids in the UK Biobank. Nutrients 2025; 17:1089. [PMID: 40292527 PMCID: PMC11945029 DOI: 10.3390/nu17061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVES The objective of this study is to outline a framework for how fatty acids may be acting as mediators/suppressors and/or moderators of an individual's genetic predisposition for cardiovascular lipid biomarkers. METHODS All UK Biobank participants with demographic and lifestyle variables, circulating cardiovascular lipids, and NMR-measured fatty acid data collected at the baseline visit (N = 229,859) were included in analyses. We fit four separate linear regression models, one for each of the following common measures of cardiovascular lipids: total cholesterol, HDL-c, LDL-c, and total triglycerides. Each model predicted cardiovascular lipids by an individual's FADS (a well-known fatty acid desaturase gene complex) haplotype, with the addition of individual ω-3 (DHA, non-DHA, and total), ω-6 (LA, non-LA, and total), or SFA factors as additive (mediation/suppression) or using an interaction term (with FADS) (moderation). All models were adjusted for a wide range of demographic and medical history variables and evaluated against a Bonferroni-adjusted significance level (p < 8.9 × 10-4). RESULTS Across 56 models (four lipids × seven FAs × two conceptual models (mediation/suppression and moderation)), we found evidence of 19 moderation, 12 mediation, and 16 suppression effects of the FADS-lipid relationship. For example, adjusting for circulating DHA levels as a mediator, the association of the genotype with HDL-c substantially lessened for both minor genotypes reflecting >122% mediation of the association of FADS by DHA. Additionally, we found evidence that LDL-c is moderated, to some extent, by all fatty acid measures. CONCLUSIONS This analysis demonstrates that an individual's fatty acid profile can act as a mediator/suppressor or moderator of the association of the FADS genotype and various cardiovascular biomarkers. Future work is necessary to expand this cross-sectional examination to determine directionality and temporality of the mediation and moderation evidence presented. This research has been conducted using the UK Biobank Resource under Application Number 85092.
Collapse
Affiliation(s)
- Carmen E. Arrington
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Lab, University Park, PA 16802, USA;
| | - Jason Westra
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (J.W.); (N.L.T.)
| | - Nathan L. Tintle
- The Fatty Acid Research Institute, Sioux Falls, SD 57106, USA; (J.W.); (N.L.T.)
| | - Gregory C. Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Lab, University Park, PA 16802, USA;
| |
Collapse
|
2
|
Liu Q, Liu Z, Wu D, Wang S. Relationship between Polyunsaturated Fatty Acid Metabolism and Atherosclerosis. Rev Cardiovasc Med 2024; 25:142. [PMID: 39076540 PMCID: PMC11263998 DOI: 10.31083/j.rcm2504142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 07/31/2024] Open
Abstract
Multiple factors cause atherosclerosis, meaning its pathogenesis is complex, and has not been fully elucidated. Polyunsaturated fatty acids are a member of the fatty acid family, which are critical nutrients for mammalian growth and development. The types of polyunsaturated fatty acids ingested, their serum levels, and fatty acid desaturase can influence the atherosclerotic disease progression. The fatty acid desaturase gene cluster can regulate fatty acid desaturase activity and further affect atherosclerosis. This study reviewed the research progress on the effects of polyunsaturated fatty acids on atherosclerosis regulated by fatty acid desaturase and the relationship between genetic variants of the fatty acid desaturase gene cluster and atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Qiulei Liu
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Zhaoxuan Liu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Ding Wu
- Department of Vascular Surgery, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, Shandong, China
| | - Sheng Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
3
|
Zhuang P, Liu X, Li Y, Wu Y, Li H, Wan X, Zhang L, Xu C, Jiao J, Zhang Y. Circulating fatty acids, genetic risk, and incident coronary artery disease: A prospective, longitudinal cohort study. SCIENCE ADVANCES 2023; 9:eadf9037. [PMID: 37738352 PMCID: PMC10881029 DOI: 10.1126/sciadv.adf9037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
The role of fatty acids (FAs) in primary prevention of coronary artery disease (CAD) is highly debated, and the modification effect by genetic risk profiles remains unclear. Here, we report the prospective associations of circulating FAs and genetic predisposition with CAD development in 101,367 U.K. Biobank participants. A total of 3719 CAD cases occurred during a mean follow-up of 11.5 years. Plasma monounsaturated FAs (MUFAs) were positively associated with risk of CAD, whereas the risk was significantly lower with higher n-3 polyunsaturated FAs (PUFAs) and more reductions in risk were detected among TT carriers of rs174547. Furthermore, increased plasma saturated FAs (SFAs) and linoleic acid were related to a significant increase in CAD risk among participants with high genetic risk (genetic risk score > 90%). These findings suggest that individuals with high genetic risk need to reduce plasma SFAs levels for CAD prevention. Supplementation of n-3 PUFAs for CAD prevention may consider individuals' genetic makeup.
Collapse
Affiliation(s)
- Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yin Li
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqi Wu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haoyu Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lange Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Roa-Díaz ZM, Teuscher J, Gamba M, Bundo M, Grisotto G, Wehrli F, Gamboa E, Rojas LZ, Gómez-Ochoa SA, Verhoog S, Vargas MF, Minder B, Franco OH, Dehghan A, Pazoki R, Marques-Vidal P, Muka T. Gene-diet interactions and cardiovascular diseases: a systematic review of observational and clinical trials. BMC Cardiovasc Disord 2022; 22:377. [PMID: 35987633 PMCID: PMC9392936 DOI: 10.1186/s12872-022-02808-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Both genetic background and diet are important determinants of cardiovascular diseases (CVD). Understanding gene-diet interactions could help improve CVD prevention and prognosis. We aimed to summarise the evidence on gene-diet interactions and CVD outcomes systematically. METHODS We searched MEDLINE® via Ovid, Embase, PubMed®, and The Cochrane Library for relevant studies published until June 6th 2022. We considered for inclusion cross-sectional, case-control, prospective cohort, nested case-control, and case-cohort studies as well as randomised controlled trials that evaluated the interaction between genetic variants and/or genetic risk scores and food or diet intake on the risk of related outcomes, including myocardial infarction, coronary heart disease (CHD), stroke and CVD as a composite outcome. The PROSPERO protocol registration code is CRD42019147031. RESULTS AND DISCUSSION We included 59 articles based on data from 29 studies; six articles involved multiple studies, and seven did not report details of their source population. The median sample size of the articles was 2562 participants. Of the 59 articles, 21 (35.6%) were qualified as high quality, while the rest were intermediate or poor. Eleven (18.6%) articles adjusted for multiple comparisons, four (7.0%) attempted to replicate the findings, 18 (30.5%) were based on Han-Chinese ethnicity, and 29 (49.2%) did not present Minor Allele Frequency. Fifty different dietary exposures and 52 different genetic factors were investigated, with alcohol intake and ADH1C variants being the most examined. Of 266 investigated diet-gene interaction tests, 50 (18.8%) were statistically significant, including CETP-TaqIB and ADH1C variants, which interacted with alcohol intake on CHD risk. However, interactions effects were significant only in some articles and did not agree on the direction of effects. Moreover, most of the studies that reported significant interactions lacked replication. Overall, the evidence on gene-diet interactions on CVD is limited, and lack correction for multiple testing, replication and sample size consideration.
Collapse
Affiliation(s)
- Zayne M Roa-Díaz
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland. .,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Julian Teuscher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Marvin Bundo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Giorgia Grisotto
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Faina Wehrli
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Edna Gamboa
- School of Nutrition and Dietetics, Health Faculty, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Lyda Z Rojas
- Nursing Research and Knowledge Development Group GIDCEN, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Sergio A Gómez-Ochoa
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Sanne Verhoog
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland.,Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Raha Pazoki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,CIRTM Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| |
Collapse
|
5
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Associations Of Delta Fatty Acid Desaturase Gene Polymorphisms With Lipid Metabolism Disorders. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Overweight, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiovascular diseases, and non-alcoholic fatty liver disease are common chronic ailments associated with lipid metabolism disorders. One of the mechanisms of these disorders is related to the deficiency and/or change in the balance of essential fatty acids (FAs). At the same time, the provision of ω3 and ω6 polyunsaturated fatty acids (PUFAs) depends, besides sufficient dietary intake, on efficiency of their endogenous biosynthesis by desaturation and elongation processes regulated by FA elongases and FA desaturases. Desaturases are encoded by PUFA desaturase genes (FADSs): FADS1 and FADS2. Alteration of FA desaturase activity and single nucleotide polymorphisms (SNPs) in the FADS1 and FADS2 gene cluster are associated with lipid metabolism dysfunction and may affect the pathogenesis of lipid-related diseases. People of different ages, from different ethnic backgrounds and countries may exhibit varying degrees of response to dietary supplements of ω3 and ω6 PUFAs. The study of the relationship between lipid metabolism disorders and genetic factors controlling FA metabolism is an important research area since the health effects of alimentary ω3 and ω6 PUFAs can depend on genetic variants of the FADS genes. This review summarizes the literature data on the association of FADS gene polymorphisms with lipid metabolism disorders and their role in the development of chronic non-communicable pathologies associated with changes in lipid metabolism.
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | | | - Yulia K. Denisenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Marina V. Antonyuk
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Research Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
6
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Murff HJ, Shrubsole MJ, Cai Q, Su T, Dooley JH, Cai SS, Zheng W, Dai Q. N-3 Long Chain Fatty Acids Supplementation, Fatty Acids Desaturase Activity, and Colorectal Cancer Risk: A Randomized Controlled Trial. Nutr Cancer 2021; 74:1388-1398. [PMID: 34291724 PMCID: PMC8782932 DOI: 10.1080/01635581.2021.1955286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION n-3 long-chain polyunsaturated fatty acids (LCPUFA) have anti-inflammatory effects and may reduce colorectal cancer risk. The purpose of this study was to evaluate the effects of n-3 LCPUFA supplementation on markers of rectal cell proliferation and apoptosis and examine how genetic variation in desaturase enzymes might modify this effect. METHODS We conducted a randomized, double-blind, control six-month trial of 2.5 grams of n-3 LCPUFA per day compared to olive oil. Study participants had a history of colorectal adenomas. Randomization was stratified based on the gene variant rs174535 in the fatty acid desaturase 1 enzyme (FADS1). Our primary outcome was change in markers of rectal epithelial proliferation and apoptosis. RESULTS A total of 141 subjects were randomized. We found no difference in apoptosis markers between participants randomized to n-3 LCPUFA compared to olive oil (P = 0.41). N-3 LCPUFA supplementation increased cell proliferation in the lower colonic crypt compared to olive oil (P = 0.03) however baseline indexes of proliferation were different between the groups at randomization. We found no evidence that genotype modified the effect. CONCLUSIONS Our study did not show evidence of a proliferative or pro-apoptotic effect on n-3 LCPUFA supplementation on rectal mucosa regardless of the FADS genotype.ClinicalTrials.gov Identifier: NCT01661764Supplemental data for this article is available online at https://dx.doi.org/10.1080/01635581.2021.1955286.
Collapse
Affiliation(s)
- Harvey J. Murff
- Division of General Internal Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Martha J. Shrubsole
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Timothy Su
- Division of Epidemiology, Vanderbilt University Medical Center
| | | | - Sunny S. Cai
- Tulane University School of Medicine, New Orleans, LA
| | - Wei Zheng
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University Medical Center
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center
| |
Collapse
|
8
|
Vanderhout SM, Rastegar Panah M, Garcia-Bailo B, Grace-Farfaglia P, Samsel K, Dockray J, Jarvi K, El-Sohemy A. Nutrition, genetic variation and male fertility. Transl Androl Urol 2021; 10:1410-1431. [PMID: 33850777 PMCID: PMC8039611 DOI: 10.21037/tau-20-592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infertility affects nearly 50 million couples worldwide, with 40-50% of cases having a male factor component. It is well established that nutritional status impacts reproductive development, health and function, although the exact mechanisms have not been fully elucidated. Genetic variation that affects nutrient metabolism may impact fertility through nutrigenetic mechanisms. This review summarizes current knowledge on the role of several dietary components (vitamins A, B12, C, D, E, folate, betaine, choline, calcium, iron, caffeine, fiber, sugar, dietary fat, and gluten) in male reproductive health. Evidence of gene-nutrient interactions and their potential effect on fertility is also examined. Understanding the relationship between genetic variation, nutrition and male fertility is key to developing personalized, DNA-based dietary recommendations to enhance the fertility of men who have difficulty conceiving.
Collapse
Affiliation(s)
| | | | | | | | - Konrad Samsel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Judith Dockray
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Khamlaoui W, Mehri S, Hammami S, Hammouda S, Chraeif I, Elosua R, Hammami M. Association Between Genetic Variants in FADS1-FADS2 and ELOVL2 and Obesity, Lipid Traits, and Fatty Acids in Tunisian Population. Clin Appl Thromb Hemost 2021; 26:1076029620915286. [PMID: 32584610 PMCID: PMC7427023 DOI: 10.1177/1076029620915286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine whether genetic variants in FADS1/FADS2 and ELOVL2 are associated with overweight–obesity and body mass index (BMI) and to assess the association between these genetic variants and lipid profile and fatty acid levels. A total of 259 overweight–obese patients were compared to 369 healthy controls. FADS1, FADS2, and ELOVL2 genes were associated with BMI and overweight–obesity (P ≤ .001). In an additive model, the C allele in each of these variants was associated with a lower BMI: −1.18, −0.90, and −1.23 units, respectively. Higher amounts of total cholesterol, low-density lipoprotein cholesterol, total saturated fatty acids (lauric [12:0], myristic [C14:0], palmitic [C16:0], stearic [C18:0], arachidic [20:0], lignoceric [24:0]), monounsaturated fatty acids (myristoleic [C14:1], erucic [C22:1 n-9]), and polyunsaturated fatty acids (α-linolenic [ALA, 18:3 n-3], docosahexaenoic [DHA, C22:6 n-3], eicosapentaenoic acid [EPA, C20:5n-3], arachidonic acid [AA, 20:4n-6], and conjugated linolenic acids [CLA1 and CLA2]) were shown in patients. A significant increase in D6D activities presented by 20:4n-6/18:2n-6 and 18:3n-6/18:2n-6, Δ9 desaturase (D9D) activity, estimated by the ratio 18:1n-9/18:0 and elongase activities (AE), and estimated by the ratio of docosatetraenoic/AA and DPA/EPA in patients. The C minor allele of FADS1 had significantly lower DHA. A significant decrease in stearic acid, EPA, and AE activity (docosatetraenoic/AA) was revealed in patients with the minor allele carriers of FADS2. The C minor allele of ELOVL2 had significantly lower ALA, EPA, DPA, and D6D activity (C20:4 n-6/C18:2n-6). These data suggest that variations in FADS1, FADS2, and ELOVL2 affect the risk of overweight–obesity and the level of circulating fatty acids and could point to a key molecular pathway of metabolic syndrome and its related comorbidities.
Collapse
Affiliation(s)
- Wided Khamlaoui
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health," Faculty of Medicine, University of Monastir, Tunisia
| | - Sounira Mehri
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health," Faculty of Medicine, University of Monastir, Tunisia
| | - Sonia Hammami
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health," Faculty of Medicine, University of Monastir, Tunisia.,Department of Internal Medicine, CHU F. Bourguiba, Monastir, Tunisia
| | - Souha Hammouda
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health," Faculty of Medicine, University of Monastir, Tunisia
| | - Imed Chraeif
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health," Faculty of Medicine, University of Monastir, Tunisia
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics, Institute Hospital del Mar d'Investigacions Mediques, Barcelona, Spain
| | - Mohamed Hammami
- Biochemistry Laboratory, LR12ES05 "Nutrition-Functional Foods and Vascular Health," Faculty of Medicine, University of Monastir, Tunisia
| |
Collapse
|
10
|
Arai K, Koba S, Yokota Y, Tsunoda F, Tsujita H, Kondo S, Tsukamoto S, Shoji M, Shinke T. Relationships of Fatty Acids, Delta-5 Desaturase Activity, and Lipid Profiles in Men with Acute Coronary Syndrome. J Atheroscler Thromb 2020; 27:1216-1229. [PMID: 32595194 PMCID: PMC7803831 DOI: 10.5551/jat.55780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS We evaluated the relationship between the ratios of eicosapentaenoic acid and arachidonic acid (EPA/AA), docosahexaenoic acid (DHA)/AA, and delta-5 desaturase activity (D5D) and atherogenic lipid profiles (ALP) and coronary atherosclerosis. METHODS Polyunsaturated fatty acids (PUFA) and ALP were assessed in 436 men with the first episode of acute coronary syndrome (ACS) not take any lipid-lowering drugs. D5D was estimated as the ratio of AA to dihomogamma-linolenic acid (DGLA). These biomarkers were compared between the lower and higher levels of EPA/AA (0.41) or DHA/AA (0.93) according to the levels in Japanese general population. The thrombolysis in myocardial infarction flow (TIMI) grade of the culprit coronary artery was visually estimated during the initial angiography. RESULTS Approximately 70% of patients had low EPA/AA or DHA/AA. Serum levels of LDL-cholesterol, apolipoprotein B (apoB), and remnant lipoprotein cholesterol (RL-C) were significantly higher in the low EPA/AA or DHA/AA groups, while those of triglycerides and malondialdehyde-modified LDL (MDA-LDL) were significantly higher in the low EPA/AA group alone. The levels of EPA, EPA/AA, DHA/AA, and HbA1c increased and those of DGLA and apoA1 decreased with increasing number of stenotic vessels. Patients with three stenotic coronary vessels or TIMI grade ≥ 1 had significantly higher EPA levels compared with the others. The levels of LDL-cholesterol, non-HDL-cholesterol, triglycerides, small dense LDL-cholesterol, RL-C, MDA-LDL, apoB, and apoE decreased progressively and those of EPA, DHA, EPA/AA and HDL-cholesterol increased as D5D increased. CONCLUSIONS The EPA/AA is a superior risk marker than DHA/AA in term of correlation with ALP in ACS patients.
Collapse
Affiliation(s)
- Ken Arai
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Shinji Koba
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Yuya Yokota
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Fumiyoshi Tsunoda
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Hiroaki Tsujita
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Seita Kondo
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Shigeto Tsukamoto
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Makoto Shoji
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| | - Toshiro Shinke
- Department of Medicine, Division of Cardiology, Showa University School of Medicine
| |
Collapse
|
11
|
Sun L, Zong G, Li H, Lin X. Fatty acids and cardiometabolic health: a review of studies in Chinese populations. Eur J Clin Nutr 2020; 75:253-266. [PMID: 32801302 DOI: 10.1038/s41430-020-00709-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022]
Abstract
Rapid nutrition transition from plant-based traditional diet to westernized diet has led to dramatically heightening burdens of cardiometabolic diseases in China in past decades. Recently, national surveys reported that poor dietary quality including low marine n-3 fatty acids and high intakes of red meat and processed meat was associated with considerably elevated cardiometabolic deaths. Previous studies mainly from Western population-based cohorts have indicated that not only fat quantity but also quality linked with different cardiometabolic outcomes. Compared with Western peoples, Asian peoples, including Chinese, are known to have different dietary patterns and lifestyle, as well as genetic heterogeneities, which may modify fatty acid metabolism and disease susceptibility in certain degree. To date, there were limited prospective studies investigating the relationships between fatty acids and cardiometabolic disease outcomes in Chinese, and most existing studies were cross-sectional nature and within one or two region(s). Notably, shifting dietary patterns could change not only amount, types, and ratio of fatty acids accounting for overall energy intake, but also their food sources and ratio to other macronutrients. Moreover, large geographic and urban-rural variations in prevalence of cardiometabolic diseases among Chinese may also reflect the effects of socioeconomic development and local diets on health status. Therefore, current review will summarize available literatures with more focus on the Chinese-based studies which may extend current knowledge about the roles of fatty acids in pathogenesis of cardiometabolic diseases for Asian populations and also provide useful information for trans-ethnic comparisons with other populations.
Collapse
Affiliation(s)
- Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu Lin
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China. .,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
13
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
14
|
Said MA, van de Vegte YJ, Zafar MM, van der Ende MY, Raja GK, Verweij N, van der Harst P. Contributions of Interactions Between Lifestyle and Genetics on Coronary Artery Disease Risk. Curr Cardiol Rep 2019; 21:89. [PMID: 31352625 PMCID: PMC6661028 DOI: 10.1007/s11886-019-1177-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF THE REVIEW To summarize current knowledge on interactions between genetic variants and lifestyle factors (G×L) associated with the development of coronary artery disease (CAD) and prioritize future research. RECENT FINDINGS Genetic risk and combined lifestyle factors and behaviors have a log-additive effect on the risk of developing CAD. First, we describe genetic and lifestyle factors associated with CAD and then focus on G×L interactions. The majority of G×L interaction studies are small-scale candidate gene studies that lack replication and therefore provide spurious results. Only a few studies, of which most use genetic risk scores or genome-wide approaches to test interactions, are robust in number and analysis strategy. These studies provide evidence for the existence of G×L interactions in the development of CAD. Further G×L interactions studies are important as they contribute to our understanding of disease pathophysiology and possibly provide insights for improving interventions or personalized recommendations.
Collapse
Affiliation(s)
- M. Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Yordi J. van de Vegte
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Muhammad Mobeen Zafar
- PMAS University of Arid Agriculture Rawalpindi, University Institute of Biochemistry and Biotechnology, 46000 Murree Road, Rawalpindi, Pakistan
| | - M. Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Ghazala Kaukab Raja
- PMAS University of Arid Agriculture Rawalpindi, University Institute of Biochemistry and Biotechnology, 46000 Murree Road, Rawalpindi, Pakistan
| | - N. Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Genomics plc, Oxford, OX1 1JD UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
15
|
Cao Y, Dong Z, Zhang D, Zhou H. Stillbirth risk on fat-1 transgenic foetus of sheep caused by deregulated DNA methylation of imprinted genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yu Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Zhicheng Dong
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| | - Huanmin Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, People’s Republic of China
| |
Collapse
|
16
|
Liu XF, Wei ZY, Bai CL, Ding XB, Li X, Su GH, Cheng L, Zhang L, Guo H, Li GP. Insights into the function of n-3 PUFAs in fat-1 transgenic cattle. J Lipid Res 2017. [PMID: 28626062 DOI: 10.1194/jlr.m072983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The n-3 PUFAs have many beneficial effects on human health, including roles in immunity, neurodevelopment, and preventing cardiovascular disease. In this study, we established reliable model fat-1 transgenic cattle using transgenic technology and performed a systematic investigation to examine the function of n-3 PUFAs. Our results showed that expression of the fat-1 gene improved several biochemical parameters related to liver function and to plasma glucose and plasma lipid metabolism. Results of global gene and plasma protein expression analysis showed that 310 genes and 13 plasma proteins differed significantly in the blood of fat-1 transgenic cattle compared with WT cattle, reflecting their regulatory roles in the immune and cardiovascular systems. Finally, changes in the gut microflora were also noted in the fat-1 transgenic cattle, suggesting novel roles for n-3 PUFAs in the metabolism of glucose and lipids, as well as anti-stress properties. To the best of our knowledge, this is the first report using multiple parallel analyses to investigate the role of n-3 PUFAs using models such as fat-1 transgenic cattle. This study provides novel insights into the regulatory mechanism of fat-1 in the immune and cardiovascular systems, as well as its anti-stress role.
Collapse
Affiliation(s)
- Xin-Feng Liu
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China; College of Animal Science and Animal Medicine, Tianjin Agriculture University, Tianjin 300384, China
| | - Zhu-Ying Wei
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Chun-Ling Bai
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Xiang-Bin Ding
- College of Animal Science and Animal Medicine, Tianjin Agriculture University, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Animal Medicine, Tianjin Agriculture University, Tianjin 300384, China
| | - Guang-Hua Su
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Lei Cheng
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Li Zhang
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China
| | - Hong Guo
- College of Animal Science and Animal Medicine, Tianjin Agriculture University, Tianjin 300384, China.
| | - Guang-Peng Li
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
17
|
Association of maternal weight with FADS and ELOVL genetic variants and fatty acid levels- The PREOBE follow-up. PLoS One 2017; 12:e0179135. [PMID: 28598979 PMCID: PMC5466308 DOI: 10.1371/journal.pone.0179135] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the genes encoding the fatty acid desaturase (FADS) and elongase (ELOVL) enzymes affect long-chain polyunsaturated fatty acid (LC-PUFA) production. We aimed to determine if these SNPs are associated with body mass index (BMI) or affect fatty acids (FAs) in pregnant women. Participants (n = 180) from the PREOBE cohort were grouped according to pre-pregnancy BMI: normal-weight (BMI = 18.5–24.9, n = 88) and overweight/obese (BMI≥25, n = 92). Plasma samples were analyzed at 24 weeks of gestation to measure FA levels in the phospholipid fraction. Selected SNPs were genotyped (7 in FADS1, 5 in FADS2, 3 in ELOVL2 and 2 in ELOVL5). Minor allele carriers of rs174545, rs174546, rs174548 and rs174553 (FADS1), and rs1535 and rs174583 (FADS2) were nominally associated with an increased risk of having a BMI≥25. Only for the normal-weight group, minor allele carriers of rs174537, rs174545, rs174546, and rs174553 (FADS1) were negatively associated with AA:DGLA index. Normal-weight women who were minor allele carriers of FADS SNPs had lower levels of AA, AA:DGLA and AA:LA indexes, and higher levels of DGLA, compared to major homozygotes. Among minor allele carriers of FADS2 and ELOVL2 SNPs, overweight/obese women showed higher DHA:EPA index than the normal-weight group; however, they did not present higher DHA concentrations than the normal-weight women. In conclusion, minor allele carriers of FADS SNPs have an increased risk of obesity. Maternal weight changes the effect of genotype on FA levels. Only in the normal-weight group, minor allele carriers of FADS SNPs displayed reduced enzymatic activity and FA levels. This suggests that women with a BMI≥25 are less affected by FADS genetic variants in this regard. In the presence of FADS2 and ELOVL2 SNPs, overweight/obese women showed higher n-3 LC-PUFA production indexes than women with normal weight, but this was not enough to obtain a higher n-3 LC-PUFA concentration.
Collapse
|
18
|
Li Y, Li YB, Liu CJ. Changes in Lipid Oxidation and Fatty Acids in Altay Sheep Fat during a Long Time of Low Temperature Storage. J Oleo Sci 2017; 66:321-327. [PMID: 28239055 DOI: 10.5650/jos.ess16139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have shown that the fatty acid composition of Altay sheep tail fat is of reasonable value and is suitable for further development of possible commercial products. Changes in lipids of Altay sheep tail fat during 50 days of 4°C refrigerated storage were investigated. Lipid oxidation and lipolysis occurred during the storage. The pH showed a continually decreased from first day to the end of the storage (p < 0.05). The lipid oxidation was determined by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS). The increase PV was observed in Altay sheep fat up to 24 days of storage and decreased from then to the day 30 (p < 0.05). The increase in TBARS was significantly throughout the refrigerated storage (p < 0.05). The changes of the fatty acids identified by GS-MS demonstrated that saturated fatty acids increased from 43.6% to 56.3% and that polyunsaturated fatty acids and monounsaturated fatty acids decreased form 51.2% to 43.7% and from 2.4% to 2.1%, respectively. The content of the functional fatty acids except (C18:2 n-9), started to decrease after 20 days of storage. Those changes indicated that lipid oxidation occurred in Altay sheep tail fat during a long time of low temperature storage. In addition, the good correlation between PV/TBARS values and changes of individual fatty acids could be used as an indicator to monitor the changes of the unsaturated fatty acid during the development process of Altay sheep tail fat-related commercial products.
Collapse
Affiliation(s)
- Yu Li
- Department of Agricultural Product Storage and Process, Shihezi University
| | | | | |
Collapse
|