1
|
Therapeutic Elastic Tapes Applied in Different Directions Over the Triceps Surae Do Not Modulate Reflex Excitability of the Soleus Muscle. J Sport Rehabil 2020; 30:22-29. [PMID: 32087597 DOI: 10.1123/jsr.2018-0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Elastic taping has been widely used for either to facilitate or to inhibit muscle contraction. The efficacy of elastic taping is allegedly ascribed to physiological mechanisms related to subcutaneous tissue and muscle stimulation as a result of tape tension and direction. However, the underlying mechanisms that support the use of elastic taping are still unclear. OBJECTIVE To investigate changes in electrophysiological responses after 48 hours of tape application in different directions on the calf muscles of healthy individuals. DESIGN Within-subjects design. SETTING Research laboratory. PARTICIPANTS Twenty-seven physically active males (age 18.0 [4.2] y, height 1.65 [0.07] m, body mass 62.3 [10.3] kg) participated. INTERVENTIONS Soleus H-reflex responses were evoked through stimulation of the tibial posterior nerve with 2- to 4-second interval between stimuli (32 sweeps) for each condition (baseline: without tape; facilitation: tape applied from muscle origin to insertion; inhibition: tape applied from muscle insertion to origin). MAIN OUTCOME MEASURES The H-reflex amplitude values were normalized by the maximal direct response (Mmax). Parameters were estimated from a sigmoidal fit of the H-reflex recruitment curve (ascending limb). RESULTS No significant differences were found for the parameters derived from the recruitment curve of the H-reflex among the conditions (P > .05). CONCLUSIONS The authors' findings showed that, irrespective of the direction of tape application, the elastic tape applied over the triceps surae does not generate any significant alteration on the excitability of the reflex pathway for different subpopulations of motor units. The authors therefore suggest a re-examination of the current recommendations on taping direction in clinical and sports activities.
Collapse
|
2
|
Patellar Tendon Reflex and Vastus Medialis Hoffmann Reflex Are Down Regulated and Correlated in Women With Patellofemoral Pain. Arch Phys Med Rehabil 2018; 100:514-519. [PMID: 30059658 DOI: 10.1016/j.apmr.2018.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aims of this study were threefold: (1) to compare the amplitude of patellar tendon reflex (T-reflex) between women with patellofemoral pain (PFP) and pain-free controls; (2) to compare the amplitude of vastus medialis Hoffmann reflex (VM H-reflex) between women with PFP and pain-free controls; (3) to investigate the association between the amplitude of patellar T-reflex and VM H-reflex in women with PFP and pain-free controls. DESIGN Cross-sectional observational study. SETTING Laboratory of biomechanics and motor control. PARTICIPANTS Thirty women with PFP and 30 pain-free women aged 18 to 35 years (N=60). MAIN OUTCOME MEASURES Peak-to-peak amplitudes of maximal VM H-reflex (elicited via electrical stimulation on the femoral nerve) and patellar T-reflex (elicited via mechanical percussion on the patellar tendon) were estimated. RESULTS Women with PFP had significant lower amplitude of patellar T-reflex (mean difference=0.086; 95% confidence interval=0.020 to 0.151; P=.010; moderate effect) and VM H-reflex (mean difference=0.150; 95% confidence interval =0.073 to 0.227; P<.001; large effect) compared to pain-free controls. The VM H-reflex was strongly correlated with patellar T-reflex in both PFP group (r=0.66; P<.001) and control group (r=0.72; P<.001). CONCLUSIONS As the T-reflex is easier to perform than H-reflex assessments in a clinical setting, it represents a feasible option to assess the impaired excitability of the stretch reflex pathway associated with PFP.
Collapse
|
3
|
Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury. Curr Opin Neurol 2018; 29:721-726. [PMID: 27798422 DOI: 10.1097/wco.0000000000000382] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The Purpose of this review is to outline and explain the therapeutic use of electrical spinal cord stimulation (SCS) for modification of spinal motor output. Central functional stimulation provides afferent input to posterior root neurons and is applied to improve volitional movements, posture and their endurance, control spasticity, and improve bladder function or perfusion in the lower limbs. Clinical accomplishments strongly depend on each individual's physiological state and specific methodical adaptation to that physiological state. RECENT FINDINGS Effectiveness of this neuromodulory technique for changing motor control after spinal cord injury (SCI) continues to be explored along with the underlying mechanisms of its effect in people with complete and incomplete spinal cord injuries. There are extensive studies of tonic and rhythmical activity elicited from the lumbar cord as well as data demonstrating augmentation of residual volitional activity. Recent studies have focused on verifying if and how SCS can modify features of neurocontrol in ambulatory spinal cord patients. SUMMARY In this review, we emphasize recent publications of research revealing that SCS can substitute for the reduced brain drive for control of excitability in people with SCI. Artificially replacing diminished or lost brain control over the spinal cord has limitations. A fundamental requirement for successful SCS application is analysis of each individual's residual postinjury neural function. This will allow a better understanding of the physiological interactions between SCS and spinal cord motor control below injury and provide criteria for its application. Finally, the publication of both successful and failed applications of SCS will be crucial for gaining future progress.
Collapse
|
4
|
Cattagni T, Merlet AN, Cornu C, Jubeau M. H-reflex and M-wave recordings: effect of pressure application to the stimulation electrode on the assessment of evoked potentials and subject's discomfort. Clin Physiol Funct Imaging 2017; 38:416-424. [PMID: 28444940 DOI: 10.1111/cpf.12431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 11/26/2022]
Abstract
This study aimed to compare the effect of different types of pressure applied to the stimulation electrode on assessing the efficiency of Ia-α-motoneuron transmission of the soleus muscle and the associated discomfort using electrical nerve stimulation. Twelve healthy young adults participated in three experimental sessions (one for each knee angle). The amplitudes of the maximal Hoffmann reflex (Hmax ) and motor potential (Mmax ) were recorded from the soleus muscle at 0°, 30° and 90° knee angles (0° full extension) through three pressure applications to the stimulation electrode: no pressure, pressure with manual application and pressure using adhesive tape. The soleus Hmax /Mmax were calculated to assess the efficiency of Ia-α-motoneuron transmission during varied knee angles and pressure application to the stimulation electrode. At the stimulation intensity evoking soleus Hmax and Mmax , subjects were asked to orally provide a value between 'no discomfort' (0) and 'worst possible discomfort' (10). The application of pressure on the stimulation electrode, particularly using adhesive tape, decreased both the stimulation intensity needed to evoke an electrophysiological response and the associated self-reported discomfort (P<0·05), while the Hmax /Mmax remained constant. At the stimulation intensity evoking Mmax , the electrical stimulation appeared to be more painful at 0° knee angle compared with 30° and 90° angles (P<0·01). To conclude, this study showed that a knee flexion and a pressure application to the stimulation electrode, especially using tape pressure, are recommended in the objective to reduce the patient/subjects' discomfort when eliciting evoked potentials on soleus muscle.
Collapse
Affiliation(s)
- Thomas Cattagni
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Angèle N Merlet
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Christophe Cornu
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Marc Jubeau
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| |
Collapse
|
5
|
Kato K, Kanosue K. Effect of muscle relaxation in the foot on simultaneous muscle contraction in the contralateral hand. Neurosci Lett 2016; 633:252-256. [PMID: 27693661 DOI: 10.1016/j.neulet.2016.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
Abstract
We investigated the effects of foot muscle relaxation and contraction on muscle activities in the hand on both ipsilateral and contralateral sides. The subjects sat in an armchair with hands in the pronated position. They were able to freely move their right/left hand and foot. They performed three tasks for both ipsilateral (right hand and right foot) and contralateral limb coordination (left hand and right foot for a total of six tasks). These tasks involved: (1) wrist extension from a flexed (resting) position, (2) wrist extension with simultaneous ankle dorsiflexion from a plantarflexed (resting) position, and (3) wrist extension with simultaneous ankle relaxation from a dorsiflexed position. The subjects performed each task as fast as possible after hearing the start signal. Reaction time for the wrist extensor contraction (i.e. the degree to which it preceded the motor reaction time), as observed in electromyography (EMG), became longer when it was concurrently done with relaxation of the ankle dorsiflexor. Also, the magnitude of EMG activity became smaller, as compared with activity when wrist extensor contraction was done alone or with contraction of the ankle dorsiflexor. These effects were observed not only for the ipsilateral hand, but also for the contralateral hand. Our findings suggest that muscle relaxation in one limb interferes with muscle contraction in both the ipsilateral and contralateral limbs.
Collapse
Affiliation(s)
- Kouki Kato
- Faculty of Sport Sciences, Waseda University, Saitama, Japan; Japan Society for the Promotion of Science, Japan.
| | | |
Collapse
|
6
|
Suzuki S, Nakajima T, Futatsubashi G, Mezzarane RA, Ohtsuka H, Ohki Y, Zehr EP, Komiyama T. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing. Exp Brain Res 2016; 234:2293-304. [PMID: 27030502 DOI: 10.1007/s00221-016-4635-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
Abstract
Electrical stimulation of cutaneous nerves innervating heteronymous limbs (the arms or contralateral leg) modifies the excitability of soleus Hoffmann (H-) reflexes. The differences in the sensitivities of the H-reflex pathway to cutaneous afferents from different limbs and their modulation during the performance of motor tasks (i.e., standing and walking) are not fully understood. In the present study, we investigated changes in soleus H-reflex amplitudes induced by electrical stimulation of peripheral nerves. Selected targets for conditioning stimulation included the superficial peroneal nerve, which innervates the foot dorsum in the contralateral ankle (cSP), and the superficial radial nerve, which innervates the dorsum of the hand in the ipsilateral (iSR) or contralateral wrist (cSR). Stimulation and subsequent reflex assessment took place during the standing and early-stance phase of treadmill walking in ten healthy subjects. Cutaneous stimulation produced long-latency inhibition (conditioning-test interval of ~100 ms) of the H-reflex during the early-stance phase of walking, and the inhibition was stronger following cSP stimulation compared with iSR or cSR stimulation. In contrast, although similar conditioning stimulation significantly facilitated the H-reflex during standing, this effect remained constant irrespective of the different conditioning sites. These findings suggest that cutaneous inputs from the arms and contralateral leg had reversible effects on the H-reflex amplitudes, including inhibitions with different sensitivities during the early-stance phase of walking and facilitation during standing. Furthermore, the differential sensitivities of the H-reflex modulations were expressed only during walking when the locations of the afferent inputs were functionally relevant.
Collapse
Affiliation(s)
- Shinya Suzuki
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan. .,Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Genki Futatsubashi
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.,Faculty of Business and Information Sciences, Jobu University, Isesaki, Gunma, Japan
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil.,Biomedical Engineering Laboratory, EPUSP, PTC, University of São Paulo, São Paulo, Brazil.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| | - Hiroyuki Ohtsuka
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
de Oliveira Silva D, Magalhães FH, Faria NC, Pazzinatto MF, Ferrari D, Pappas E, de Azevedo FM. Lower Amplitude of the Hoffmann Reflex in Women With Patellofemoral Pain: Thinking Beyond Proximal, Local, and Distal Factors. Arch Phys Med Rehabil 2016; 97:1115-20. [PMID: 26763946 DOI: 10.1016/j.apmr.2015.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To investigate whether vastus medialis (VM) Hoffmann reflexes (H-reflexes) differ on the basis of the presence or absence of patellofemoral pain (PFP) and to assess the capability of VM H-reflex measurements in accurately discriminating between women with and without PFP. DESIGN Cross-sectional study. SETTING Laboratory of biomechanics and motor control. PARTICIPANTS Women (N=30) aged 18 to 35 years were recruited, consisting of 2 groups: women with PFP (n=15) and asymptomatic controls (n=15). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Maximum evoked responses were obtained by electrical stimulation applied to the femoral nerve, and peak-to-peak amplitudes of maximal Hoffmann reflex (Hmax) and maximal motor wave (Mmax) ratios were calculated. Independent samples t tests were performed to identify differences between groups, and a receiver operating characteristic curve was constructed to assess the discriminatory capability of VM H-reflex measurements. RESULTS VM Hmax/Mmax ratios were significantly lower in participants with PFP than in pain-free participants (P=.007). In addition, the VM Hmax/Mmax ratios presented large and balanced discriminatory capability values (sensitivity, 73%; specificity, 67%). CONCLUSIONS This study is the first to show that VM H-reflexes are lower in women with PFP than in asymptomatic controls. Therefore, increasing the excitation of the spinal cord in PFP participants may be essential to maintaining the gains acquired during the rehabilitation programs.
Collapse
Affiliation(s)
- Danilo de Oliveira Silva
- Physical Therapy Department, School of Science and Technology, University of São Paulo State, Presidente Prudente, Brazil
| | | | - Nathálie Clara Faria
- Physical Therapy Department, School of Science and Technology, University of São Paulo State, Presidente Prudente, Brazil
| | - Marcella Ferraz Pazzinatto
- Physical Therapy Department, School of Science and Technology, University of São Paulo State, Presidente Prudente, Brazil
| | - Deisi Ferrari
- Bioengineering Department, School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Evangelos Pappas
- Discipline of Physiotherapy, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Fábio Mícolis de Azevedo
- Physical Therapy Department, School of Science and Technology, University of São Paulo State, Presidente Prudente, Brazil.
| |
Collapse
|
8
|
Magalhães FH, Elias LA, da Silva CR, de Lima FF, de Toledo DR, Kohn AF. D1 and D2 Inhibitions of the Soleus H-Reflex Are Differentially Modulated during Plantarflexion Force and Position Tasks. PLoS One 2015; 10:e0143862. [PMID: 26599909 PMCID: PMC4658029 DOI: 10.1371/journal.pone.0143862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023] Open
Abstract
Presynaptic inhibition (PSI) has been shown to modulate several neuronal pathways of functional relevance by selectively gating the connections between sensory inputs and spinal motoneurons, thereby regulating the contribution of the stretch reflex circuitry to the ongoing motor activity. In this study, we investigated whether a differential regulation of Ia afferent inflow by PSI may be associated with the performance of two types of plantarflexion sensoriomotor tasks. The subjects (in a seated position) controlled either: 1) the force level exerted by the foot against a rigid restraint (force task, FT); or 2) the angular position of the ankle when sustaining inertial loads (position task, PT) that required the same level of muscle activation observed in FT. Subjects were instructed to maintain their force/position at target levels set at ~10% of maximum isometric voluntary contraction for FT and 90° for PT, while visual feedback of the corresponding force/position signals were provided. Unconditioned H-reflexes (i.e. control reflexes) and H-reflexes conditioned by electrical pulses applied to the common peroneal nerve with conditioning-to-test intervals of 21 ms and 100 ms (corresponding to D1 and D2 inhibitions, respectively) were evoked in a random fashion. A significant main effect for the type of the motor task (FT vs PT) (p = 0.005, η2p = 0.603) indicated that PTs were undertaken with lower levels of Ia PSI converging onto the soleus motoneuron pool. Additionally, a significant interaction between the type of inhibition (D1 vs D2) and the type of motor task (FT vs PT) (p = 0.038, η2p = 0.395) indicated that D1 inhibition was associated with a significant reduction in PSI levels from TF to TP (p = 0.001, η2p = 0.731), whereas no significant difference between the tasks was observed for D2 inhibition (p = 0.078, η2p = 0.305). These results suggest that D1 and D2 inhibitions of the soleus H-reflex are differentially modulated during the performance of plantarflexion FT and PT. The reduced level of ongoing PSI during PT suggests that, in comparison to FT, there is a larger reliance on inputs from muscle spindles primary afferents when the neuromuscular system is required to maintain position-controlled plantarflexion contractions.
Collapse
Affiliation(s)
- Fernando Henrique Magalhães
- School of Arts, Sciences and Humanities, Universidade de São Paulo, EACH-USP, São Paulo, SP, Brazil.,Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leonardo Abdala Elias
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil
| | - Cristiano Rocha da Silva
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Felipe Fava de Lima
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil
| | - Diana Rezende de Toledo
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, Avenida Professor Luciano Gualberto, Travessa 3, n.158, São Paulo, SP, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|