1
|
Cao W, Liu Y, Zhang XF, Zheng XL. A mutant complement factor H (W1183R) enhances proteolytic cleavage of von Willebrand factor by ADAMTS-13 under shear. J Thromb Haemost 2025; 23:1229-1240. [PMID: 39798927 DOI: 10.1016/j.jtha.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND A loss-of-functional mutation (W1183R) in human complement factor H (CFH) is associated with complement-associated hemolytic uremic syndrome; mice carrying a similar mutation (W1206R) in CFH also develop thrombotic microangiopathy but its plasma von Willebrand factor (VWF) multimer sizes were dramatically reduced. The mechanism underlying such a dramatic change in plasma VWF multimer distribution in these mice is not fully understood. OBJECTIVES To determine the VWF and CFH interaction and how CFH proteins affect VWF multimer distribution. METHODS We employed recombinant protein expression, purification, and various biochemical and biophysical tools. RESULTS Purified recombinant W1183R-CFH but not wild-type (WT) CFH protein enhanced the proteolytic cleavage of both peptidyl and multimeric VWF substrates by recombinant ADAMTS-13 in a concentration-dependent manner. Microscale thermophoresis assay demonstrated that both W1183R-CFH and WT-CFH proteins bound various VWF fragments (eg, AIM-A1, A1-A2-A3, D'D3, D'D3-A1, and D'D3-A1-A2) with high affinities. Optical tweezer experiments further showed a concentration-dependent alteration in the contour length (Lc) and the persistent length (Lp) following pulling VWF-A2 domain in the presence of W1183R-CFH or WT-CFH protein. AlphaFold experiments revealed conformational changes in the VWF-A2, particularly the central region where the cleavage bond resides following addition of W1183R-CFH or WT-CFH protein. CONCLUSION These results demonstrate for the first time that W1183R-CFH but not WT-CFH protein enhances the proteolytic cleavage of VWF by ADAMTS-13 under shear. This may be achieved by mechanic-induced conformational changes of the central A2 domain, leading to an enhanced cleavage of Tyr1605-Met1606 bond by ADAMTS-13 under pathophysiological conditions.
Collapse
Affiliation(s)
- Wenjing Cao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yi Liu
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - X Frank Zhang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
2
|
Turner NA, Moake JL. Heat-inactivated Factor B inhibits alternative pathway fluid-phase activation and convertase formation on endothelial cell-secreted ultra-large von Willebrand factor strings. Sci Rep 2023; 13:5764. [PMID: 37031266 PMCID: PMC10082794 DOI: 10.1038/s41598-023-33007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
Defective regulation of the alternative complement pathway (AP) causes excessive activation and promotes the inflammation and renal injury observed in atypical hemolytic-uremic syndrome (aHUS). The usefulness of heat-inactivated Factor B (HFB) in reducing AP activation was evaluated in: fluid-phase reactions, using purified complement proteins and Factor H (FH)-depleted serum; and in surface-activated reactions using human endothelial cells (ECs). C3a and Ba levels, measured by quantitative Western blots, determined the extent of fluid-phase activation. In reactions using C3, FB, and Factor D proteins, HFB addition (2.5-fold FB levels), reduced C3a levels by 60% and Ba levels by 45%. In reactions using FH-depleted serum (supplemented with FH at 12.5% normal levels), Ba levels were reduced by 40% with HFB added at 3.5-fold FB levels. The effectiveness of HFB in limiting AP convertase formation on activated surfaces was evaluated using stimulated ECs. Fluorescent microscopy was used to quantify endogenously released C3, FB, and C5 attached to EC-secreted ultra-large VWF strings. HFB addition reduced attachment of C3b by 2.7-fold, FB by 1.5-fold and C5 by fourfold. Our data indicate that HFB may be of therapeutic value in preventing AP-mediated generation of C3a and C5a, and the associated inflammation caused by an overactive AP.
Collapse
Affiliation(s)
- Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
von Willebrand factor variants in C3 glomerulopathy: A Chinese cohort study. Clin Immunol 2021; 229:108794. [PMID: 34245915 DOI: 10.1016/j.clim.2021.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
C3 glomerulopathy (C3G) is a rare renal disease characterized by predominant glomerular C3 staining. Complement alternative pathway dysregulation due to inherited complement defects is associated with C3G. To identify novel C3G-related genes, we screened 86 genes in the complement, coagulation and endothelial systems in 35 C3G patients by targeted genomic enrichment and massively parallel sequencing. Surprisingly, the most frequently mutated gene was VWF. Patients with VWF variants had significantly higher proteinuria levels, higher crescent formation and lower factor H (FH) levels. We further selected two VWF variants to transiently express the von Willebrand factor (vWF) protein, we found that vWF expression from the c.1519A > G variant was significantly reduced. In vitro results further indicated that vWF could regulate complement activation, as it could bind to FH and C3b, act as a cofactor for factor I-mediated cleavage of C3b. Thus, we speculated that vWF might be involved in the pathogenesis of C3G.
Collapse
|
4
|
Shivshankar P, Li YD, Mueller-Ortiz SL, Wetsel RA. In response to complement anaphylatoxin peptides C3a and C5a, human vascular endothelial cells migrate and mediate the activation of B-cells and polarization of T-cells. FASEB J 2020; 34:7540-7560. [PMID: 32301538 PMCID: PMC11905332 DOI: 10.1096/fj.201902397r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
The vascular endothelium has been discovered in the past several years to be important in shaping the cellular immune response. During the immune response the vascular endothelium is constantly perturbed by biologically potent molecules, including the complement activation peptides, C3a and C5a. Despite the importance of C3a and C5a in inflammation and immunity, their role in modulating lymphocyte function via activation of vascular endothelial cells is unknown. Accordingly, we investigated the regulated expression of the C3a and C5a receptors (complement anaphylatoxin C3a receptor [C3aR] and complement anaphylatoxin C5a receptor 1 [C5aR1]) on human umbilical vascular endothelial cells (HUVECs) and examined how C3a or C5a activation of HUVECs affects the activation and polarization of lymphatic cells. Our findings demonstrated that C3a and C5a increase C3aR and C5aR1 expression by HUVECs as well as directing their cellular transmigration and spreading through transwell filters. Moreover, C3a- or C5a-stimulated endothelial cells: (1) caused activation of B-lymphoblasts with significant increase in Fas Ligand (CD95L) (FasL), CD69, and IL-R1 expression, and (2) skewed T-lymphoblast cells toward a Th1 subtype, (CD4+ /CCR5+ ) that correlated with significant increase of IFN-γ. Collectively, these data indicate that C3a and C5a signaling is important in the activation and polarization of lymphocytes as they traffic through the vascular endothelium during the immune response.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yi-Dong Li
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Stacey L Mueller-Ortiz
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
5
|
Cohen CT, Turner NA, Moake JL. Production and control of coagulation proteins for factor X activation in human endothelial cells and fibroblasts. Sci Rep 2020; 10:2005. [PMID: 32029851 PMCID: PMC7005260 DOI: 10.1038/s41598-020-59058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Human endothelial cells (ECs) synthesize, store, and secrete von Willebrand factor multimeric strings and coagulation factor (F) VIII. It is not currently known if ECs produce other coagulation factors for active participation in coagulation. We found that 3 different types of human ECs in primary culture produce clotting factors necessary for FX activation via the intrinsic (FVIII-FIX) and extrinsic (tissue factor [TF]-FVII) coagulation pathways, as well as prothrombin. Human dermal fibroblasts were used as comparator cells. TF, FVII, FIX, FX, and prothrombin were detected in ECs, and TF, FVII, FIX, and FX were detected in fibroblasts. In addition, FVII, FIX, FX, and prothrombin were detected by fluorescent microscopy in EC cytoplasm (associated with endoplasmic reticulum and Golgi proteins). FX activation occurred on human umbilical vein EC surfaces without the addition of external coagulation proteins, proteolytic enzymes, or phospholipids. Tumour necrosis factor, which suppresses the generation of activated protein C and increases TF, augmented FX activation. Fibroblasts also produced TF, but (in contrast to ECs) were incapable of activating FX without the exogenous addition of FX and had a marked increase in FX activation following the addition of both FX and FVII. We conclude that human ECs produce their own coagulation factors that can activate cell surface FX without the addition of exogenous proteins or phospholipids.
Collapse
Affiliation(s)
- Clay T Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
6
|
Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN. Platelet Integrin αIIbβ3: Mechanisms of Activation and Clustering; Involvement into the Formation of the Thrombus Heterogeneous Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Chen X, Li L, Liu F, Hoh J, Kapron CM, Liu J. Cadmium Induces Glomerular Endothelial Cell–Specific Expression of Complement Factor H via the −1635 AP-1 Binding Site. THE JOURNAL OF IMMUNOLOGY 2019; 202:1210-1218. [DOI: 10.4049/jimmunol.1800081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
|
8
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
9
|
Intracellular complement - the complosome - in immune cell regulation. Mol Immunol 2017; 89:2-9. [PMID: 28601357 PMCID: PMC7112704 DOI: 10.1016/j.molimm.2017.05.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
The complement system was defined over a century ago based on its ability to "complement" the antibody-mediated and cell-mediated immune responses against pathogens. Today our understanding of this ancient part of innate immunity has changed substantially and we know now that complement plays an undisputed pivotal role in the regulation of both innate and adaptive immunity. The complement system consists of over 50 blood-circulating, cell-surface expressed and intracellular proteins. It is key in the recognition and elimination of invading pathogens, also in the removal of self-derived danger such as apoptotic cells, and it supports innate immune responses and the initiation of the general inflammatory reactions. The long prevailing classic view of complement was that of a serum-operative danger sensor and first line of defence system, however, recent experimental and clinical evidences have demonstrated that "local" tissue and surprisingly intracellular complement (the complosome) activation impacts on normal cell physiology. This review will focus on novel aspects of intracellular complement activation and its unexpected roles in basic cell processes such as metabolism. We also discuss what the existence of the complosome potentially means for how the host handles intracellular pathogens such as viruses.
Collapse
|
10
|
Elvington M, Liszewski MK, Bertram P, Kulkarni HS, Atkinson JP. A C3(H20) recycling pathway is a component of the intracellular complement system. J Clin Invest 2017; 127:970-981. [PMID: 28192370 DOI: 10.1172/jci89412] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022] Open
Abstract
An intracellular complement system (ICS) has recently been described in immune and nonimmune human cells. This system can be activated in a convertase-independent manner from intracellular stores of the complement component C3. The source of these stores has not been rigorously investigated. In the present study, Western blotting identified a band corresponding to C3 in freshly isolated human peripheral blood cells that was absent in corresponding cell lines. One difference between native cells and cell lines was the time absent from a fluid-phase complement source; therefore, we hypothesized that loading C3 from plasma was a route of establishing intracellular C3 stores. We found that many types of human cells specifically internalized C3(H2O), the hydrolytic product of C3, and not native C3, from the extracellular milieu. Uptake was rapid, saturable, and sensitive to competition with unlabeled C3(H2O), indicating a specific mechanism of loading. Under steady-state conditions, approximately 80% of incorporated C3(H2O) was returned to the extracellular space. These studies identify an ICS recycling pathway for C3(H2O). The loaded C3(H2O) represents a source of C3a, and its uptake altered the cytokine profile of activated CD4+ T cells. Importantly, these results indicate that the impact of soluble plasma factors should be considered when performing in vitro studies assessing cellular immune function.
Collapse
|
11
|
Factor VIII Is Synthesized in Human Endothelial Cells, Packaged in Weibel-Palade Bodies and Secreted Bound to ULVWF Strings. PLoS One 2015; 10:e0140740. [PMID: 26473492 PMCID: PMC4608722 DOI: 10.1371/journal.pone.0140740] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
The cellular synthesis site and ensuing storage location for human factor VIII (FVIII), the coagulation protein deficient in hemophilia A, has been elusive. FVIII stability and half-life is dependent on non-covalent complex formation with von Willebrand factor (VWF) to avoid proteolysis and clearance. VWF is synthesized in megakaryocytes and endothelial cells, and is stored and secreted from platelet alpha granules and Weibel-Palade bodies of endothelial cells. In this paper we provide direct evidence for FVIII synthesis in 2 types of primary human endothelial cells: glomerular microvascular endothelial cells (GMVECs) and umbilical vein endothelial cells (HUVECs). Gene expression quantified by real time PCR revealed that levels of F8 and VWF are similar in GMVECs and HUVECs. Previous clinical studies have shown that stimulation of vasopressin V2 receptors causes parallel secretion of both proteins. In this study, we found that both endothelial cell types express AVPR2 (vasopressin V2 receptor gene) and that AVPR2 mRNA levels are 5-fold higher in GMVECs than HUVECs. FVIII and VWF proteins were detected by fluorescent microscopy in Weibel-Palade bodies within GMVECs and HUVECs using antibodies proven to be target specific. Visual presence of FVIII and VWF in Weibel-Palade bodies was confirmed by correlation measurements. The high extent of correlation was compared with negative correlation values obtained from FVIII detection with cytoplasmic proteins, β-actin and Factor H. FVIII activity was positive in GMVEC and HUVEC cell lysates. Stimulated GMVECs and HUVECs were found to secrete cell-anchored ultra-large VWF strings covered with bound FVIII.
Collapse
|