1
|
An Y, Garcia SL, Hambäck PA. Microbial transfer through fecal strings on eggs affects leaf beetle microbiome dynamics. mSystems 2025:e0172324. [PMID: 40358205 DOI: 10.1128/msystems.01723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiomes of holometabolous insects can be strongly affected by metamorphosis. Previous studies suggest that microbiome colonization and community development often rely on specialized transmission routes between host life stages. However, there is a lack of comparative studies of microbial community dynamics from different transmission mechanisms. We compared the gut microbial community dynamics across life stages in five Galerucella species that differ in their potential microbial transfer mechanism by sequencing amplicons of the 16S rRNA gene. Females of three of the studied species place a fecal string on top of the egg, which may enhance the transfer of gut microbes, whereas females of the two other species do not. We found that the α-diversity was more stable between life stages in fecal string-placer species compared with the non-fecal string-placer species. Moreover, there were consistent microbiome differences between species, with multiple taxa in each species consistently appearing in all life stages. Fecal strings placed on eggs seem to play an important role in the diversity and dynamics of gut bacteria in Galerucella species, facilitating the vertical transfer of gut bacteria between host insect generations. Alternative, but less efficient, transmission routes appear to occur in non-fecal string-placer species. IMPORTANCE We explore the consequences of having different mechanisms for transferring and establishing the gut microbiome between generations on gut microbial community dynamics. This process is often problematic in holometabolous insects, which have a complete metamorphosis between larval and adult stages. In our previous research, we found that females of some species within the genus Galerucella (Chrysomelidae) place a fecal string on the eggs, which is later consumed by the hatching larvae, whereas other species in the same genus do not have this behavior. In this paper, we therefore quantify the microbial community dynamics across all life stages in five Galerucella beetles (three with and two without fecal strings). Our results also indicate that the dynamics are much more stable in the species with fecal strings, particularly in the early life stages.
Collapse
Affiliation(s)
- Yueqing An
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
| |
Collapse
|
2
|
Liu J, Zhou Y, Feng J, Cai C, Zhang S. Comparative metagenomic analysis reveals the adaptive evolutionary traits of siboglinid tubeworm symbionts. Front Microbiol 2025; 16:1533506. [PMID: 40313410 PMCID: PMC12045306 DOI: 10.3389/fmicb.2025.1533506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Tubeworms flourish in marine cold seeps and hydrothermal vents through the establishment of symbiotic relationships with chemosynthetic bacteria. However, the environmental adaptations and evolutionary relationships of tubeworm symbionts across diverse habitats and hosts remain largely unknown. In this study, we characterized the genomes of 26 siboglinid tubeworm symbionts collected from deep-sea hydrothermal vents, cold seeps, and deep-sea mud, including two sequenced in this study and 24 previously published. Phylogenetic analysis classified the 26 symbiont genomes into five distinct clusters at the genus level. The findings highlight the remarkable diversity in symbiont classification, influenced by the habitat and species of tubeworm, with the symbiont genome characteristics of various genera revealing unique evolutionary strategies. Siboglinid symbionts exhibit functional metabolic diversity, encompassing chemical autotrophic capabilities for carbon, nitrogen, and sulfur metabolism, hydrogen oxidation, and a chemoorganotrophic ability to utilize various amino acids, cofactors, and vitamins. Furthermore, the symbiont's homeostatic mechanisms and CRISPR-Cas system are vital adaptations for survival. Overall, this study highlights the metabolic traits of siboglinid symbionts across different genera and enhances our understanding of how different habitats and hosts influence symbiont evolution, offering valuable insights into the strategies that symbionts use to adapt and thrive in extreme environments.
Collapse
Affiliation(s)
- Jinyi Liu
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Yingli Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Jingchun Feng
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Chaofeng Cai
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| | - Si Zhang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Toledo-Hernández E, Torres-Quíntero MC, Mancilla-Dorantes I, Sotelo-Leyva C, Delgado-Núñez EJ, Hernández-Velázquez VM, Dunstand-Guzmán E, Salinas-Sánchez DO, Peña-Chora G. Entomopathogenic Bacteria Species and Toxins Targeting Aphids (Hemiptera: Aphididae): A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:943. [PMID: 40265885 PMCID: PMC11944987 DOI: 10.3390/plants14060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aphids (Hemiptera: Aphididae) are cosmopolitan generalist pests of many agricultural crops. Their ability to reproduce rapidly through parthenogenesis allows them to quickly reach population sizes that are difficult to control. Their damage potential is further exacerbated when they act as vectors for plant pathogens, causing diseases in plants. Aphids are typically managed through the widespread use of insecticides, increasing the likelihood of short-term insecticide resistance. However, for the past few decades, entomopathogenic bacteria have been used as an alternative management strategy. Entomopathogenic bacteria have demonstrated their effectiveness for biologically suppressing insect pests, including aphids. In addition to identifying bacterial species that are pathogenic to aphids, research has been conducted on toxins such as Cry, Cyt, Vip, recombinant proteins, and other secondary metabolites with insecticidal activity. Most studies on aphids have been conducted in vitro, exposing them to an artificial diet contaminated with entomopathogenic bacteria or bacterial metabolites for periods ranging from 24 to 96 h. The discovery of new bacterial species with insecticidal potential, as well as the possibility of biotechnological applications through the genetic improvement of crops, will provide more alternatives for managing these agricultural pests in the future. This will also help address challenges related to field application.
Collapse
Affiliation(s)
- Erubiel Toledo-Hernández
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - Mary Carmen Torres-Quíntero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Ilse Mancilla-Dorantes
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - César Sotelo-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma Guerrero, Av. Lázaro Cárdenas s/n., Chilpancingo C.P. 39070, Guerrero, Mexico; (I.M.-D.); (C.S.-L.)
| | - Edgar Jesús Delgado-Núñez
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Autónoma Guerrero, Iguala de la Independencia C.P. 40020, Guerrero, Mexico;
| | - Víctor Manuel Hernández-Velázquez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Emmanuel Dunstand-Guzmán
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - David Osvaldo Salinas-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico;
| | - Guadalupe Peña-Chora
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| |
Collapse
|
4
|
Wang N, Ning C, Zhao Z, Yang C, Ren H, Chen L, Yu Q, Zhang G. Antibacterial mechanism analysis of resveratrol against Salmonella typhimurium via metabolomics. Appl Microbiol Biotechnol 2024; 108:512. [PMID: 39531061 PMCID: PMC11557638 DOI: 10.1007/s00253-024-13341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Salmonella, a common pathogenic bacterium in food, can have a severe impact on food safety and consumer health. At present, Salmonella infection is controlled primarily by the use of antibiotics, which creates unsafe factors for food safety. Thus, finding a natural antibacterial agent is highly practical. In this study, resveratrol was screened from 17 kinds of polyphenols, and its inhibitory mechanism and effects on metabolites of Salmonella typhimurium were investigated to occur through cell wall and membrane damage and metabolomics analysis. The results revealed that the minimum inhibitory concentration of resveratrol against S. typhimurium was 250 μg/mL. After treatment with resveratrol, the lag period of the strain was prolonged, and the cell wall and membrane structure were destroyed. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) further confirmed that resveratrol induced damage to the cell walls and cell membrane. The metabolic profile of S. typhimurium following resveratrol treatment was analysed by gas chromatography‒mass spectrometry. In the metabolome evaluation, we screened 23 differentially abundant metabolites, including 11 upregulated and 12 downregulated metabolites. Eight metabolic pathways of S. typhimurium, including pathways important for amino acid metabolism and the tricarboxylic acid (TCA) cycle, exhibited significant changes after resveratrol treatment. The verification results of the citric acid content, cis-aconitase activity, and ATP content further revealed that the tricarboxylic acid cycle and other related metabolic pathways of S. typhimurium were affected. These results could provide a theoretical possibility for the use of resveratrol as a plant-derived bacteriostatic for food safety problems caused by S. typhimurium. KEY POINTS: • The mechanism of bacteriostasis was studied via metabolomics • Resveratrol causes the death of Salmonella by disrupting the cell wall and membrane.
Collapse
Affiliation(s)
- Na Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Cancan Ning
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
| | - Zheng Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
| | - Congyan Yang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Linlin Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
| | - Qiuying Yu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou, 450002, China.
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China.
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China.
| | - Gaiping Zhang
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou, 45002, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450000, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Gu X, Ross PA, Yang Q, Gill A, Umina PA, Hoffmann AA. Influence of genetic and environmental factors on the success of endosymbiont transfers in pest aphids. Environ Microbiol 2024; 26:e16704. [PMID: 39358981 DOI: 10.1111/1462-2920.16704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
There is increasing interest in exploring how endosymbionts could be useful in pest control, including in aphids, which can carry a diversity of endosymbionts. Endosymbionts often have a large impact on host traits, and their presence can be self-sustaining. Identifying useful host-endosymbiont combinations for pest control is facilitated by the transfer of specific endosymbionts into target species, particularly if the species lacks the endosymbiont. Here, we complete a comprehensive literature review, which included 56 relevant papers on endosymbiont transfer experiments in aphids, to uncover factors that might influence transfer success. We then report on our own microinjection attempts of diverse facultative endosymbionts from a range of donor species into three agriculturally important aphid species as recipients: the green peach aphid (Myzus persicae), bird cherry-oat aphid (Rhopalosiphum padi), and Russian wheat aphid (Diuraphis noxia). Combining this information, we consider reasons that impact the successful establishment of lines carrying transferred endosymbionts. These include a lack of stability in donors, deleterious effects on host fitness, the absence of plant-based (versus vertical) transmission, high genetic variation in the endosymbiont, and susceptibility of an infection to environmental factors. Taking these factors into account should help in increasing success rates in future introductions.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alex Gill
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Paul A Umina
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
- Cesar Australia, Brunswick, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of biosciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Wang H, He K, Zhang H, Zhang Q, Cao L, Li J, Zhong Z, Chen H, Zhou L, Lian C, Wang M, Chen K, Qian PY, Li C. Deciphering deep-sea chemosynthetic symbiosis by single-nucleus RNA-sequencing. eLife 2024; 12:RP88294. [PMID: 39102287 PMCID: PMC11299980 DOI: 10.7554/elife.88294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Bathymodioline mussels dominate deep-sea methane seep and hydrothermal vent habitats and obtain nutrients and energy primarily through chemosynthetic endosymbiotic bacteria in the bacteriocytes of their gill. However, the molecular mechanisms that orchestrate mussel host-symbiont interactions remain unclear. Here, we constructed a comprehensive cell atlas of the gill in the mussel Gigantidas platifrons from the South China Sea methane seeps (1100 m depth) using single-nucleus RNA-sequencing (snRNA-seq) and whole-mount in situ hybridisation. We identified 13 types of cells, including three previously unknown ones, and uncovered unknown tissue heterogeneity. Every cell type has a designated function in supporting the gill's structure and function, creating an optimal environment for chemosynthesis, and effectively acquiring nutrients from the endosymbiotic bacteria. Analysis of snRNA-seq of in situ transplanted mussels clearly showed the shifts in cell state in response to environmental oscillations. Our findings provide insight into the principles of host-symbiont interaction and the bivalves' environmental adaption mechanisms.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Quanyong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Jing Li
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingJapan
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
- Department of Ocean Science, Hong Kong University of Science and TechnologyHong KongChina
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Wang H, Xiao H, Feng B, Lan Y, Fung CW, Zhang H, Yan G, Lian C, Zhong Z, Li J, Wang M, Wu AR, Li C, Qian PY. Single-cell RNA-seq reveals distinct metabolic "microniches" and close host-symbiont interactions in deep-sea chemosynthetic tubeworm. SCIENCE ADVANCES 2024; 10:eadn3053. [PMID: 39047091 PMCID: PMC11268408 DOI: 10.1126/sciadv.adn3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Vestimentiferan tubeworms that thrive in deep-sea chemosynthetic ecosystems rely on a single species of sulfide-oxidizing gammaproteobacterial endosymbionts housed in a specialized symbiotic organ called trophosome as their primary carbon source. While this simple symbiosis is remarkably productive, the host-symbiont molecular interactions remain unelucidated. Here, we applied an approach for deep-sea in situ single-cell fixation in a cold-seep tubeworm, Paraescarpia echinospica. Single-cell RNA sequencing analysis and further molecular characterizations of both the trophosome and endosymbiont indicate that the tubeworm maintains two distinct metabolic "microniches" in the trophosome by controlling the availability of chemosynthetic gases and metabolites, resulting in oxygenated and hypoxic conditions. The endosymbionts in the oxygenated niche actively conduct autotrophic carbon fixation and are digested for nutrients, while those in the hypoxic niche conduct anaerobic denitrification, which helps the host remove ammonia waste. Our study provides insights into the molecular interactions between animals and their symbiotic microbes.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao, China
| | - Hongxiu Xiao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Buhan Feng
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Cheuk Wang Fung
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huan Zhang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Guoyong Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chao Lian
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Zhaoshan Zhong
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Jing Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Minxiao Wang
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Angela Ruohao Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chaolun Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- South China Sea Institute of Oceanology, Chinese Academy of Science, Guanzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
8
|
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int J Mol Sci 2024; 25:4922. [PMID: 38732132 PMCID: PMC11084805 DOI: 10.3390/ijms25094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, 81100 Caserta, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
| |
Collapse
|
9
|
Chiang YR, Lin HT, Chang CW, Lin SM, Lin JHY. Dynamic expression of cathepsin L in the black soldier fly (Hermetia illucens) gut during Escherichia coli challenge. PLoS One 2024; 19:e0298338. [PMID: 38451906 PMCID: PMC10919656 DOI: 10.1371/journal.pone.0298338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22-72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.
Collapse
Affiliation(s)
- Yun-Ru Chiang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Han-Tso Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Chao-Wei Chang
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Science, National Cheng Kung University, Tainan, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Du XY, Zhang PF, Gong SR, Liang YS, Huang YH, Li HS, Pang H. Discovery of a novel circulation route of free-living Serratiasymbiotica mediated by predatory ladybird beetles. FEMS Microbiol Ecol 2023; 99:fiad133. [PMID: 37852673 DOI: 10.1093/femsec/fiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Horizontal transmission of bacteria to varied hosts can maintain and even expand microbial niches. We previously found that the aphid gut bacterium Serratia symbiotica strain SsMj can be transmitted to ladybird beetles via predation, but whether the predator is a new host, a reservoir or a dead end of this bacterium is unknown. This study aims to provide a clear picture of SsMj circulation from aphids to plants and predators. We first found that SsMj in aphids and ladybirds was abundantly distributed not only in digestive tracts but also in droppings. We found no evidence for vertical transmission of SsMj to aphid offspring. Instead, we showed that it could be transmitted to conspecific aphids by sharing the same plant or contacting honeydews. The key finding of this study is that SsMj was transmitted from aphids to ladybirds through predation, while ladybirds could also transfer SsMj back to aphids, possibly through feces. Together, this evidence suggests that SsMj is able to survive in the digestive tracts and droppings of insects and to expand its host range with plants and predators as reservoirs.
Collapse
Affiliation(s)
- Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Tougeron K, Iltis C, Rampnoux E, Goerlinger A, Dhondt L, Hance T. Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100061. [PMID: 37304568 PMCID: PMC10250925 DOI: 10.1016/j.cris.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/05/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Insects have evolved diverse strategies to resist extreme high temperatures (EHT). The adaptive value of such strategies has to be evaluated when organisms experience multiple EHT events during their lifetime, as predicted in a changing climate. This is particularly the case for associations with facultative microbial partners involved in insect heat tolerance, the resilience of which to repeated heat stress has never been studied. We compared two artificial lines of the pea aphid (Acyrthosiphon pisum) differing by the absence or presence of the heat-protective facultative bacterium Serratia symbiotica. We exposed insect nymphs to a varying number of EHT events (between 0 and 3), and recorded fitness parameters. Except survival traits, fitness estimates were affected by the interaction between aphid infection status (absence/presence of S. symbiotica) and thermal treatment (number of heat shocks applied). Costs of bacterial infection were detected in the absence of thermal stress: symbiont-hosting aphids incurred longer development, decreased fecundity and body size. However, symbiotic infection turned neutral, and even beneficial for some traits (development and body size), as the number of heat shocks increased, and compared to the aposymbiotic strain. Conversely, symbiotic infection mediated aphid response to heat shock(s): fitness decreased only in the uninfected group. These findings suggest that (i) the facultative symbiont may alternatively act as a pathogen, commensal or mutualist depending on thermal environment, and (ii) the heat protection it delivered to its host persists under frequent EHT. We discuss eco-evolutionary implications and the role of potentially confounding factors (stage-specific effects, genetic polymorphism displayed by the obligate symbiont).
Collapse
Affiliation(s)
- Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
- Institut de Recherche en Biosciences, Université de Mons, Av. du Champ de Mars 6, 7000 Mons, Belgium
| | - Corentin Iltis
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Eliott Rampnoux
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Goerlinger
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Linda Dhondt
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Zhang C, Teng B, Liu H, Wu C, Wang L, Jin S. Impact of Beauveria bassiana on antioxidant enzyme activities and metabolomic profiles of Spodoptera frugiperda. J Invertebr Pathol 2023; 198:107929. [PMID: 37127135 DOI: 10.1016/j.jip.2023.107929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Spodoptera frugiperda is a pest that poses serious threat to the production of food and crops. Entopathogenic fungi, represented by Beauveria bassiana, has shown potential for S. frugiperda control. However, the mechanism of this biological control of pathogens is not fully understood, such as how antioxidant enzyme activities and metabolic profiles in S. frugiperda larvae are affected when infected by entomopathogenic fungi. This study assessed the antioxidant enzyme activities and shift in metabolomic profile in the S. frugiperda larvae infected with B.bassiana. The results indicate a pattern of initial increase and subsequent decrease in the activities of superoxide dismutase, catalase, and peroxidase in the B.bassiana-infected larvae. And the enzyme activities at 60 h of infection ended significantly lower than those of the uninfected larvae. A total of 93 differential metabolites were identified in the B.bassiana-infected larvae, of which 41 metabolites were up-regulated and 52 were down-regulated. These metabolites mainly included amino acids, nucleotides, lipids, carbohydrates, and their derivatives. Among the changed metabolites, cystathionine, L-tyrosine, L-dopa, arginine, alpha-ketoglutaric acid, D-sedoheptulose-7-phosphate and citric acid were significantly decreased in B. bassiana-infected larvae. This indicated that the fungal infection might impair the ability of S. frugiperda larvae to cope with oxidative stress, leading to a negative impact of organism fitness. Further analyses of key metabolic pathways reveal that B. bassiana infection might affect purine metabolism, arginine biosynthesis, butanoate metabolism, and phenylalanine metabolism of S. frugiperda larvae. The findings from this study will contribute to our understanding of oxidative stress on immune defense in insects, and offer fundamental support for the biological control of S. frugiperda.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China; These authors contributed equally to this work
| | - Bin Teng
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China; These authors contributed equally to this work
| | - Huimin Liu
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenyuan Wu
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
13
|
Elston KM, Maeda GP, Perreau J, Barrick JE. Addressing the challenges of symbiont-mediated RNAi in aphids. PeerJ 2023; 11:e14961. [PMID: 36874963 PMCID: PMC9983426 DOI: 10.7717/peerj.14961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/05/2023] [Indexed: 03/06/2023] Open
Abstract
Because aphids are global agricultural pests and models for bacterial endosymbiosis, there is a need for reliable methods to study and control their gene function. However, current methods available for aphid gene knockout and knockdown of gene expression are often unreliable and time consuming. Techniques like CRISPR-Cas genome editing can take several months to achieve a single gene knockout because they rely on aphids going through a cycle of sexual reproduction, and aphids often lack strong, consistent levels of knockdown when fed or injected with molecules that induce an RNA interference (RNAi) response. In the hopes of addressing these challenges, we attempted to adapt a new method called symbiont-mediated RNAi (smRNAi) for use in aphids. smRNAi involves engineering a bacterial symbiont of the insect to continuously supply double-stranded RNA (dsRNA) inside the insect body. This approach has been successful in thrips, kissing bugs, and honeybees. We engineered the laboratory Escherichia coli strain HT115 and the native aphid symbiont Serratia symbiotica CWBI-2.3T to produce dsRNA inside the gut of the pea aphid (Acyrthosiphon pisum) targeting salivary effector protein (C002) or ecdysone receptor genes. For C002 assays, we also tested co-knockdown with an aphid nuclease (Nuc1) to reduce RNA degradation. However, we found that smRNAi was not a reliable method for aphid gene knockdown under our conditions. We were unable to consistently achieve the expected phenotypic changes with either target. However, we did see indications that elements of the RNAi pathway were modestly upregulated, and expression of some targeted genes appeared to be somewhat reduced in some trials. We conclude with a discussion of the possible avenues through which smRNAi, and aphid RNAi in general, could be improved in the future.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States.,Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| |
Collapse
|
14
|
Renoz F, Ambroise J, Bearzatto B, Fakhour S, Parisot N, Ribeiro Lopes M, Gala JL, Calevro F, Hance T. The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids. Microorganisms 2022; 10:microorganisms10071360. [PMID: 35889078 PMCID: PMC9317480 DOI: 10.3390/microorganisms10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus. Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
- Correspondence:
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Samir Fakhour
- Department of Plant Protection, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Mélanie Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
15
|
Renoz F, Foray V, Ambroise J, Baa-Puyoulet P, Bearzatto B, Mendez GL, Grigorescu AS, Mahillon J, Mardulyn P, Gala JL, Calevro F, Hance T. At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Front Cell Infect Microbiol 2021; 11:660007. [PMID: 34268133 PMCID: PMC8275996 DOI: 10.3389/fcimb.2021.660007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont Serratia symbiotica is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages. In this study, we analyzed the genomes of three of these culturable strains that are pathogenic to aphid hosts, and performed comparative genomic analyses including mutualistic host-dependent strains. All three genomes are larger than those of the host-restricted S. symbiotica strains described so far, and show significant enrichment in pseudogenes and mobile elements, suggesting that these three pathogenic strains are in the early stages of the adaptation to their host. Compared to their intracellular mutualistic relatives, the three strains harbor a greater diversity of genes coding for virulence factors and metabolic pathways, suggesting that they are likely adapted to infect new hosts and are a potential source of metabolic innovation for insects. The presence in their genomes of secondary metabolism gene clusters associated with the production of antimicrobial compounds and phytotoxins supports the hypothesis that S. symbiotia symbionts evolved from plant-associated strains and that plants may serve as intermediate hosts. Mutualistic associations between insects and bacteria are the result of independent transitions to endosymbiosis initiated by the acquisition of environmental progenitors. In this context, the genomes of free-living S. symbiotica strains provide a rare opportunity to study the inventory of genes held by bacterial associates of insects that are at the gateway to a host-dependent lifestyle.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Institut de Recherche sur la Biologie de l’insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Gipsi Lima Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR203, F-69621, Villeurbanne, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics 2021; 22:449. [PMID: 34134631 PMCID: PMC8207614 DOI: 10.1186/s12864-021-07742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. Results We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. Conclusions Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host’s obligatory endosymbiont B. aphidicola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07742-8.
Collapse
Affiliation(s)
- Heidi Kaech
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland. .,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alice B Dennis
- Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Abstract
Insects have evolved various mechanisms to reliably transmit their beneficial bacterial symbionts to the next generation. Sap-sucking insects, including aphids, transmit symbionts by endocytosis of the symbiont into cells of the early embryo within the mother’s body. Many insects possess beneficial bacterial symbionts that occupy specialized host cells and are maternally transmitted. As a consequence of their host-restricted lifestyle, these symbionts often possess reduced genomes and cannot be cultured outside hosts, limiting their study. The bacterial species Serratia symbiotica was originally characterized as noncultured strains that live as mutualistic symbionts of aphids and are vertically transmitted through transovarial endocytosis within the mother’s body. More recently, culturable strains of S. symbiotica were discovered that retain a larger set of ancestral Serratia genes, are gut pathogens in aphid hosts, and are principally transmitted via a fecal-oral route. We find that these culturable strains, when injected into pea aphids, replicate in the hemolymph and are pathogenic. Unexpectedly, they are also capable of maternal transmission via transovarial endocytosis: using green fluorescent protein (GFP)-tagged strains, we observe that pathogenic S. symbiotica strains, but not Escherichia coli, are endocytosed into early embryos. Furthermore, pathogenic S. symbiotica strains are compartmentalized into specialized aphid cells in a fashion similar to that of mutualistic S. symbiotica strains during later stages of embryonic development. However, infected embryos do not appear to develop properly, and offspring infected by a transovarial route are not observed. Thus, cultured pathogenic strains of S. symbiotica have the latent capacity to transition to lifestyles as mutualistic symbionts of aphid hosts, but persistent vertical transmission is blocked by their pathogenicity. To transition into stably inherited symbionts, culturable S. symbiotica strains may need to adapt to regulate their titer, limit their pathogenicity, and/or provide benefits to aphids that outweigh their cost.
Collapse
|
18
|
Elston KM, Perreau J, Maeda GP, Moran NA, Barrick JE. Engineering a Culturable Serratia symbiotica Strain for Aphid Paratransgenesis. Appl Environ Microbiol 2021; 87:AEM.02245-20. [PMID: 33277267 PMCID: PMC7851701 DOI: 10.1128/aem.02245-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aphids are global agricultural pests and important models for bacterial symbiosis. To date, none of the native symbionts of aphids have been genetically manipulated, which limits our understanding of how they interact with their hosts. Serratia symbiotica CWBI-2.3T is a culturable, gut-associated bacterium isolated from the black bean aphid. Closely related Serratia symbiotica strains are facultative aphid endosymbionts that are vertically transmitted from mother to offspring during embryogenesis. We demonstrate that CWBI-2.3T can be genetically engineered using a variety of techniques, plasmids, and gene expression parts. Then, we use fluorescent protein expression to track the dynamics with which CWBI-2.3T colonizes the guts of multiple aphid species, and we measure how this bacterium affects aphid fitness. Finally, we show that we can induce heterologous gene expression from engineered CWBI-2.3T in living aphids. These results inform the development of CWBI-2.3T for aphid paratransgenesis, which could be used to study aphid biology and enable future agricultural technologies.IMPORTANCE Insects have remarkably diverse and integral roles in global ecosystems. Many harbor symbiotic bacteria, but very few of these bacteria have been genetically engineered. Aphids are major agricultural pests and an important model system for the study of symbiosis. This work describes methods for engineering a culturable aphid symbiont, Serratia symbiotica CWBI-2.3T These approaches and genetic tools could be used in the future to implement new paradigms for the biological study and control of aphids.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| |
Collapse
|
19
|
Rosset SL, Oakley CA, Ferrier-Pagès C, Suggett DJ, Weis VM, Davy SK. The Molecular Language of the Cnidarian-Dinoflagellate Symbiosis. Trends Microbiol 2020; 29:320-333. [PMID: 33041180 DOI: 10.1016/j.tim.2020.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
The cnidarian-dinoflagellate symbiosis is of huge importance as it underpins the success of coral reefs, yet we know very little about how the host cnidarian and its dinoflagellate endosymbionts communicate with each other to form a functionally integrated unit. Here, we review the current knowledge of interpartner molecular signaling in this symbiosis, with an emphasis on lipids, glycans, reactive species, biogenic volatiles, and noncoding RNA. We draw upon evidence of these compounds from recent omics-based studies of cnidarian-dinoflagellate symbiosis and discuss the signaling roles that they play in other, better-studied symbioses. We then consider how improved knowledge of interpartner signaling might be used to develop solutions to the coral reef crisis by, for example, engineering more thermally resistant corals.
Collapse
Affiliation(s)
- Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, PO Box 123, Broadway NSW 2007, Australia
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| |
Collapse
|
20
|
Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME JOURNAL 2020; 15:93-108. [PMID: 32895494 PMCID: PMC7852612 DOI: 10.1038/s41396-020-00763-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
How microbe–microbe interactions dictate microbial complexity in the mosquito gut is unclear. Previously we found that, Serratia, a gut symbiont that alters vector competence and is being considered for vector control, poorly colonized Aedes aegypti yet was abundant in Culex quinquefasciatus reared under identical conditions. To investigate the incompatibility between Serratia and Ae. aegypti, we characterized two distinct strains of Serratia marcescens from Cx. quinquefasciatus and examined their ability to infect Ae. aegypti. Both Serratia strains poorly infected Ae. aegypti, but when microbiome homeostasis was disrupted, the prevalence and titers of Serratia were similar to the infection in its native host. Examination of multiple genetically diverse Ae. aegypti lines found microbial interference to S. marcescens was commonplace, however, one line of Ae. aegypti was susceptible to infection. Microbiome analysis of resistant and susceptible lines indicated an inverse correlation between Enterobacteriaceae bacteria and Serratia, and experimental co-infections in a gnotobiotic system recapitulated the interference phenotype. Furthermore, we observed an effect on host behavior; Serratia exposure to Ae. aegypti disrupted their feeding behavior, and this phenotype was also reliant on interactions with their native microbiota. Our work highlights the complexity of host–microbe interactions and provides evidence that microbial interactions influence mosquito behavior.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher M Roundy
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Paediatrics and Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Hart
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Global Health and Translational Science and SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fovanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
21
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
22
|
Draft Genome Sequences of Two Cultivable Strains of the Bacterial Symbiont Serratia symbiotica. Microbiol Resour Announc 2020; 9:9/10/e01579-19. [PMID: 32139562 PMCID: PMC7171224 DOI: 10.1128/mra.01579-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia symbiotica, one of the most frequent symbiont species in aphids, includes strains that exhibit various lifestyles ranging from free-living to obligate intracellular mutualism. Here, we report the draft genome sequences of two strains, namely, 24.1 and Apa8A1, isolated from aphids of the genus Aphis, consisting of genome sizes of 3,089,091 bp and 3,232,107 bp, respectively. These genome sequences may provide new insights into how mutualistic interactions between bacteria and insects evolve and are shaped. Serratia symbiotica, one of the most frequent symbiont species in aphids, includes strains that exhibit various lifestyles ranging from free-living to obligate intracellular mutualism. Here, we report the draft genome sequences of two strains, namely, 24.1 and Apa8A1, isolated from aphids of the genus Aphis, consisting of genome sizes of 3,089,091 bp and 3,232,107 bp, respectively. These genome sequences may provide new insights into how mutualistic interactions between bacteria and insects evolve and are shaped.
Collapse
|
23
|
Fitness costs of the cultivable symbiont Serratia symbiotica and its phenotypic consequences to aphids in presence of environmental stressors. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Renoz F, Pons I, Vanderpoorten A, Bataille G, Noël C, Foray V, Pierson V, Hance T. Evidence for Gut-Associated Serratia symbiotica in Wild Aphids and Ants Provides New Perspectives on the Evolution of Bacterial Mutualism in Insects. MICROBIAL ECOLOGY 2019; 78:159-169. [PMID: 30276419 DOI: 10.1007/s00248-018-1265-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Many insects engage in symbiotic associations with diverse assemblages of bacterial symbionts that can deeply impact on their ecology and evolution. The intraspecific variation of symbionts remains poorly assessed while phenotypic effects and transmission behaviors, which are key processes for the persistence and evolution of symbioses, may differ widely depending on the symbiont strains. Serratia symbiotica is one of the most frequent symbiont species in aphids and a valuable model to assess this intraspecific variation since it includes both facultative and obligate symbiotic strains. Despite evidence that some facultative S. symbiotica strains exhibit a free-living capacity, the presence of these strains in wild aphid populations, as well as in insects with which they maintain regular contact, has never been demonstrated. Here, we examined the prevalence, diversity, and tissue tropism of S. symbiotica in wild aphids and associated ants. We found a high occurrence of S. symbiotica infection in ant populations, especially when having tended infected aphid colonies. We also found that the S. symbiotica diversity includes strains found located within the gut of aphids and ants. In the latter, this tissue tropism was found restricted to the proventriculus. Altogether, these findings highlight the extraordinary diversity and versatility of an insect symbiont and suggest the existence of novel routes for symbiont acquisition in insects.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium.
| | - Inès Pons
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Alain Vanderpoorten
- Department of Biology, Institute of Botany, University of Liège, B22 Sart Tilman, 4000, Liege, Belgium
| | - Gwennaël Bataille
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR CNRS 5237, 34293, Montpellier, France
| | - Valentin Pierson
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du sud 4-5, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
25
|
New Insights into the Nature of Symbiotic Associations in Aphids: Infection Process, Biological Effects, and Transmission Mode of Cultivable Serratia symbiotica Bacteria. Appl Environ Microbiol 2019; 85:AEM.02445-18. [PMID: 30850430 DOI: 10.1128/aem.02445-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
Abstract
Symbiotic microorganisms are widespread in nature and can play a major role in the ecology and evolution of animals. The aphid-Serratia symbiotica bacterium interaction provides a valuable model to study the mechanisms behind these symbiotic associations. The recent discovery of cultivable S. symbiotica strains with a free-living lifestyle allowed us to simulate their environmental acquisition by aphids to examine the mechanisms involved in this infection pathway. Here, after oral ingestion, we analyzed the infection dynamics of cultivable S. symbiotica during the host's lifetime using quantitative PCR and fluorescence techniques and determined the immediate fitness consequences of these bacteria on their new host. We further examined the transmission behavior and phylogenetic position of cultivable strains. Our study revealed that cultivable S. symbiotica bacteria are predisposed to establish a symbiotic association with a new aphid host, settling in its gut. We show that cultivable S. symbiotica bacteria colonize the entire aphid digestive tract following infection, after which the bacteria multiply exponentially during aphid development. Our results further reveal that gut colonization by the bacteria induces a fitness cost to their hosts. Nevertheless, it appeared that the bacteria also offer an immediate protection against parasitoids. Interestingly, cultivable S. symbiotica strains seem to be extracellularly transmitted, possibly through the honeydew, while S. symbiotica is generally considered a maternally transmitted bacterium living within the aphid body cavity and bringing some benefits to its hosts, despite its costs. These findings provide new insights into the nature of symbiosis in aphids and the mechanisms underpinning these interactions.IMPORTANCE S. symbiotica is one of the most common symbionts among aphid populations and includes a wide variety of strains whose degree of interdependence on the host may vary considerably. S. symbiotica strains with a free-living capacity have recently been isolated from aphids. By using these strains, we established artificial associations by simulating new bacterial acquisitions involved in aphid gut infections to decipher their infection processes and biological effects on their new hosts. Our results showed the early stages involved in this route of infection. So far, S. symbiotica has been considered a maternally transmitted aphid endosymbiont. Nevertheless, we show that our cultivable S. symbiotica strains occupy and replicate in the aphid gut and seem to be transmitted over generations through an environmental transmission mechanism. Moreover, cultivable S. symbiotica bacteria are both parasites and mutualists given the context, as are many aphid endosymbionts. Our findings give new perception of the associations involved in bacterial mutualism in aphids.
Collapse
|
26
|
Skaljac M, Vogel H, Wielsch N, Mihajlovic S, Vilcinskas A. Transmission of a Protease-Secreting Bacterial Symbiont Among Pea Aphids via Host Plants. Front Physiol 2019; 10:438. [PMID: 31057424 PMCID: PMC6479166 DOI: 10.3389/fphys.2019.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
Aphids are economically important pest insects that damage plants by phloem feeding and the transmission of plant viruses. Their ability to feed exclusively on nutritionally poor phloem sap is dependent on the obligatory symbiotic bacterium Buchnera aphidicola, but additional facultative symbionts may also be present, a common example of which is Serratia symbiotica. Many Serratia species secrete extracellular enzymes, so we hypothesised that S. symbiotica may produce proteases that help aphids to feed on plants. Molecular analysis, including fluorescence in situ hybridization (FISH), revealed that S. symbiotica colonises the gut, salivary glands and mouthparts (including the stylet) of the pea aphid Acyrthosiphon pisum, providing a mechanism to transfer the symbiont into host plants. S. symbiotica was also detected in plant tissues wounded by the penetrating stylet and was transferred to naïve aphids feeding on plants containing this symbiont. The maintenance of S. symbiotica by repeated transmission via plants may explain the high frequency of this symbiont in aphid populations. Proteomic analysis of the supernatant from a related but cultivable S. symbiotica strain cultured in liquid medium revealed the presence of known and novel proteases including metalloproteases. The corresponding transcripts encoding these S. symbiotica enzymes were detected in A. pisum and in plants carrying the symbiont, although the mRNA was much more abundant in the aphids. Our data suggest that enzymes from S. symbiotica may facilitate the digestion of plant proteins, thereby helping to suppress plant defense, and that the symbionts are important mediators of aphid–plant interactions.
Collapse
Affiliation(s)
- Marisa Skaljac
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Heiko Vogel
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
27
|
Pons I, Renoz F, Noël C, Hance T. Circulation of the Cultivable Symbiont Serratia symbiotica in Aphids Is Mediated by Plants. Front Microbiol 2019; 10:764. [PMID: 31037067 PMCID: PMC6476230 DOI: 10.3389/fmicb.2019.00764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
Symbiosis is a common phenomenon in nature that substantially affects organismal ecology and evolution. Fundamental questions regarding how mutualistic associations arise and evolve in nature remain, however, poorly studied. The aphid-Serratia symbiotica bacterium interaction represents a valuable model to study mechanisms shaping these symbiotic interspecific interactions. S. symbiotica strains capable of living independently of aphid hosts have recently been isolated. These strains probably resulted from horizontal transfers and could be an evolutionary link to an intra-organismal symbiosis. In this context, we used the tripartite interaction between the aphid Aphis fabae, a cultivable S. symbiotica bacterium, and the host plant Vicia faba to evaluate the bacterium ability to circulate in this system, exploring its environmental acquisition by aphids and horizontal transmission between aphids via the host plant. Using molecular analyses and fluorescence techniques, we showed that the cultivable S. symbiotica can enter the plants and induce new bacterial infections in aphids feeding on these new infected plants. Remarkably, we also found that the bacterium can have positive effects on the host plant, mainly at the root level. Furthermore, our results demonstrated that cultivable S. symbiotica can be horizontally transferred from infected to uninfected aphids sharing the same plant, providing first direct evidence that plants can mediate horizontal transmission of certain strains of this symbiont species. These findings highlight the importance of considering symbiotic associations in complex systems where microorganisms can circulate between different compartments. Our study can thus have major implications for understanding the multifaceted interactions between microbes, insects and plants.
Collapse
Affiliation(s)
- Inès Pons
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
28
|
Yu J, Wang M, Liu B, Yue X, Li C. Gill symbionts of the cold-seep mussel Bathymodiolus platifrons: Composition, environmental dependency and immune control. FISH & SHELLFISH IMMUNOLOGY 2019; 86:246-252. [PMID: 30458311 DOI: 10.1016/j.fsi.2018.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Deep-sea Bathymodiolus mussels depend on the organic carbon supplied by symbionts inside their gills. In this study, optimized methods of quantitative real-time PCR and fluorescence in situ hybridization targeted to both mRNA and 16S rRNA were used to investigate the gill symbionts of the cold-seep mussel Bathymodiolus platifrons, including species composition, environmental dependency and immune control by the host. Our results showed that methanotrophs were the major symbiotic bacteria in the gills of B. platifrons, while thiotrophs were scarce. In the mussels freshly collected from the deep sea, methanotrophs were housed in bacteriocytes in a unique circular pattern, and a lysosome-related gene (VAMP) encoding a vesicle-associated membrane protein was expressed at a high level and presented exactly where the methanotrophs occurred. After the mussels were reared for three months in aquaria without methane supply, the abundance of methanotrophs decreased significantly and their circle-shaped distribution pattern disappeared; in addition, the expression of VAMP decreased significantly. These results suggest that the symbiosis between B. platifrons and methanotrophs is influenced by the environment and that the lysosomal system plays an important immune role in controlling the abundance of endosymbionts in host. This study provides a reliable method for investigating symbionts in deep-sea mussels and enriches the knowledge about symbionts in B. platifrons.
Collapse
Affiliation(s)
- Jiajia Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minxiao Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China
| | - Baozhong Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China
| | - Xin Yue
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Chaolun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266000, China.
| |
Collapse
|
29
|
The Intestinal Microbiota of Hermetia illucens Larvae Is Affected by Diet and Shows a Diverse Composition in the Different Midgut Regions. Appl Environ Microbiol 2019; 85:AEM.01864-18. [PMID: 30504212 DOI: 10.1128/aem.01864-18] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
The larva of the black soldier fly (Hermetia illucens) has emerged as an efficient system for the bioconversion of organic waste. Although many research efforts are devoted to the optimization of rearing conditions to increase the yield of the bioconversion process, microbiological aspects related to this insect are still neglected. Here, we describe the microbiota of the midgut of H. illucens larvae, showing the effect of different diets and midgut regions in shaping microbial load and diversity. The bacterial communities residing in the three parts of the midgut, characterized by remarkable changes in luminal pH values, differed in terms of bacterial numbers and microbiota composition. The microbiota of the anterior part of the midgut showed the highest diversity, which gradually decreased along the midgut, whereas bacterial load had an opposite trend, being maximal in the posterior region. The results also showed that the influence of the microbial content of ingested food was limited to the anterior part of the midgut, and that the feeding activity of H. illucens larvae did not significantly affect the microbiota of the substrate. Moreover, a high protein content compared to other macronutrients in the feeding substrate seemed to favor midgut dysbiosis. The overall data indicate the importance of taking into account the presence of different midgut structural and functional domains, as well as the substrate microbiota, in any further study that aims at clarifying microbiological aspects concerning H. illucens larval midgut.IMPORTANCE The demand for food of animal origin is expected to increase by 2050. Since traditional protein sources for monogastric diets are failing to meet the increasing demand for additional feed production, there is an urgent need to find alternative protein sources. The larvae of Hermetia illucens emerge as efficient converters of low-quality biomass into nutritionally valuable proteins. Many studies have been performed to optimize H. illucens mass rearing on a number of organic substrates and to quantitatively and qualitatively maximize the biomass yield. On the contrary, although the insect microbiota can be fundamental for bioconversion processes and its characterization is mandatory also for safety aspects, this topic is largely overlooked. Here, we provide an in-depth study of the microbiota of H. illucens larval midgut, taking into account pivotal aspects, such as the midgut spatial and functional regionalization, as well as microbiota and nutrient composition of the feeding substrate.
Collapse
|
30
|
Wu HX, Chen X, Chen H, Lu Q, Yang Z, Ren W, Liu J, Shao S, Wang C, King-Jones K, Chen MS. Variation and diversification of the microbiome of Schlechtendalia chinensis on two alternate host plants. PLoS One 2018; 13:e0200049. [PMID: 30408037 PMCID: PMC6224032 DOI: 10.1371/journal.pone.0200049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023] Open
Abstract
Schlechtendalia chinensis, a gall-inducing aphid, has two host plants in its life cycle. Its wintering host is a moss (typically Plagiomnium maximoviczii) and its main host is Rhus chinensis (Sumac), on which it forms galls during the summer. This study investigated bacteria associated with S. chinensis living on the two different host plants by sequencing 16S rRNAs. A total of 183 Operational Taxonomic Units (OTUs) from 50 genera were identified from aphids living on moss, whereas 182 OTUs from 49 genera were found from aphids living in Sumac galls. The most abundant bacterial genus among identified OTUs from aphids feeding on both hosts was Buchnera. Despite similar numbers of OTUs, the composition of bacterial taxa showed significant differences between aphids living on moss and those living on R. chinensis. Specifically, there were 12 OTUs from 5 genera (family) unique to aphids living on moss, and 11 OTUs from 4 genera (family) unique to aphids feeding in galls on R. chinensis. Principal Coordinate Analysis (PCoA) also revealed that bacteria from moss-residing aphids clustered differently from aphids collected from galls. Our results provide a foundation for future analyses on the roles of symbiotic bacteria in plant-aphid interactions in general, and how gall-specific symbionts differ in this respect.
Collapse
Affiliation(s)
- Hai-Xia Wu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Xiaoming Chen
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Hang Chen
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Qin Lu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Zixiang Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Weibin Ren
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Juan Liu
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Shuxia Shao
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China
| | - Chao Wang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China.,The Key Laboratory of Cultivating and Utilization of Resources Insects, State Forestry Administration, Kunming, China.,Southwest Forestry University, Bailongsi, Kunming City, Yunnan, PR. China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Biological Sciences Bldg., Edmonton, Alberta, Canada
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
31
|
Grigorescu AS, Renoz F, Sabri A, Foray V, Hance T, Thonart P. Accessing the Hidden Microbial Diversity of Aphids: an Illustration of How Culture-Dependent Methods Can Be Used to Decipher the Insect Microbiota. MICROBIAL ECOLOGY 2018; 75:1035-1048. [PMID: 29119316 DOI: 10.1007/s00248-017-1092-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Microorganism communities that live inside insects can play critical roles in host development, nutrition, immunity, physiology, and behavior. Over the past decade, high-throughput sequencing reveals the extraordinary microbial diversity associated with various insect species and provides information independent of our ability to culture these microbes. However, their cultivation in the laboratory remains crucial for a deep understanding of their physiology and the roles they play in host insects. Aphids are insects that received specific attention because of their ability to form symbiotic associations with a wide range of endosymbionts that are considered as the core microbiome of these sap-feeding insects. But, if the functional diversity of obligate and facultative endosymbionts has been extensively studied in aphids, the diversity of gut symbionts and other associated microorganisms received limited consideration. Herein, we present a culture-dependent method that allowed us to successfully isolate microorganisms from several aphid species. The isolated microorganisms were assigned to 24 bacterial genera from the Actinobacteria, Firmicutes, and Proteobacteria phyla and three fungal genera from the Ascomycota and Basidiomycota phyla. In our study, we succeeded in isolating already described bacteria found associated to aphids (e.g., the facultative symbiont Serratia symbiotica), as well as microorganisms that have never been described in aphids before. By unraveling a microbial community that so far has been ignored, our study expands our current knowledge on the microbial diversity associated with aphids and illustrates how fast and simple culture-dependent approaches can be applied to insects in order to capture their diverse microbiota members.
Collapse
Affiliation(s)
- Alina S Grigorescu
- Walloon Center of Industrial Biology, Université de Liège, Sart-Tilman, B40, 4000, Liège, Belgium.
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Center, Université Catholique de Louvain, Croix de Sud 4-5, bte L7.07.04, 1348, Louvain-la-Neuve, Belgium.
| | - Ahmed Sabri
- Artechno SA, Rue Herman Meganck 21, 5032, Isnes, Belgium
| | - Vincent Foray
- Centre de Recherches de Biochimie Macromoléculaire (UMR-CNRS 5237), 1919, Route de Mende, 34293, Montpellier Cedex 05, France
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Center, Université Catholique de Louvain, Croix de Sud 4-5, bte L7.07.04, 1348, Louvain-la-Neuve, Belgium
| | - Philippe Thonart
- Walloon Center of Industrial Biology, Université de Liège, Sart-Tilman, B40, 4000, Liège, Belgium
| |
Collapse
|
32
|
Two Phytoplasmas Elicit Different Responses in the Insect Vector Euscelidius variegatus Kirschbaum. Infect Immun 2018. [PMID: 29531134 DOI: 10.1128/iai.00042-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplasmas are plant-pathogenic bacteria transmitted by hemipteran insects. The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of flavescence dorée phytoplasma (FDp). The two phytoplasmas induce different effects on this species: CYp slightly improves whereas FDp negatively affects insect fitness. To investigate the molecular bases of these different responses, transcriptome sequencing (RNA-seq) analysis of E. variegatus infected with either CYp or FDp was performed. The sequencing provided the first de novo transcriptome assembly for a phytoplasma vector and a starting point for further analyses on differentially regulated genes, mainly related to immune system and energy metabolism. Insect phenoloxidase activity, immunocompetence, and body pigmentation were measured to investigate the immune response, while respiration and movement rates were quantified to confirm the effects on energy metabolism. The activation of the insect immune response upon infection with FDp, which is not naturally transmitted by E. variegatus, confirmed that this bacterium is mostly perceived as a potential pathogen. Conversely, the acquisition of CYp, which is naturally transmitted by E. variegatus, seems to increase the insect fitness by inducing a prompt response to stress. This long-term relationship is likely to improve survival and dispersal of the infected insect, thus enhancing the opportunity of phytoplasma transmission.
Collapse
|
33
|
Wang Y, Rozen DE. Gut microbiota in the burying beetle, Nicrophorus vespilloides, provide colonization resistance against larval bacterial pathogens. Ecol Evol 2018; 8:1646-1654. [PMID: 29435240 PMCID: PMC5792511 DOI: 10.1002/ece3.3589] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Carrion beetles, Nicrophorus vespilloides, are reared on decomposing carrion where larvae are exposed to high populations of carcass-derived bacteria. Larvae do not become colonized with these bacteria but instead are colonized with the gut microbiome of their parents, suggesting that bacteria in the beetle microbiome outcompete the carcass-derived species for larval colonization. Here, we test this hypothesis and quantify the fitness consequences of colonization with different bacterial symbionts. First, we show that beetles colonized by their endogenous microbiome produce heavier broods than those colonized with carcass-bacteria. Next, we show that bacteria from the endogenous microbiome, including Providencia rettgeri and Morganella morganii, are better colonizers of the beetle gut and can outcompete nonendogenous species, including Serratia marcescens and Escherichia coli, during in vivo competition. Finally, we find that Providencia and Morganella provide beetles with colonization resistance against Serratia and thereby reduce Serratia-induced larval mortality. This effect is eliminated in larvae first colonized by Serratia, suggesting that while competition within the larval gut is determined by priority effects, these effects are less important for Serratia-induced mortality. Our work suggests that an unappreciated benefit of parental care in N. vespilloides is the social transmission of the microbiome from parents to offspring.
Collapse
Affiliation(s)
- Yin Wang
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
34
|
Skidmore IH, Hansen AK. The evolutionary development of plant-feeding insects and their nutritional endosymbionts. INSECT SCIENCE 2017; 24:910-928. [PMID: 28371395 DOI: 10.1111/1744-7917.12463] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions.
Collapse
Affiliation(s)
- Isabel H Skidmore
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
35
|
Renoz F, Champagne A, Degand H, Faber AM, Morsomme P, Foray V, Hance T. Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont. PeerJ 2017; 5:e3291. [PMID: 28503376 PMCID: PMC5426354 DOI: 10.7717/peerj.3291] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
Symbiotic bacteria are common in insects and can affect various aspects of their hosts’ biology. Although the effects of insect symbionts have been clarified for various insect symbiosis models, due to the difficulty of cultivating them in vitro, there is still limited knowledge available on the molecular features that drive symbiosis. Serratia symbiotica is one of the most common symbionts found in aphids. The recent findings of free-living strains that are considered as nascent partners of aphids provide the opportunity to examine the molecular mechanisms that a symbiont can deploy at the early stages of the symbiosis (i.e., symbiotic factors). In this work, a proteomic approach was used to establish a comprehensive proteome map of the free-living S. symbiotica strain CWBI-2.3T. Most of the 720 proteins identified are related to housekeeping or primary metabolism. Of these, 76 were identified as candidate proteins possibly promoting host colonization. Our results provide strong evidence that S. symbiotica CWBI-2.3T is well-armed for invading insect host tissues, and suggest that certain molecular features usually harbored by pathogenic bacteria are no longer present. This comprehensive proteome map provides a series of candidate genes for further studies to understand the molecular cross-talk between insects and symbiotic bacteria.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Reasearch Center, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antoine Champagne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne-Marie Faber
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Montpellier, France
| | - Thierry Hance
- Biodiversity Reasearch Center, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Hoang KL, Morran LT, Gerardo NM. Experimental Evolution as an Underutilized Tool for Studying Beneficial Animal-Microbe Interactions. Front Microbiol 2016; 7:1444. [PMID: 27679620 PMCID: PMC5020044 DOI: 10.3389/fmicb.2016.01444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
Microorganisms play a significant role in the evolution and functioning of the eukaryotes with which they interact. Much of our understanding of beneficial host–microbe interactions stems from studying already established associations; we often infer the genotypic and environmental conditions that led to the existing host–microbe relationships. However, several outstanding questions remain, including understanding how host and microbial (internal) traits, and ecological and evolutionary (external) processes, influence the origin of beneficial host–microbe associations. Experimental evolution has helped address a range of evolutionary and ecological questions across different model systems; however, it has been greatly underutilized as a tool to study beneficial host–microbe associations. In this review, we suggest ways in which experimental evolution can further our understanding of the proximate and ultimate mechanisms shaping mutualistic interactions between eukaryotic hosts and microbes. By tracking beneficial interactions under defined conditions or evolving novel associations among hosts and microbes with little prior evolutionary interaction, we can link specific genotypes to phenotypes that can be directly measured. Moreover, this approach will help address existing puzzles in beneficial symbiosis research: how symbioses evolve, how symbioses are maintained, and how both host and microbe influence their partner’s evolutionary trajectories. By bridging theoretical predictions and empirical tests, experimental evolution provides us with another approach to test hypotheses regarding the evolution of beneficial host–microbe associations.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Levi T Morran
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| | - Nicole M Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University Atlanta, GA, USA
| |
Collapse
|
37
|
Nitrogen hurdle of host alternation for a polyphagous aphid and the associated changes of endosymbionts. Sci Rep 2016; 6:24781. [PMID: 27094934 PMCID: PMC4837378 DOI: 10.1038/srep24781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/31/2016] [Indexed: 02/02/2023] Open
Abstract
Low proportion of essential amino acids (EAAs) is one of the barriers for animals to use phloem as a diet. Endosymbionts with EAAs synthesis functions are considered crucial for ameliorating the lack of EAAs in insects’ diets. In this study, we transferred the insects from a cabbage-reared Myzus persicae population onto 3 new plant species including eggplant, tobacco and spinach. The performance on these plants was evaluated and the dynamics of endosymbionts in relation to this host alternation were recorded. We found that the EAAs ratio in phloem was largely determined by the concentrations of non-essential amino acids and the higher proportion of EAAs seemed to favor the population establishment on new plant species and the growth of primary endosymbionts inside insects, which indicated that nitrogen quality was an important factor for aphids to infest and spread on new plant hosts.
Collapse
|
38
|
Oogenesis in the Bemisia tabaci MEAM1 species complex. Micron 2016; 83:1-10. [PMID: 26826802 DOI: 10.1016/j.micron.2016.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
The whitefly Bemisia tabaci MEAM1 species complex has invaded several parts of the world in the past 30 years and replaced native whitefly populations in the invaded regions, including certain areas of China. One of the possible reasons for the invasion is that MEAM1 whiteflies are more fecund than native species. However, the factors that affect the reproduction of the B. tabaci cryptic species are not clearly known. The regulation of oogenesis is thought to be one of the essential processes for egg formation and ovary development and could affect its population dynamics. In this study, the ovariole structure and oogenesis of the MEAM1 species complex was examined using light and transmission electron microscopy. Telotrophic ovarioles were observed in the MEAM1 species complex. Each ovariole had two well defined regions: the tropharium and the vitellarium. The tropharium always had more than ten trophocytes. The development of a single oocyte in the vitellarium has four phases: oocyte formation, previtellogenesis, vitellogenesis and choriogenesis. Two arrested oocytes, follicular cells and uncompleted oocytes were separated from the tropharium by microtubule and microfilaments. Early previtellogenesis oocytes absorbed nutrients and endosymbiont bacteria through a nutritive cord. However, the vitellogenesis of oocytes transmitted Vg through both the nutritive cord and the space between follicular cells. Each mature oocyte with deposited yolk proteins had only one bacteriocyte and was surrounded by a single layer of follicular cells. The oogenesis in the B. tabaci MEAM1 species complex concluded with the differentiation of oocytes, the transport of yolk and endosymbionts as well as the development and maturation of oocytes. This result provides important information that further defines the regulation of oogenesis in the B. tabaci complex.
Collapse
|