1
|
Ashtari M, Bennett J, Leopold DA. Central visual pathways affected by degenerative retinal disease before and after gene therapy. Brain 2024; 147:3234-3246. [PMID: 38538211 PMCID: PMC11370797 DOI: 10.1093/brain/awae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic diseases affecting the retina can result in partial or complete loss of visual function. Leber's congenital amaurosis (LCA) is a rare blinding disease, usually inherited in an autosomally recessive manner, with no cure. Retinal gene therapy has been shown to improve vision in LCA patients caused by mutations in the RPE65 gene (LCA2). However, little is known about how activity in central visual pathways is affected by the disease or by subsequent gene therapy. Functional MRI (fMRI) was used to assess retinal signal transmission in cortical and subcortical visual structures before and 1 year after retinal intervention. The fMRI paradigm consisted of 15-s blocks of flickering (8 Hz) black and white checkerboards interleaved with 15 s of blank (black) screen. Visual activation in the brain was assessed using the general linear model, with multiple comparisons corrected using the false discovery rate method. Response to visual stimulation through untreated eyes of LCA2 patients showed heightened fMRI responses in the superior colliculus and diminished activities in the lateral geniculate nucleus (LGN) compared to controls, indicating a shift in the patients' visual processing towards the retinotectal pathway. Following gene therapy, stimuli presented to the treated eye elicited significantly stronger fMRI responses in the LGN and primary visual cortex, indicating some re-engagement of the geniculostriate pathway (GS) pathway. Across patients, the post-treatment LGN fMRI responses correlated significantly with performance on a clinical test measuring light sensitivity. Our results demonstrate that the low vision observed in LCA2 patients involves a shift in visual processing toward the retinotectal pathway, and that gene therapy partially reinstates visual transmission through the GS pathway. This selective boosting of retinal output through the GS pathway and its correlation to improved visual performance, following several years of degenerative retinal disease, is striking. However, while retinal gene therapy and other ocular interventions have given hope to RPE65 patients, it may take years before development of therapies tailored to treat the diseases in other low vision patients are available. Our demonstration of a shift toward the retinotectal pathway in these patients may spur the development of new tools and rehabilitation strategies to help maximize the use of residual visual abilities and augment experience-dependent plasticity.
Collapse
Affiliation(s)
- Manzar Ashtari
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Paré S, Bleau M, Dricot L, Ptito M, Kupers R. Brain structural changes in blindness: a systematic review and an anatomical likelihood estimation (ALE) meta-analysis. Neurosci Biobehav Rev 2023; 150:105165. [PMID: 37054803 DOI: 10.1016/j.neubiorev.2023.105165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.
Collapse
Affiliation(s)
- Samuel Paré
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Marins TF, Russo M, Rodrigues EC, Monteiro M, Moll J, Felix D, Bouzas J, Arcanjo H, Vargas CD, Tovar‐Moll F. Reorganization of thalamocortical connections in congenitally blind humans. Hum Brain Mapp 2023; 44:2039-2049. [PMID: 36661404 PMCID: PMC9980890 DOI: 10.1002/hbm.26192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 01/21/2023] Open
Abstract
Cross-modal plasticity in blind individuals has been reported over the past decades showing that nonvisual information is carried and processed by "visual" brain structures. However, despite multiple efforts, the structural underpinnings of cross-modal plasticity in congenitally blind individuals remain unclear. We mapped thalamocortical connectivity and assessed the integrity of white matter of 10 congenitally blind individuals and 10 sighted controls. We hypothesized an aberrant thalamocortical pattern of connectivity taking place in the absence of visual stimuli from birth as a potential mechanism of cross-modal plasticity. In addition to the impaired microstructure of visual white matter bundles, we observed structural connectivity changes between the thalamus and occipital and temporal cortices. Specifically, the thalamic territory dedicated to connections with the occipital cortex was smaller and displayed weaker connectivity in congenitally blind individuals, whereas those connecting with the temporal cortex showed greater volume and increased connectivity. The abnormal pattern of thalamocortical connectivity included the lateral and medial geniculate nuclei and the pulvinar nucleus. For the first time in humans, a remapping of structural thalamocortical connections involving both unimodal and multimodal thalamic nuclei has been demonstrated, shedding light on the possible mechanisms of cross-modal plasticity in humans. The present findings may help understand the functional adaptations commonly observed in congenitally blind individuals.
Collapse
Affiliation(s)
- Theo F. Marins
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil,Post‐Graduation Program in Morphological Sciences (PCM) of the Institute of Biomedical Sciences (ICB)Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Maite Russo
- Institute of Biophysics Carlos Chagas Filho (IBCCF)Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | | | - Marina Monteiro
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
| | - Jorge Moll
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
| | - Daniel Felix
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
| | - Julia Bouzas
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
| | - Helena Arcanjo
- Centro de Oftalmologia EspecializadaRio de JaneiroBrazil
| | - Claudia D. Vargas
- Institute of Biophysics Carlos Chagas Filho (IBCCF)Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Fernanda Tovar‐Moll
- D'Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil,Post‐Graduation Program in Morphological Sciences (PCM) of the Institute of Biomedical Sciences (ICB)Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| |
Collapse
|
4
|
Chamard C, Maller JJ, Menjot N, Debourdeau E, Nael V, Ritchie K, Carriere I, Daien V. Association Between Vision and Brain Cortical Thickness in a Community-Dwelling Elderly Cohort. Eye Brain 2022; 14:71-82. [PMID: 35859801 PMCID: PMC9292457 DOI: 10.2147/eb.s358384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/21/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose Visual impairment is a major cause of disability and impairment of cognitive function in older people. Brain structural changes associated with visual function impairment are not well understood. The objective of this study was to assess the association between visual function and cortical thickness in older adults. Methods Participants were selected from the French population-based ESPRIT cohort of 2259 community-dwelling adults ≥65 years old enrolled between 1999 and 2001. We considered visual function and brain MRI images at the 12-year follow-up in participants who were right-handed and free of dementia and/or stroke, randomly selected from the whole cohort. High-resolution structural T1-weighted brain scans acquired with a 3-Tesla scanner. Regional reconstruction and segmentation involved using the FreeSurfer image-analysis suite. Results A total of 215 participants were included (mean [SD] age 81.8 [3.7] years; 53.0% women): 30 (14.0%) had central vision loss and 185 (86.0%) normal central vision. Vision loss was associated with thinner cortical thickness in the right insula (within the lateral sulcus of the brain) as compared with the control group (mean thickness 2.38 [0.04] vs 2.50 [0.03] mm, 4.8% thinning, pcorrected= 0.04) after adjustment for age, sex, lifetime depression and cardiovascular disease. Conclusion The present study describes a significant thinning of the right insular cortex in older adults with vision loss. The insula subserves a wide variety of functions in humans ranging from sensory and affective processing to high-level cognitive processing. Reduced insula thickness associated with vision loss may increase cognitive burden in the ageing brain.
Collapse
Affiliation(s)
- Chloé Chamard
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, F-34000, France.,Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France
| | - Jerome J Maller
- General Electric Healthcare, Melbourne, VIC, Australia.,Monash Alfred Psychiatry Research Centre, Melbourne, VIC, Australia
| | - Nicolas Menjot
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier, F-34000, France
| | - Eloi Debourdeau
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, F-34000, France
| | - Virginie Nael
- Bordeaux Population Health Research Center, UMR 1219, University Bordeaux, INSERM, Bordeaux, F-33000, France
| | - Karen Ritchie
- Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France.,Department of Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Isabelle Carriere
- Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France
| | - Vincent Daien
- Department of Ophthalmology, Gui de Chauliac Hospital, Montpellier, F-34000, France.,Institute for Neurosciences of Montpellier INM, University Montpellier, INSERM, Montpellier, F-34091, France.,The Save Sight Institute, Sydney Medical School, the University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Bridge H, Coullon GSL, Morjaria R, Trossman R, Warnaby CE, Leatherbarrow B, Foster RG, Downes SM. The Effect of Congenital and Acquired Bilateral Anophthalmia on Brain Structure. Neuroophthalmology 2021; 45:75-86. [PMID: 34108778 PMCID: PMC8158038 DOI: 10.1080/01658107.2020.1856143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The aim of this study was to compare the pattern of changes in brain structure resulting from congenital and acquired bilateral anophthalmia. Brain structure was investigated using 3T magnetic resonance imaging (MRI) in Oxford (congenital) or Manchester (acquired). T1-weighted structural and diffusion-weighted scans were acquired from people with anophthalmia and sighted control participants. Differences in grey matter between the groups were quantified using voxel-based morphometry and differences in white matter microstructure using tract-based spatial statistics. Quantification of optic nerve volume and cortical thickness in visual regions was also performed in all groups. The optic nerve was reduced in volume in both anophthalmic populations, but to a greater extent in the congenital group and anophthalmia acquired at an early age. A similar pattern was found for the white matter microstructure throughout the occipitotemporal regions of the brain, suggesting a greater reduction of integrity with increasing duration of anophthalmia. In contrast, grey matter volume changes differed between the two groups, with the acquired anophthalmia group showing a decrease in the calcarine sulcus, corresponding to the area that would have been peripheral primary visual cortex. In contrast, the acquired anophthalmia group showed a decrease in grey matter volume in the calcarine sulcus corresponding to the area that would have been peripheral primary visual cortex. There are both qualitative and quantitative differences in structural brain changes in congenital and acquired anophthalmia, indicating differential effects of development and degeneration.
Collapse
Affiliation(s)
- Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Gaelle S L Coullon
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rupal Morjaria
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK.,Birmingham Midland Eye Centre, Sandwell & West Birmingham Hospitals NHS Trust, Birmingham, West Midlands, UK
| | - Rebecca Trossman
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Catherine E Warnaby
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | - Russell G Foster
- Nuffield Department of Clinical Neurosciences, Sleep & Circadian Neuroscience Institute (SCNi) and Nuffield Laboratory of Ophthalmology, Oxford, UK
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
6
|
Anurova I, Carlson S, Rauschecker JP. Overlapping Anatomical Networks Convey Cross-Modal Suppression in the Sighted and Coactivation of "Visual" and Auditory Cortex in the Blind. Cereb Cortex 2020; 29:4863-4876. [PMID: 30843062 DOI: 10.1093/cercor/bhz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
In the present combined DTI/fMRI study we investigated adaptive plasticity of neural networks involved in controlling spatial and nonspatial auditory working memory in the early blind (EB). In both EB and sighted controls (SC), fractional anisotropy (FA) within the right inferior longitudinal fasciculus correlated positively with accuracy in a one-back sound localization but not sound identification task. The neural tracts passing through the cluster of significant correlation connected auditory and "visual" areas in the right hemisphere. Activity in these areas during both sound localization and identification correlated with FA within the anterior corpus callosum, anterior thalamic radiation, and inferior fronto-occipital fasciculus. In EB, FA in these structures correlated positively with activity in both auditory and "visual" areas, whereas FA in SC correlated positively with activity in auditory and negatively with activity in visual areas. The results indicate that frontal white matter conveys cross-modal suppression of occipital areas in SC, while it mediates coactivation of auditory and reorganized "visual" cortex in EB.
Collapse
Affiliation(s)
- Irina Anurova
- Helsinki Institute of Life Science, Neuroscience Center, University of Helsinki, Helsinki 00014, Finland.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo 02150, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.,Institute for Advanced Study, Technical University of Munich, Munich 85748, Germany
| |
Collapse
|
7
|
Liu YX, Li B, Wu KR, Tang LY, Lin Q, Li QH, Yuan Q, Shi WQ, Liang RB, Ge QM, Shao Y. Altered white matter integrity in patients with monocular blindness: A diffusion tensor imaging and tract-based spatial statistics study. Brain Behav 2020; 10:e01720. [PMID: 32558355 PMCID: PMC7428480 DOI: 10.1002/brb3.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Visual deprivation can lead to abnormal and plastic changes in the brain's visual system and other systems. Although the secondary changes of gray matter in patients have been well studied, the study of white matter is rare. In fact, subtle changes in white matter may be revealed by diffusion tensor imaging, and tract-based spatial statistics can be used to analyze DTI image data. PURPOSE In the present study, diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS) were used to investigate abnormal structural changes in the white matter (WM) of patients with monocular blindness (MB). METHODS We recruited 16 healthy controls (HC) (fourteen males and two females) and 16 patients (fifteen males and one female) with right-eye blindness (without differences in left-eye vision). All patients were of similar age. Data acquisition was performed using magnetic resonance imaging (MRI) and DTI. Voxel-based whole brain comparisons of fractional anisotropy (FA) and radial diffusivity (RD) of WM fibers in patients and HC were performed using the TBSS method. The mean FA and RD values for altered brain regions in MB patients were analyzed via the receiver operating characteristic (ROC) curve. Correlation analysis was performed to investigate the relationships between the average FA (RD) value of the whole brain and anxiety score, depression score, and visual function questionnaire score in MB patients. RESULTS In MB patients, the mean FA of the whole brain was decreased versus HC. Moreover, the FA values of the corpus callosum, the corona radiata, the posterior thalamic radiation, and the right retrolenticular part of internal capsule were significantly decreased. In addition, the average RD value of the whole brain in MB patients was higher than that observed in HC. The mean FA and RD values of brain regions were analyzed using the ROC curve, and the results showed that the area under the ROC curve was more accurate. Furthermore, the average FA and RD values of the whole brain were significantly correlated with anxiety score, depression score, and visual function-related quality of life score. CONCLUSION DTI and TBSS may be useful in examining abnormal spontaneous alterations in the WM of MB patients. The observed changes in FA and RD values may imply the larvaceous neurological mechanism involved in MB.
Collapse
Affiliation(s)
- Yu-Xin Liu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kang-Rui Wu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Ying Tang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, China
| | - Qi Lin
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing-Hai Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Yuan
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Tregillus KEM, Likova LT. Differences in the major fiber-tracts of people with congenital and acquired blindness. ACTA ACUST UNITED AC 2020; 2020:3661-3667. [PMID: 34541437 DOI: 10.2352/issn.2470-1173.2020.11.hvei-366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In order to better understand how our visual system processes information, we must understand the underlying brain connectivity architecture, and how it can get reorganized under visual deprivation. The full extent to which visual development and visual loss affect connectivity is not well known. To investigate the effect of the onset of blindness on structural connectivity both at the whole-brain voxel-wise level and at the level of all major white-matter tracts, we applied two complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted brain images were collected from three groups of participants: congenitally blind (CB), acquired blind (AB), and fully sighted controls. The differences between these groups were evaluated on a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three groups differed, congenitally blind participants tended to be more similar to sighted controls than to those participants who had acquired blindness later in life. These differences were specifically manifested in the left uncinated fasciculus, the right corticospinal fasciculus, and the left superior longitudinal fasciculus, areas broadly associated with a range of higher-level cognitive systems.
Collapse
Affiliation(s)
| | - Lora T Likova
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA
| |
Collapse
|
9
|
Hofstetter S, Sabbah N, Mohand-Saïd S, Sahel JA, Habas C, Safran AB, Amedi A. The development of white matter structural changes during the process of deterioration of the visual field. Sci Rep 2019; 9:2085. [PMID: 30765782 PMCID: PMC6375971 DOI: 10.1038/s41598-018-38430-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/27/2018] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence suggests that white matter plasticity in the adult brain is preserved after sensory and behavioral modifications. However, little is known about the progression of structural changes during the process of decline in visual input. Here we studied two groups of patients suffering from advanced retinitis pigmentosa with specific deterioration of the visual field: patients who had lost their peripheral visual field, retaining only central (“tunnel”) vision, and blind patients with complete visual field loss. Testing of these homogeneous groups made it possible to assess the extent to which the white matter is affected by loss of partial visual input and whether partially preserved visual input suffices to sustain stability in tracts beyond the primary visual system. Our results showed gradual changes in diffusivity that are indicative of degenerative processes in the primary visual pathway comprising the optic tract and the optic radiation. Interestingly, changes were also found in tracts of the ventral stream and the corticospinal fasciculus, depicting a gradual reorganisation of these tracts consequentially to the gradual loss of visual field coverage (from intact perception to partial vision to complete blindness). This reorganisation may point to microstructural plasticity underlying adaptive behavior and cross-modal integration after partial visual deprivation.
Collapse
Affiliation(s)
- Shir Hofstetter
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel.
| | - Norman Sabbah
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Fondation Ophtalmologique A. de Rothschild, F-75019, Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Christophe Habas
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Centre de Neuro-Imagerie, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, F-75012, France
| | - Avinoam B Safran
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, F-75012, Paris, France.,Department of Clinical Neurosciences, Geneva University School of Medicine, Geneva, Switzerland
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel. .,Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France. .,The Cognitive Science Program, The Hebrew University of Jerusalem, 91220, Jerusalem, Israel.
| |
Collapse
|
10
|
Hertrich I, Dietrich S, Ackermann H. Cortical phase locking to accelerated speech in blind and sighted listeners prior to and after training. BRAIN AND LANGUAGE 2018; 185:19-29. [PMID: 30025355 DOI: 10.1016/j.bandl.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Cross-correlation of magnetoencephalography (MEG) with time courses derived from the speech signal has shown differences in phase-locking between blind subjects able to comprehend accelerated speech and sighted controls. The present training study contributes to disentangle the effects of blindness and training. Both subject groups (baseline: n = 16 blind, 13 sighted; trained: 10 blind, 3 sighted) were able to enhance speech comprehension up to ca. 18 syllables per second. MEG responses phase-locked to syllable onsets were captured in five pre-defined source locations comprising left and right auditory cortex (A1), right visual cortex (V1), left inferior frontal gyrus (IFG) and left pre-supplementary motor area. Phase locking in A1 was consistently increased while V1 showed opposite training effects in blind and sighted subjects. Also the IFG showed some group differences indicating enhanced top-down strategies in sighted subjects while blind subjects may have a more fine-grained bottom-up resolution for accelerated speech.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Susanne Dietrich
- Department of Psychology, Evolutionary Cognition (Cognitive Sciences), University of Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
11
|
Shao Y, Bao J, Huang X, Zhou FQ, Ye L, Min YL, Yang L, Sethi Z, Yuan Q, Zhou Q. Comparative study of interhemispheric functional connectivity in left eye monocular blindness versus right eye monocular blindness: a resting-state functional MRI study. Oncotarget 2018; 9:14285-14295. [PMID: 29581843 PMCID: PMC5865669 DOI: 10.18632/oncotarget.24487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/25/2018] [Indexed: 11/25/2022] Open
Abstract
Objective In the present study, we investigated the brain interhemispheric functional connectivity changes in left eye MB versus right eye MB patients by voxel-mirrored homotopic connectivity (VMHC) methods. Methods A total of 31 patients with MB (15 with left eye MB and 16 with right eye MB), and 31 healthy controls (HCs) closely matched for age were recruited. All subjects underwent functional magnetic resonance imaging (fMRI) examinations. The VMHC method was used to evaluate directly functional interactions between the hemispheres. A one-way ANOVA was performed to determine the regions in which the VMHC differs between the three groups. Patients with MB were distinguished from HCs by a receiver operating characteristic (ROC) curve. The relationships between the mean VMHC signal values in many brain regions and clinical features in MB patients were calculated by pearson correlation analysis. Results Compared with HCs, MB patients had significantly decreased VMHC values in the cuneus/calcarine/lingual gyrus. Furthermore, left eye MB showed decreased VMHC values in the cuneus/calcarine/lingual gyrus and showed increased VMHC values in the insula and middle frontal gyrus compared with HC. In addition, right eye MB showed decreased VMHC values in the cuneus/calcarine/lingual gyrus, primary motor cortex (M1)/primary somatosensory cortex (S1) and superior parietal lobule. Conclusion MB subjects showed abnormal brain interhemispheric functional connectivity in visual pathways. Furthermore, different patterns of brain interhemispheric functional connectivity occurred in the left eye and right eye MB. These VMHC values provide much useful information to explain the neural mechanism changes in MB.
Collapse
Affiliation(s)
- Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jing Bao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,Department of Ophthalmology, The People's Hospital of Hubei Province, Wuhan 430060, Hubei, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zubin Sethi
- University of Miami, Miami, Florida 33146, USA
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
12
|
Wen Z, Zhou FQ, Huang X, Dan HD, Xie BJ, Shen Y. Altered functional connectivity of primary visual cortex in late blindness. Neuropsychiatr Dis Treat 2018; 14:3317-3327. [PMID: 30584305 PMCID: PMC6284854 DOI: 10.2147/ndt.s183751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies demonstrated that early blindness is associated with abnormal intrinsic functional connectivity (FC) between the primary visual cortex (V1) and other sensory areas. However, the V1 pattern of spontaneous neural activity occurring in late blindness (LB) remains unknown. The purpose of this study was to investigate the intrinsic FC patterns of V1 in LB. MATERIALS AND METHODS Thirty LB individuals (18 males and 12 females; mean age: 38.76±14.43 years) and 30 sighted controls (SCs) individuals (18 males and 12 females; mean age: 38.67±13.85 years) closely matched for age, sex, and education, underwent resting-state magnetic resonance imaging scans. Region of interest analysis was performed to extract the correlation coefficient matrix among each pair of Brodmann area (BA) 17 and FC between V1 and vision-related subcortical nuclei. RESULTS Compared with SCs, LB individuals showed a decreased FC between the left V1 and the bilateral cuneus (CUN)/lingual gyrus (LGG)/calcarine (CAL) (BA 18/19/30) and left precentral gyrus (PreCG) and the postcentral gyrus (PostCG) (BA 2/3/4). Also, LB individuals showed a decreased FC between the right V1 and the bilateral CUN/LGG/CAL (BA 18/19/30) and the left PreCG and PostCG (BA 2/3/4/6) (voxel-level: P<0.01, cluster-level: P<0.05). Meanwhile, LB individuals showed a decreased FC between the left V1 and the right V1 and increased FC between the left V1 and the right superior colliculus, the right V1, and the left hippocampus (P<0.05). Moreover, a positive correlation was observed between the onset age of blindness and FC values in V1 to CUN/LGG/CAL in LB. CONCLUSION Our results highlighted that LB induces a decreased FC between V1 and higher visual areas, motor cortices, and somatosensory cortices at rest. This might indicate that LB humans could present with impaired top-down modulations, visual imagery, and vision-motor function.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China,
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China,
| | - Han Dong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China,
| | - Bao-Jun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China,
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China,
| |
Collapse
|
13
|
Rokem A, Takemura H, Bock AS, Scherf KS, Behrmann M, Wandell BA, Fine I, Bridge H, Pestilli F. The visual white matter: The application of diffusion MRI and fiber tractography to vision science. J Vis 2017; 17:4. [PMID: 28196374 PMCID: PMC5317208 DOI: 10.1167/17.2.4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data.
Collapse
Affiliation(s)
- Ariel Rokem
- The University of Washington eScience Institute, Seattle, WA, ://arokem.org
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, JapanGraduate School of Frontier Biosciences, Osaka University, Suita-shi,
| | | | | | | | | | - Ione Fine
- University of Washington, Seattle, WA,
| | | | | |
Collapse
|
14
|
Zhong YF, Tang ZH, Qiang JW, Wu LJ, Wang R, Wang J, Jin LX, Xiao ZB. Changes in DTI parameters in the optic tracts of macaque monkeys with monocular blindness. Neurosci Lett 2016; 636:248-253. [PMID: 27864005 DOI: 10.1016/j.neulet.2016.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
For humans and non-human primates, the alteration of the visual pathway's white matter fibers after visual deprivation has been partially explored. However, the changes in the optic tracts after the transection of the optic nerve have not been well characterized. In the current study, we attempted to investigate the differences in optic tracts between normal and unilateral optic nerve transected macaque monkeys using diffusion tensor imaging (DTI). Four healthy neonatal macaque monkeys were randomly divided into 2 groups, with 2 in each group. Group A served as a control group, and Group B underwent unilateral (right eye) optic nerve transection to produce monocular blindness. Sixteen months (Group B16M) and thirty-two months (Group B32M) after optic nerve transection, diffusion tensor imaging was performed on all monkeys. Then, we compared fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) in bilateral optic tracts between Group A and Group B and between Group B16M and Group B32M. In both Group B16M and Group B32M, when compared with normal monkeys in Group A, FA was decreased and MD, AD and RD were increased in the bilateral optic tracts of monkeys with monocular blindness. Furthermore, compared with Group B16M, FA was reduced and MD, AD, RD were more obviously increased in the bilateral optic tracts of Group B32M, and noticeable differences in MD, AD and RD were found between the left and right optic tracts in group B32M. We believe that the results of this study would be helpful in investigation of the histological abnormalities of the integrity damage, axonal degeneration and demyelination of optic tracts in macaque monkeys with monocular blindness by DTI parameters in noninvasively and quantitatively.
Collapse
Affiliation(s)
- Yu-Feng Zhong
- Department of Radiology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Department of Radiology, Eye and ENT Hospital of Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuo-Hua Tang
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jin-Wei Qiang
- Department of Radiology, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ling-Jie Wu
- Department of Otolaryngology, Eye and ENT Hospital of Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Wang
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Radiotherapy, Eye and ENT Hospital of Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Xin Jin
- Siemens Ltd. Healthcare Sector, Shanghai, China
| | - Ze-Bin Xiao
- Department of Radiology, Eye and ENT Hospital of Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Abstract
Low vision is any type of visual impairment that affects activities of daily living. In the context of low vision, we define plasticity as changes in brain or perceptual behavior that follow the onset of visual impairment and that are not directly due to the underlying pathology. An important goal of low-vision research is to determine how plasticity affects visual performance of everyday activities. In this review, we consider the levels of the visual system at which plasticity occurs, the impact of age and visual experience on plasticity, and whether plastic changes are spontaneous or require explicit training. We also discuss how plasticity may affect low-vision rehabilitation. Developments in retinal imaging, noninvasive brain imaging, and eye tracking have supplemented traditional clinical and psychophysical methods for assessing how the visual system adapts to visual impairment. Findings from contemporary research are providing tools to guide people with low vision in adopting appropriate rehabilitation strategies.
Collapse
Affiliation(s)
- Gordon E Legge
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455;
| | - Susana T L Chung
- School of Optometry, University of California, Berkeley, California 94720;
| |
Collapse
|
16
|
Nau AC, Murphy MC, Chan KC. Use of sensory substitution devices as a model system for investigating cross-modal neuroplasticity in humans. Neural Regen Res 2015; 10:1717-9. [PMID: 26807088 PMCID: PMC4705765 DOI: 10.4103/1673-5374.169612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2015] [Indexed: 12/24/2022] Open
Affiliation(s)
- Amy C. Nau
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew C. Murphy
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C. Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|