1
|
Efficacy and Safety of Re Du Ning Injection for Acute Exacerbations of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7479639. [PMID: 35356238 PMCID: PMC8959946 DOI: 10.1155/2022/7479639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Background Re Du Ning, a traditional Chinese medicine injection, has been widely used for the treatment of chronic obstructive pulmonary disease, although without established systematic review evidence. This systematic review aimed to assess the efficacy and safety of Re Du Ning in the treatment of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Methods We searched seven databases (PubMed, Embase, the Cochrane Library, SinoMed, CNKI, WanFang, and the Chinese Clinical Trial Registry) up to November 1, 2021, to identify randomized controlled trials of Re Du Ning for AECOPD. Two researchers independently carried out literature screening and data extraction. Effects were measured by risk ratios (RRs) or mean differences (MDs) with 95% confidence intervals (CIs). The meta-analysis was completed by RevMan 5.4 software. Results Twenty-six studies met the eligibility criteria, with a total of 2284 patients. The findings of the meta-analysis indicated that the response rate of the experimental group was higher than that of the control group: RR = 1.14% and 95% CI: (1.09, 1.19). Significantly greater improvements in pulmonary function: FEV1: MD = 0.28 L, 95% CI: (0.20, 0.36); FEV1/FVC: MD = 8.63%, 95% CI: (4.68, 12.59); T-lymphocyte counts: CD4: MD = 6%, 95% CI: (2.44, 9.56); CD3: MD = 10.42%, 95% CI: (8.6, 12.24); CD4/CD8: MD = 0.38%, 95% CI: (0.32, 0.43); acid/base imbalance: PH: MD = 0.05, 95% CI: (0.01, 0.10); PaO2: MD = 9.02 mmHg, 95% CI: (11.11, 0.10), p=0.005; C-reactive protein: MD = -6.65 mg/L, 95% CI: (-10.97, -2.34); and PCT: MD = -0.28 μg/L, 95% (CI: -0.41, -0.15) were observed in patients receiving Re Du Ning compared with those receiving the control treatment. Re Du Ning did not significantly change the carbon dioxide partial pressure. All reported adverse reactions were mild. Conclusion Re Du Ning injection, as a complementary therapy to routine treatment, has better efficacy than Western medicine alone in relieving clinical symptoms, delaying pulmonary function decline, and improving inflammation indicators for AECOPD, with good safety. The evidence was limited by a lack of high-quality RCTs.
Collapse
|
2
|
Phytotherapy as Multi-Hit Therapy to Confront the Multiple Pathophysiology in Non-Alcoholic Fatty Liver Disease: A Systematic Review of Experimental Interventions. ACTA ACUST UNITED AC 2021; 57:medicina57080822. [PMID: 34441028 PMCID: PMC8400978 DOI: 10.3390/medicina57080822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is a metabolic condition distinguished by fat deposition in the hepatocytes. It has a prevalence of about 25% worldwide and is associated with other conditions such as diabetes mellitus, obesity, hypertension, etc. Background and Objectives: There is currently no approved drug therapy for NAFLD. Current measures in the management of NAFLD include lifestyle modification such as an increase in physical activity or weight loss. Development of NAFLD involves a number of parallel hits: including genetic predisposition, insulin resistance, disordered lipid metabolism, mitochondrial dysfunction, lipotoxicity, oxidative stress, etc. Herbal therapy may have a role to play in the treatment of NAFLD, due to their numerous bioactive constituents and the multiple pharmacological actions they exhibit. Therefore, this systematic review aims to investigate the potential multi-targeting effects of plant-derived extracts in experimental models of NAFLD. Materials and Methods: We performed a systematic search on databases and web search engines from the earliest available date to 30 April 2021, using relevant keywords. The study included articles published in English, assessing the effects of plant-derived extracts, fractions, or polyherbal mixtures in the treatment of NAFLD in animal models. These include their effects on at least disordered lipid metabolism, insulin resistance/type 2 diabetes mellitus (T2DM), and histologically confirmed steatosis with one or more of the following: oxidative stress, inflammation, hepatocyte injury, obesity, fibrosis, and cardiometabolic risks factors. Results: Nine articles fulfilled our inclusion criteria and the results demonstrated the ability of phytomedicines to simultaneously exert therapeutic actions on multiple targets related to NAFLD. Conclusions: These findings suggest that herbal extracts have the potential for effective treatment or management of NAFLD.
Collapse
|
3
|
Chen L, Cao K, Gu Y, Luo C, Mao W, Zhou W, Zhu J, Zhang H. Kaempferol attenuates spinal cord injury by interfering inflammatory and oxidative stress by targeting the p53 protein: a molecular docking analysis. Mol Cell Toxicol 2021; 17:257-266. [DOI: 10.1007/s13273-021-00132-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
|
4
|
A Novel Research Technology to Explore the Mystery of Traditional Chinese Medicine: Optogenetics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021. [DOI: 10.1155/2021/6613368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional Chinese medicine (TCM) is gaining increasing popularity worldwide for the function of health promotion and adjuvant therapy. However, the world's understanding of TCM is far from enough, which seriously limits the modernization and internationalization of TCM. Therefore, modern and efficient analytical methods are urgently needed to understand the mechanism of TCM. Optogenetics is one of the most prevalent technologies in the 21st century and has been used to explore life science, especially neuroscience. It already has had great influences in the study of neural circuits and animal models of mental diseases and was named “Method of the Year” by the Nature Methods journal in 2010. Increased interests occurred in the applications of optogenetics to explore a myriad of medical and mental health disorders. However, it has not so far been noticed by TCM researchers. We elaborated on an idea that introducing this technique into the field of TCM research to improve diagnosis, treatments, and evaluating the therapeutic effects. In this review, we made a systematic prospect in the theory, feasibility, and application of TCM optogenetics. We mainly focused on applying optogenetic methodologies to make a more comprehensive understanding of TCM.
Collapse
|
5
|
Identification and Screening of Natural Neuraminidase Inhibitors from Reduning Injection via One-Step High-Performance Liquid Chromatography-Fraction Collector and UHPLC/Q-TOF-MS. Int J Anal Chem 2020. [DOI: 10.1155/2020/8838025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuraminidase plays an essential role in the spread of influenza viruses via cleaving sialic acids from the host cell receptors and virions. Neuraminidase has been regarded as an essential target for prevention and treatment of influenza infection. The one-step high-performance liquid chromatography-fraction collector (HPLC-FC) was selected to prepare fractions from Reduning (RDN) injection, while ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) was used to identify fractions depending on their retention time and molecular ion. As a result, 75 fractions were prepared and 28 fractions out of them exhibited NA inhibitory effects with the dose-effect relationship. Exploring it further, six components including neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C were the main components that accounted for almost 80% of inhibitory activity of RDN injection. Accordingly, these results demonstrated that this strategy could not only rapidly identify but also accurately screen active components from traditional Chinese medicine.
Collapse
|
6
|
Jia S, Wu J, Zhou W, Liu X, Guo S, Zhang J, Liu S, Ni M, Meng Z, Liu X, Zhang X, Wang M. A network pharmacology-based strategy deciphers the multitarget pharmacological mechanism of Reduning injection in the treatment of influenza. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Zhang Y, Chi-Yan Cheng B, Xie R, Xu B, Gao XY, Luo G. Re-Du-Ning inhalation solution exerts suppressive effect on the secretion of inflammatory mediators via inhibiting IKKα/β/IκBα/NF-κB, MAPKs/AP-1, and TBK1/IRF3 signaling pathways in lipopolysaccharide stimulated RAW 264.7 macrophages. RSC Adv 2019; 9:8912-8925. [PMID: 35517648 PMCID: PMC9062024 DOI: 10.1039/c9ra00060g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Re-Du-Ning inhalation solution (RIS) is a novel preparation derived from the Re-Du-Ning injection, which has been clinically used to treat respiratory diseases such as pneumonia for more than twenty years in China. However, scant reports have been issued on its anti-inflammatory mechanisms. Aim: we investigated the suppressive effect of RIS on inflammatory mediators and explored the underlying mechanism of action. Methods: RIS freeze dried powder was characterized by HPLC analysis. Lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage was selected as the cell model. The cell viability was determined by using the MTT assay. Moreover, the production of nitric oxide (NO) was measured by the Griess reaction. The protein secretions from inflammatory mediators were determined by the enzyme-linked immunosorbent assay (ELISA). The protein levels and enzyme activities were examined by Western blotting. The nuclear translocation of nuclear factor-kappa B (NF-κB), AP-1, and IRF3 was further explored by immunofluorescence assay. Results: the viability of the RAW 264.7 cells was not significantly changed after 24 h incubation with RIS concentration up to 400 μg mL-1. The RIS remarkably reduced the production of NO and prostaglandin E2 (PGE2), and downregulated the expression of iNOS and COX-2. The concentrations of cytokines (IL-1β, IL-6, and TNF-α) and chemokines (MCP-1, CCL-5, and MIP-1α) in the culture medium were significantly decreased by the RIS treatment. Furthermore, the phosphorylation of IκB-α, IKKα/β, TBK1, ERK, p38, JNK, NF-κB, AP-1, and IRF3 was downregulated by the RIS treatment. The nuclear translocation of NF-κB, AP-1, and IRF3 was also inhibited after the RIS treatment. Conclusion: the suppressive effect of RIS is associated with the regulated NF-κB, AP-1, and IRF3 and their upstream proteins. This study provides a pharmacological basis for the application of RIS in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University Hong Kong 999077 China
- Quality Healthcare Medical Services Hong Kong 999077 China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science Beijing 100700 China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Xiao Yan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| |
Collapse
|
8
|
|
9
|
Zheng W, Cao L, Xu Z, Ma Y, Liang X. Anti-Angiogenic Alternative and Complementary Medicines for the Treatment of Endometriosis: A Review of Potential Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4128984. [PMID: 30402122 PMCID: PMC6191968 DOI: 10.1155/2018/4128984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Endometriosis is caused by the growth or infiltration of endometrial tissues outside of the endometrium and myometrium. Symptoms include pain and infertility. Surgery and hormonal therapy are widely used in Western medicine for the treatment of endometriosis; however, the side effects associated with this practice include disease recurrence and menopause, which can severely influence quality of life. Angiogenesis is the main biological mechanism underlying the development of endometriosis. Numerous natural products and Chinese medicines with potent anti-angiogenic effects have been investigated, and the molecular basis underlying their therapeutic effects in endometriosis has been explored. This review aims to describe natural products and compounds that suppress angiogenesis associated with endometriosis and to assess their diverse molecular mechanisms of action. Furthermore, this review provides a source of information relating to alternative and complementary therapeutic products that mediate anti-angiogenesis. An extensive review of the literature and electronic databases, such as the China National Knowledge Infrastructure, PubMed, and Embase, was conducted using the keywords 'endometriosis,' 'traditional Chinese medicine,' 'Chinese herbal medicine,' 'natural compounds,' and 'anti-angiogenic' therapy. Anti-angiogenic therapy is an emerging strategy for the treatment of endometriosis. Natural anti-angiogenic products and Chinese medicines provide several beneficial clinical effects, including pain relief. In this review, we summarize clinical trials and experimental studies of endometriosis using natural products and Chinese medicines. In particular, we focus on anti-angiogenic products and alternative and complementary medicines for the treatment of endometriosis and additionally examine their therapeutic efficacy and mechanisms of action. Anti-angiogenic natural products and/or compounds provide a new approach for the treatment of endometriosis. Future work will require randomized trials with larger numbers of subjects, as well as long-term follow-up to confirm the findings described here.
Collapse
Affiliation(s)
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Guangdong Provincial Hospital of Chinese Medicine, China
| | - Zheng Xu
- Guangzhou University of Chinese Medicine, China
| | - Yuanyuan Ma
- Department of Gynecology, Anyang Hospital of Traditional Chinese Medicine, China
| | - Xuefang Liang
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, China
| |
Collapse
|
10
|
Yan S, Xiong H, Shao F, Zhang W, Yang F, Qi Z, Chen S, He L, Jiang M, Su Y, Zhu H, Qin S, Zhu Q, Luo X, Xing Q. HLA-C*12:02 is strongly associated with Xuesaitong-induced cutaneous adverse drug reactions. THE PHARMACOGENOMICS JOURNAL 2018; 19:277-285. [PMID: 30237582 DOI: 10.1038/s41397-018-0051-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022]
Abstract
Xuesaitong (XST) is mainly used to treat cardiovascular and cerebrovascular diseases, sometimes causing cutaneous adverse drug reactions (cADRs) with unknown mechanisms of pathogenicity or risk factors. We aimed to verify whether human leukocyte antigen (HLA) alleles are associated with XST-related cADRs in Han Chinese population. We carried out an association study including 12 subjects with XST-induced cADRs, 283 controls, and 28 XST-tolerant subjects. Five out of 12 patients with XST-induced cADRs carried HLA-C*12:02, and all of them received XST via intravenous drip. The carrier frequency of HLA-C*12:02 was significantly high compare to that of the control population (Pc = 4.4 × 10-4, odds ratio (OR) = 21.75, 95% CI = 5.78-81.88). Compared with that of the XST-tolerant group, the patients who received XST through intravenous drip presented a higher OR of cADRs (Pc = 0.011, OR = 27.00, 95% CI = 2.58-282.98). The results suggest that HLA-C*12:02 is a potentially predictive marker of XST-induced cADRs in Han Chinese, especially when XST is administered via intravenous drip.
Collapse
Affiliation(s)
- Sijia Yan
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Xiong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, 450003, China
| | - Wen Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fanping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zheng Qi
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shengan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lin He
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Menglin Jiang
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu Su
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huizhong Zhu
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shengying Qin
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinyuan Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoqun Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Qinghe Xing
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Liu J, Liu J, Shen F, Qin Z, Jiang M, Zhu J, Wang Z, Zhou J, Fu Y, Chen X, Huang C, Xiao W, Zheng C, Wang Y. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci Rep 2018; 8:380. [PMID: 29321678 PMCID: PMC5762866 DOI: 10.1038/s41598-017-18764-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/17/2017] [Indexed: 01/13/2023] Open
Abstract
Traditional Chinese medicine (TCM) follows the principle of formulae, in which the pharmacological activity of a single herb can be enhanced or potentiated by addition of other herbs. Nevertheless, the involved synergy mechanisms in formulae remain unknown. Here, a systems-based method is proposed and applied to three representative Chinese medicines in compound saffron formula (CSF): two animal spices (Moschus, Beaver Castoreum), and one herb Crocus sativus which exert synergistic effects for cardiovascular diseases (CVDs). From the formula, 42 ingredients and 66 corresponding targets are acquired based on the ADME evaluation and target fishing model. The network relationships between the compounds and targets are assembled with CVDs pathways to elucidate the synergistic therapeutic effects between the spices and the herbs. The results show that different compounds of the three medicines show similar curative activity in CVDs. Additionally, the active compounds from them shared CVDs-relevant targets (multiple compounds-one target), or functional diversity targets but with clinical relevance (multiple compounds-multiple targets-one disease). Moreover, the targets of them are largely enriched in the same CVDs pathways (multiple targets-one pathway). These results elucidate why animal spices and herbs can have pharmacologically synergistic effects on CVDs, which provides a new way for drug discovery.
Collapse
Affiliation(s)
- Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jingjing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Fengxia Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zonghui Qin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Meng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Yingxue Fu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Xuetong Chen
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Chao Huang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China.
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
12
|
Shahen M, Guo Z, Shar AH, Ebaid R, Tao Q, Zhang W, Wu Z, Bai Y, Fu Y, Zheng C, Wang H, Shar PA, Liu J, Wang Z, Xiao W, Wang Y. Dengue virus causes changes of MicroRNA-genes regulatory network revealing potential targets for antiviral drugs. BMC SYSTEMS BIOLOGY 2018; 12:2. [PMID: 29301573 PMCID: PMC5753465 DOI: 10.1186/s12918-017-0518-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dengue virus (DENV) is an increasing global health threat and associated with induction of both a long-lived protective immune response and immune-suppression. So far, the potency of treatment of DENV via antiviral drugs is still under investigation. Recently, increasing evidences suggest the potential role of microRNAs (miRNAs) in regulating DENV. The present study focused on the function of miRNAs in innate insusceptible reactions and organization of various types of immune cells and inflammatory responses for DENV. Three drugs were tested including antiviral herbal medicine ReDuNing (RDN), Loratadine (LRD) and Acetaminophen. RESULTS By the microarray expression of miRNAs in 165 Patients. Results showed that 89 active miRNAs interacted with 499 potential target genes, during antiviral treatment throughout the critical stage of DENV. Interestingly, reduction of the illness threats using RDN combined with LRD treatment showed better results than Acetaminophen alone. The inhibitions of DENV was confirmed by decrease concentrations of cytokines and interleukin parameters; like TNF-α, IFN-γ, TGF-β1, IL-4, IL-6, IL-12, and IL-17; after treatment and some coagulants factors increased. CONCLUSIONS This study showed a preliminary support to suggest that the herbal medicine RDN combined with LRD can reduce both susceptibility and the severity of DENV.
Collapse
Affiliation(s)
- Mohamed Shahen
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Zihu Guo
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Akhtar Hussain Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Reham Ebaid
- School of Environment and Safety Engineering, Jiangsu University, Jiangsu, 212013, China
| | - Qin Tao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wenjuan Zhang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ziyin Wu
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yaofei Bai
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yingxue Fu
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chunli Zheng
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - He Wang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Piar Ali Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jianling Liu
- College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China.
| | - Yonghua Wang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China. .,Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Zhang P, Hölscher C, Ma X. Therapeutic potential of flavonoids in spinal cord injury. Rev Neurosci 2018; 28:87-101. [PMID: 28045676 DOI: 10.1515/revneuro-2016-0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/17/2016] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) is a catastrophic event that can profoundly affect a patient's life, with far-reaching social and economic effects. A consequential sequence of SCI is the significant neurological or psychological deficit, which obviously contributes to the overall burden of this condition. To date, there is no effective treatment for SCI. Therefore, developing novel therapeutic strategies for SCI is highly prioritized. Flavonoids, one of the most numerous and ubiquitous groups of plant metabolites, are the active ingredients of traditional Chinese medicine such as Scutellaria baicalensis Georgi (Huang Qin) or Ginkgo biloba (Ying Xin). Accumulated research data show that flavonoids possess a range of key pharmacological properties such as anti-inflammatory, anti-oxidant, anti-tumor, anti-viral, anti-cardiovascular disease, immunomodulatory, and neuroprotective effects. Based on this, the flavonoids show therapeutic potential for SCI diseases. In this paper, we will review the pharmacological properties of different types of flavonoids for the treatment of SCI diseases, and potential underlying biochemical mechanisms of action will also be described.
Collapse
|
14
|
In silico-based screen synergistic drug combinations from herb medicines: a case using Cistanche tubulosa. Sci Rep 2017; 7:16364. [PMID: 29180652 PMCID: PMC5703970 DOI: 10.1038/s41598-017-16571-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is characterized by the elaborated inflammatory response repertoire of central nervous system tissue. The limitations of the current treatments for neuroinflammation are well-known side effects in the clinical trials of monotherapy. Drug combination therapies are promising strategies to overcome the compensatory mechanisms and off-target effects. However, discovery of synergistic drug combinations from herb medicines is rare. Encouraged by the successfully applied cases we move on to investigate the effective drug combinations based on system pharmacology among compounds from Cistanche tubulosa (SCHENK) R. WIGHT. Firstly, 63 potential bioactive compounds, the related 133 direct and indirect targets are screened out by Drug-likeness evaluation combined with drug targeting process. Secondly, Compound-Target network is built to acquire the data set for predicting drug combinations. We list the top 10 drug combinations which are employed by the algorithm Probability Ensemble Approach (PEA), and Compound-Target-Pathway network is then constructed by the 12 compounds of the combinations, targets, and pathways to unearth the corresponding pharmacological actions. Finally, an integrating pathway approach is developed to elucidate the therapeutic effects of the herb in different pathological features-relevant biological processes. Overall, the method may provide a productive avenue for developing drug combination therapeutics.
Collapse
|
15
|
Wang J, Li Y, Yang Y, Chen X, Du J, Zheng Q, Liang Z, Wang Y. A New Strategy for Deleting Animal drugs from Traditional Chinese Medicines based on Modified Yimusake Formula. Sci Rep 2017; 7:1504. [PMID: 28473709 PMCID: PMC5431437 DOI: 10.1038/s41598-017-01613-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/03/2017] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese medicine (TCM), such as Uyghur Medicine (UM) has been used in clinical treatment for many years. TCM is featured as multiple targets and complex mechanisms of action, which is normally a combination of medicinal herbs and sometimes even contains certain rare animal medicinal ingredients. A question arises as to whether these animal materials can be removed replaced from TCM applications due to their valuable rare resources or animal ethics. Here, we select a classical UM Yimusake formula, which contains 3 animal drugs and other 8 herbs, and has got wealthy experience and remarkable achievements in treating erectile dysfunction (ED) in China. The active components, drug targets and therapeutic mechanisms have been comprehensively analyzed by systems-pharmacology methods. Additionally, to validate the inhibitory effects of all candidate compounds on their related targets, in vitro experiments, computational analysis and molecular dynamics simulations were performed. The results show that the modified, original and three animal materials display very similar mechanisms for an effective treatment of ED, indicating that it is quite possible to remove these three animal drugs from the original formula while still keep its efficiency. This work provides a new attempt for deleting animal materials from TCM, which should be important for optimization of traditional medicines.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China.
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Yinfeng Yang
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xuetong Chen
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jian Du
- Key laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiusheng Zheng
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China
| | - Zongsuo Liang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yonghua Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University, Ministry of Education, Shihezi, 832002, China.
| |
Collapse
|
16
|
Wang J, Liu R, Liu B, Yang Y, Xie J, Zhu N. Systems Pharmacology-based strategy to screen new adjuvant for hepatitis B vaccine from Traditional Chinese Medicine Ophiocordyceps sinensis. Sci Rep 2017; 7:44788. [PMID: 28317886 PMCID: PMC5357901 DOI: 10.1038/srep44788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Adjuvants are common component for many vaccines but there are still few licensed for human use due to low efficiency or side effects. The present work adopted Systems Pharmacology analysis as a new strategy to screen adjuvants from traditional Chinese medicine. Ophiocordyceps sinensis has been used for many years in China and other Asian countries with many biological properties, but the pharmacological mechanism has not been fully elucidated. First in this study, 190 putative targets for 17 active compounds in Ophiocordyceps sinensis were retrieved and a systems pharmacology-based approach was applied to provide new insights into the pharmacological actions of the drug. Pathway enrichment analysis found that the targets participated in several immunological processes. Based on this, we selected cordycepin as a target compound to serve as an adjuvant of the hepatitis B vaccine because the existing vaccine often fails to induce an effective immune response in many subjects. Animal and cellular experiments finally validated that the new vaccine simultaneously improves the humoral and cellular immunity of BALB/c mice without side effects. All this results demonstrate that cordycepin could work as adjuvant to hepatitis b vaccine and systems-pharmacology analysis could be used as a new method to select adjuvants.
Collapse
Affiliation(s)
- Jingbo Wang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Baoxiu Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Yang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, Institute of Biomedical Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
17
|
Abstract
Central neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are one of the biggest health problems worldwide. Currently, there is no cure for these diseases. The Gardenia jasminoides fruit is a common herbal medicine in traditional Chinese medicine (TCM), and a variety of preparations are used as treatments for central nervous system (CNS) diseases. Pharmacokinetic studies suggest genipin is one of the main effective ingredients of G. jasminoides fruit extract (GFE). Accumulated research data show that genipin possesses a range of key pharmacological properties, such as anti-inflammatory, neuroprotective, neurogenic, antidiabetic, and antidepressant effects. Thus, genipin shows therapeutic potential for central neurodegenerative diseases. We review the pharmacological actions of genipin for the treatment of neurodegenerative diseases of the CNS. We also describe the potential mechanisms underlying these effects.
Collapse
|