1
|
Huang B, Trujillo MA, Fujikura K, Qiu M, Chen F, Felsenstein M, Zhou C, Skaro M, Gauthier C, Macgregor-Das A, Hutchings D, Hong SM, Hruban RH, Eshleman JR, Thompson ED, Klein AP, Goggins M, Wood LD, Roberts NJ. Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. J Pathol 2020; 252:252-262. [PMID: 32696980 DOI: 10.1002/path.5515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) are commonly identified non-invasive cyst-forming pancreatic neoplasms with the potential to progress into invasive pancreatic adenocarcinoma. There are few in vitro models with which to study the biology of IPMNs and their progression to invasive carcinoma. Therefore, we generated a living biobank of organoids from seven normal pancreatic ducts and ten IPMNs. We characterized eight IPMN organoid samples using whole genome sequencing and characterized five IPMN organoids and seven normal pancreatic duct organoids using transcriptome sequencing. We identified an average of 11,344 somatic mutations in the genomes of organoids derived from IPMNs, with one sample harboring 61,537 somatic mutations enriched for T→C transitions and T→A transversions. Recurrent coding somatic mutations were identified in 15 genes, including KRAS, GNAS, RNF43, PHF3, and RBM10. The most frequently mutated genes were KRAS, GNAS, and RNF43, with somatic mutations identified in six (75%), four (50%), and three (37.5%) IPMN organoid samples, respectively. On average, we identified 36 structural variants in IPMN derived organoids, and none had an unstable phenotype (> 200 structural variants). Transcriptome sequencing identified 28 genes differentially expressed between normal pancreatic duct organoid and IPMN organoid samples. The most significantly upregulated and downregulated genes were CLDN18 and FOXA1. Immunohistochemical analysis of FOXA1 expression in 112 IPMNs, 113 mucinous cystic neoplasms, and 145 pancreatic ductal adenocarcinomas demonstrated statistically significant loss of expression in low-grade IPMNs (p < 0.0016), mucinous cystic neoplasms (p < 0.0001), and pancreatic ductal adenocarcinoma of any histologic grade (p < 0.0001) compared to normal pancreatic ducts. These data indicate that FOXA1 loss of expression occurs early in pancreatic tumorigenesis. Our study highlights the utility of organoid culture to study the genetics and biology of normal pancreatic duct and IPMNs. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bo Huang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Maria A Trujillo
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miaozhen Qiu
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Fei Chen
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthäus Felsenstein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cancan Zhou
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Skaro
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Gauthier
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Macgregor-Das
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle Hutchings
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|