1
|
Kim D, Ha SK, Gonzalez FJ. CBFA2T3 Is PPARA Sensitive and Attenuates Fasting-Induced Lipid Accumulation in Mouse Liver. Cells 2024; 13:831. [PMID: 38786053 PMCID: PMC11119203 DOI: 10.3390/cells13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARA) is a ligand-activated transcription factor that is a key mediator of lipid metabolism and metabolic stress in the liver. Accumulating evidence shows that PPARA regulates the expression of various protein coding and non-coding genes that modulate metabolic stress in the liver. CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3) is a DNA-binding transcription factor that belongs to the myeloid translocation gene family. Many studies have shown that CBFA2T3 is associated with acute myeloid leukemia. Especially, CBFA2T3-GLIS2 fusion is a chimeric oncogene associated with a poor survival rate in pediatric acute megakaryocytic leukemia. A previous study identified that PPARA activation promoted Cbfa2t3 induction in liver and that Cbfa2t3 may have a modulatory role in metabolic stress. However, the effect of CBFA2T3 gene expression on metabolic stress is not understood. In this study, the PPARA ligand WY14643 activated Cbfa2t3 expression in mouse liver. Glucose tolerance test and insulin tolerance test data showed that insulin resistance is increased in Cbfa2t3-/- mice compared to Cbfa2t3+/+ mice. Hepatic CBFA2T3 modulates heat shock protein family A member 1b and carbonic anhydrase 5a expression. Histology analysis revealed lipid droplet and lipid accumulation in the liver of fasting Cbfa2t3-/- mice but not Cbfa2t3+/+ mice. The expression of lipid accumulation-related genes, such as Cd36, Cidea, and Fabp1, was increased in the liver of fasting Cbfa2t3-/- mice. Especially, basal expression levels of Cidea mRNA were elevated in the liver of Cbfa2t3-/- mice compared to Cbfa2t3+/+ mice. Much higher induction of Cidea mRNA was seen in the liver of Cbfa2t3-/- mice after WY14643 administration. These results indicate that hepatic CBFA2T3 is a PPARA-sensitive gene that may modulate metabolic stress in mouse liver.
Collapse
Affiliation(s)
- Donghwan Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sang Keun Ha
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Frank J. Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
2
|
Terefe E, Belay G, Han J, Hanotte O, Tijjani A. Genomic adaptation of Ethiopian indigenous cattle to high altitude. Front Genet 2022; 13:960234. [PMID: 36568400 PMCID: PMC9780680 DOI: 10.3389/fgene.2022.960234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The mountainous areas of Ethiopia represent one of the most extreme environmental challenges in Africa faced by humans and other inhabitants. Selection for high-altitude adaptation is expected to have imprinted the genomes of livestock living in these areas. Here we assess the genomic signatures of positive selection for high altitude adaptation in three cattle populations from the Ethiopian mountainous areas (Semien, Choke, and Bale mountains) compared to three Ethiopian lowland cattle populations (Afar, Ogaden, and Boran), using whole-genome resequencing and three genome scan approaches for signature of selection (iHS, XP-CLR, and PBS). We identified several candidate selection signature regions and several high-altitude adaptation genes. These include genes such as ITPR2, MB, and ARNT previously reported in the human population inhabiting the Ethiopian highlands. Furthermore, we present evidence of strong selection and high divergence between Ethiopian high- and low-altitude cattle populations at three new candidate genes (CLCA2, SLC26A2, and CBFA2T3), putatively linked to high-altitude adaptation in cattle. Our findings provide possible examples of convergent selection between cattle and humans as well as unique African cattle signature to the challenges of living in the Ethiopian mountainous regions.
Collapse
Affiliation(s)
- Endashaw Terefe
- Department of Microbial Cellular and Molecular Biology (MCMB), College of Natural and Computational Science, Addis Ababa University, Addis Ababa, Ethiopia,International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia,Department of Animal Science, College of Agriculture and Environmental Science, Arsi University, Asella, Ethiopia,*Correspondence: Endashaw Terefe, Abdulfatai Tijjani,
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology (MCMB), College of Natural and Computational Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia,Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom,School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia,Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom,*Correspondence: Endashaw Terefe, Abdulfatai Tijjani,
| |
Collapse
|
3
|
Kumar P, Verma V, Mohania D, Gupta S, Babbar AK, Rathi B, Dhanda RS, Yadav M. Leukemia associated RUNX1T1 gene reduced proliferation and invasiveness of glioblastoma cells. J Cell Biochem 2021; 122:1737-1748. [PMID: 34369622 DOI: 10.1002/jcb.30126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
RUNX1T1 has been found to be mutated in different cancers such as prostate, lung, colon, and breast cancer. A recent computational study involving the TCGA database of glioma patients found RUNX1T1 as one of the downregulated driver genes associated with poor overall survival of glioma patients. Hypoxia-inducible factor 1α (HIF1α) is upregulated in glioma and has been associated with the severity and drug resistance of glioma. Previously, we have shown that RUNX1T3 degrades HIF1α affecting the proliferation of leukemia cells. We hypothesize that RUNX1T1 might be associated with the growth and development of glioma through the regulation of HIF1α. We have evaluated the expression level of RUNX1T1 at different stages of glioma and the effect of RUNX1T1 on the proliferation and invasiveness of glioblastoma cells in vitro. We further looked at the effect of RUNX1T1 on the expression and stability of HIF1α in vitro. Expression of RUNX1T1 was significantly downregulated, both at RNA and protein levels in glioma samples as studied by quantitative real-time polymerase chain reaction and immunohistochemistry. While expression of HIF1α was higher in glioma tissues compared with its level in the normal brain. In vitro studies demonstrated that RUNX1T1 interacted with HIF1α and recruited HIF1α modification factor such as PHD2 and GSK3β causing hydroxylation of HIF1α following ubiquitination by FBW7. RUNX1T1 led to the degradation of HIF1α and decreased proliferation/invasiveness of glioblastoma cell lines. Further, RUNX1T1 increased the effectiveness of temozolomide (TMZ), a conventional glioma drug toward glioblastoma cell lines. This study indicates that downregulation of RUNX1T1 might play an important role in the severity and development of glioma.
Collapse
Affiliation(s)
- Parveen Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Dheeraj Mohania
- Dr. R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Avneet K Babbar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Bhawna Rathi
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Rakesh S Dhanda
- Stem Cell Laboratory, Longboat Explorers AB, SMiLE Incubator, Lund, Sweden
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Tomc J, Debeljak N. Molecular Insights into the Oxygen-Sensing Pathway and Erythropoietin Expression Regulation in Erythropoiesis. Int J Mol Sci 2021; 22:ijms22137074. [PMID: 34209205 PMCID: PMC8269393 DOI: 10.3390/ijms22137074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Erythropoiesis is regulated by several factors, including the oxygen-sensing pathway as the main regulator of erythropoietin (EPO) synthesis in the kidney. The release of EPO from the kidney and its binding to the EPO receptor (EPOR) on erythrocyte progenitor cells in the bone marrow results in increased erythropoiesis. Any imbalance in these homeostatic mechanisms can lead to dysregulated erythropoiesis and hematological disorders. For example, mutations in genes encoding key players of oxygen-sensing pathway and regulation of EPO production (HIF-EPO pathway), namely VHL, EGLN, EPAS1 and EPO, are well known causative factors that contribute to the development of erythrocytosis. We aimed to investigate additional molecular mechanisms involved in the HIF-EPO pathway that correlate with erythropoiesis. To this end, we conducted an extensive literature search and used several in silico tools. We identified genes encoding transcription factors and proteins that control transcriptional activation or repression; genes encoding kinases, deacetylases, methyltransferases, conjugating enzymes, protein ligases, and proteases involved in post-translational modifications; and genes encoding nuclear transport receptors that regulate nuclear transport. All these genes may modulate the stability or activity of HIF2α and its partners in the HIF-EPO pathway, thus affecting EPO synthesis. The theoretical information we provide in this work can be a valuable tool for a better understanding of one of the most important regulatory pathways in the process of erythropoiesis. This knowledge is necessary to discover the causative factors that may contribute to the development of hematological diseases and improve current diagnostic and treatment solutions in this regard.
Collapse
Affiliation(s)
- Jana Tomc
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Correspondence: ; Tel.: +386-1-543-7645
| |
Collapse
|
6
|
Singbrant S, Mattebo A, Sigvardsson M, Strid T, Flygare J. Prospective isolation of radiation induced erythroid stress progenitors reveals unique transcriptomic and epigenetic signatures enabling increased erythroid output. Haematologica 2020; 105:2561-2571. [PMID: 33131245 PMCID: PMC7604643 DOI: 10.3324/haematol.2019.234542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
Massive expansion of erythroid progenitor cells is essential for surviving anemic stress. Research towards understanding this critical process, referred to as stress-erythropoiesis, has been hampered due to lack of specific marker-combinations enabling analysis of the distinct stress-progenitor cells capable of providing radioprotection and enhanced red blood cell production. Here we present a method for precise identification and in vivo validation of progenitor cells contributing to both steady-state and stress-erythropoiesis, enabling for the first time in-depth molecular characterization of these cells. Differential expression of surface markers CD150, CD9 and Sca1 defines a hierarchy of splenic stress-progenitors during irradiation-induced stress recovery in mice, and provides high-purity isolation of the functional stress-BFU-Es with a 100-fold improved enrichment compared to state-of-the-art. By transplanting purified stress-progenitors expressing the fluorescent protein Kusabira Orange, we determined their kinetics in vivo and demonstrated that CD150+CD9+Sca1- stress-BFU-Es provide a massive but transient radioprotective erythroid wave, followed by multi-lineage reconstitution from CD150+CD9+Sca1+ multi-potent stem/progenitor cells. Whole genome transcriptional analysis revealed that stress-BFU-Es express gene signatures more associated with erythropoiesis and proliferation compared to steady-state BFU-Es, and are BMP-responsive. Evaluation of chromatin accessibility through ATAC sequencing reveals enhanced and differential accessibility to binding sites of the chromatin-looping transcription factor CTCF in stress-BFU-Es compared to steady-state BFU-Es. Our findings offer molecular insight to the unique capacity of stress-BFU-Es to rapidly form erythroid cells in response to anemia and constitute an important step towards identifying novel erythropoiesis stimulating agents.
Collapse
Affiliation(s)
- Sofie Singbrant
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Alexander Mattebo
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tobias Strid
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Flygare
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| |
Collapse
|
7
|
Dayer G, Masoom ML, Togtema M, Zehbe I. Virus-Host Protein-Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities. Int J Mol Sci 2020; 21:E7980. [PMID: 33121134 PMCID: PMC7663357 DOI: 10.3390/ijms21217980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
High-risk strains of human papillomavirus are causative agents for cervical and other mucosal cancers, with type 16 being the most frequent. Compared to the European Prototype (EP; A1), the Asian-American (AA; D2/D3) sub-lineage seems to have increased abilities to promote carcinogenesis. Here, we studied protein-protein interactions (PPIs) between host proteins and sub-lineages of the key transforming E6 protein. We transduced human keratinocyte with EP or AA E6 genes and co-immunoprecipitated E6 proteins along with interacting cellular proteins to detect virus-host binding partners. AAE6 and EPE6 may have unique PPIs with host cellular proteins, conferring gain or loss of function and resulting in varied abilities to promote carcinogenesis. Using liquid chromatography-mass spectrometry and stringent interactor selection criteria based on the number of peptides, we identified 25 candidates: 6 unique to AAE6 and EPE6, along with 13 E6 targets common to both. A novel approach based on pathway selection discovered 171 target proteins: 90 unique AAE6 and 61 unique EPE6 along with 20 common E6 targets. Interpretations were made using databases, such as UniProt, BioGRID, and Reactome. Detected E6 targets were differentially implicated in important hallmarks of cancer: deregulating Notch signaling, energetics and hypoxia, DNA replication and repair, and immune response.
Collapse
Affiliation(s)
- Guillem Dayer
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Mehran L. Masoom
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Melissa Togtema
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Ingeborg Zehbe
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
8
|
Hu S, Jin Y, Liu Y, Ljungman M, Neamati N. Synthesis and mechanistic studies of quinolin-chlorobenzothioate derivatives with proteasome inhibitory activity in pancreatic cancer cell lines. Eur J Med Chem 2018; 158:884-895. [PMID: 30253345 DOI: 10.1016/j.ejmech.2018.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
Inhibition of proteasome activity blocks the degradation of dysfunctional proteins and induces cancer cell death due to cellular stress. Thus, proteasome inhibitors represent an attractive class of anticancer agents, and bortezomib, carfilzomib and ixazomib have been FDA-approved to treat multiple myeloma. However, cancer cells acquire resistance to these inhibitors through point mutations in the proteasome catalytic subunit or induction of alternative compensatory mechanisms. In this study, we identified a quinolin-chlorobenzothioate, QCBT7, as a new proteasome inhibitor showing cytotoxicity in a panel of cancer cell lines. QCBT7 is a more stable derivative of quinoline-8-thiol that targets the regulatory subunit instead of the catalytic subunit of the proteasome. QCBT7 caused the accumulation of ubiquitylated proteins in the cancer cells, indicating its proteasome inhibitory activity. Additionally, QCBT7 increased the expression of a set of genes (PFKFB4, CHOP, HMOX1 and SLC7A11) at both nascent RNA and protein levels, similarly to the known proteasome inhibitors MG132 and ixazomib. Together, QCBT7 induces proteasome inhibition, hypoxic response, endoplasmic reticulum stress and glycolysis, finally leading to cell death. Importantly, we have identified PFKFB4 as a potential biomarker of proteasome inhibitors that can be used to monitor treatment response.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yi Jin
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States; Key Laboratory of Medicinal Chemistry for Natural Resource, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Yanghan Liu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
9
|
Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer. Stem Cells Int 2017; 2017:6301385. [PMID: 29358956 PMCID: PMC5735743 DOI: 10.1155/2017/6301385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
MTG16 (myeloid translocation gene on chromosome 16) and its related proteins, MTG8 and MTGR1, define a small family of transcriptional corepressors. These corepressors share highly conserved domain structures yet have distinct biological functions and tissue specificity. In vivo studies have shown that, of the three MTG corepressors, MTG16 is uniquely important for the regulation of hematopoietic stem/progenitor cell (HSPC) proliferation and differentiation. Apart from this physiological function, MTG16 is also involved in carcinomas and leukemias, acting as the genetic target of loss of heterozygosity (LOH) aberrations in breast cancer and recurrent translocations in leukemia. The frequent involvement of MTG16 in these disease etiologies implies an important developmental role for this transcriptional corepressor. Furthermore, mounting evidence suggests that MTG16 indirectly alters the disease course of several leukemias via its regulatory interactions with a variety of pathologic fusion proteins. For example, a recent study has shown that MTG16 can repress not only wild-type E2A-mediated transcription, but also leukemia fusion protein E2A-Pbx1-mediated transcription, suggesting that MTG16 may serve as a potential therapeutic target in acute lymphoblastic leukemia expressing the E2A-Pbx1 fusion protein. Given that leukemia stem cells share similar regulatory pathways with normal HSPCs, studies to further understand how MTG16 regulates cell proliferation and differentiation could lead to novel therapeutic approaches for leukemia treatment.
Collapse
|