1
|
Yang H, Yuan Y, Liu X, Du Y, Li Z. Phytohormonal homeostasis, chloroplast stability, and heat shock transcription pathways related to the adaptability of creeping bentgrass species to heat stress. PROTOPLASMA 2025; 262:649-665. [PMID: 39794516 DOI: 10.1007/s00709-024-02022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes. The results showed that 18 different genotypes had different heat tolerance during summer months of 2021 and 2022. Among them, 13 M was identified as the best heat-tolerant cultivar based on the subordinate function values analysis of five physiological indicators. Under controlled growth conditions, heat stress significantly inhibited photosynthetic capacity and also accelerated oxidative damage and chlorophyll (Chl) degradation in both heat-tolerant 13 M and heat-sensitive PA4. However, as compared with heat-sensitive PA4, 13 M maintained significantly higher net photosynthetic rate, water use efficiency, and total antioxidant capacity as well as less Chl degradation and damage to chloroplast ultrastructure. Significantly higher contents of abscisic acid, cytokinin, gibberellin, and polyamines (spermine, spermidine, and putrescine) were also detected in 13 M than that in PA4 in the later stage of heat stress, but 13 M exhibited significantly lower indoleacetic acid content than PA4 during heat stress. In addition, heat-upregulated genes involved in heat shock transcriptional pathways were more pronounced in 13 M than in PA4. These findings indicated that better heat tolerance of 13 M could be related to more stable Chl metabolism, better photosynthetic and antioxidant capacities, endogenous hormonal homeostasis, and more effective heat shock transcriptional pathway. 13 M is more appropriate for planting in transitional and subtropical zones instead of widely used PA4.
Collapse
Affiliation(s)
- Huizhen Yang
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Yuan
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinying Liu
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Du
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhou Li
- Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Mughal N, Shoaib N, Chen J, Li Y, He Y, Fu M, Li X, He Y, Guo J, Deng J, Yang W, Liu J. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. CHEMOSPHERE 2024; 364:143189. [PMID: 39191348 DOI: 10.1016/j.chemosphere.2024.143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Innovative agricultural strategies are essential for addressing the urgent challenge of food security in light of climate change, population growth, and various environmental stressors. Cytokinins (CKs) play a pivotal role in enhancing plant resilience and productivity. These compounds, which include isoprenoid and aromatic types, are synthesized through pathways involving key enzymes such as isopentenyl transferase and cytokinin oxidase. Under abiotic stress conditions, CKs regulate critical physiological processes by improving photosynthetic efficiency, enhancing antioxidant enzyme activity, and optimizing root architecture. They also reduce the levels of reactive oxygen species and malondialdehyde, resulting in improved plant performance and yield. CKs interact intricately with other phytohormones, including abscisic acid, ethylene, salicylic acid, and jasmonic acid, to modulate stress-responsive pathways. This hormonal cross-talk is vital for finely tuning plant responses to stress. Additionally, CKs influence nutrient uptake and enhance responses to heavy metal stress, thereby bolstering overall plant resilience. The application of CKs helps plants maintain higher chlorophyll levels, boost antioxidant systems, and promote root and shoot growth. The strategic utilization of CKs presents an adaptive approach for developing robust crops capable of withstanding diverse environmental stressors, thus contributing to sustainable agricultural practices and global food security. Ongoing research into the mechanisms of CK action and their interactions with other hormones is essential for maximizing their agricultural potential. This underscores the necessity for continued innovation and research in agricultural practices, in alignment with global goals of sustainable productivity and food security.
Collapse
Affiliation(s)
- Nishbah Mughal
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhong He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Fu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyun Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juncai Deng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China; College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
3
|
Reddy P, Plozza T, Scalisi A, Ezernieks V, Goodwin I, Rochfort S. Zonal Chemical Signal Pathways Mediating Floral Induction in Apple. Metabolites 2024; 14:251. [PMID: 38786728 PMCID: PMC11123431 DOI: 10.3390/metabo14050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Phytohormones that trigger or repress flower meristem development in apple buds are thought to be locally emitted from adjacent plant tissues, including leaves and fruitlets. The presence of fruitlets is known to inhibit adjacent buds from forming flowers and thus fruits. The resulting absence of fruitlets the following season restores flower-promoting signalling to the new buds. The cycle can lead to a biennial bearing behaviour of alternating crop loads in a branch or tree. The hormonal stimuli that elicit flowering is typically referred to as the floral induction (FI) phase in bud meristem development. To determine the metabolic pathways activated in FI, young trees of the cultivar 'Ruby Matilda' were subjected to zonal crop load treatments imposed to two leaders of bi-axis trees in the 2020/2021 season. Buds were collected over the expected FI phase, which is within 60 DAFB. Metabolomics profiling was undertaken to determine the differentially expressed pathways and key signalling molecules associated with FI in the leader and at tree level. Pronounced metabolic differences were observed in trees and leaders with high return bloom with significant increases in compounds belonging to the cytokinin, abscisic acid (ABA), phenylpropanoid and flavanol chemical classes. The presence of cytokinins, namely adenosine, inosine and related derivatives, as well as ABA phytohormones, provides further insight into the chemical intervention opportunities for future crop load management strategies via plant growth regulators.
Collapse
Affiliation(s)
- Priyanka Reddy
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Tim Plozza
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Alessio Scalisi
- Tatura SmartFarm, Agriculture Victoria, Tatura, VIC 3616, Australia (I.G.)
| | - Vilnis Ezernieks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Ian Goodwin
- Tatura SmartFarm, Agriculture Victoria, Tatura, VIC 3616, Australia (I.G.)
- Centre for Agricultural Innovation, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simone Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
4
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Kumari S, Nazir F, Maheshwari C, Kaur H, Gupta R, Siddique KHM, Khan MIR. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108238. [PMID: 38064902 DOI: 10.1016/j.plaphy.2023.108238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Biochemistry Division, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| | | | | |
Collapse
|
6
|
Tan S, Sha Y, Sun L, Li Z. Abiotic Stress-Induced Leaf Senescence: Regulatory Mechanisms and Application. Int J Mol Sci 2023; 24:11996. [PMID: 37569371 PMCID: PMC10418887 DOI: 10.3390/ijms241511996] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Leaf senescence is a natural phenomenon that occurs during the aging process of plants and is influenced by various internal and external factors. These factors encompass plant hormones, as well as environmental pressures such as inadequate nutrients, drought, darkness, high salinity, and extreme temperatures. Abiotic stresses accelerate leaf senescence, resulting in reduced photosynthetic efficiency, yield, and quality. Gaining a comprehensive understanding of the molecular mechanisms underlying leaf senescence in response to abiotic stresses is imperative to enhance the resilience and productivity of crops in unfavorable environments. In recent years, substantial advancements have been made in the study of leaf senescence, particularly regarding the identification of pivotal genes and transcription factors involved in this process. Nevertheless, challenges remain, including the necessity for further exploration of the intricate regulatory network governing leaf senescence and the development of effective strategies for manipulating genes in crops. This manuscript provides an overview of the molecular mechanisms that trigger leaf senescence under abiotic stresses, along with strategies to enhance stress tolerance and improve crop yield and quality by delaying leaf senescence. Furthermore, this review also highlighted the challenges associated with leaf senescence research and proposes potential solutions.
Collapse
Affiliation(s)
| | | | - Liwei Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Han X, Zhang D, Hao H, Luo Y, Zhu Z, Kuai B. Transcriptomic Analysis of Three Differentially Senescing Maize ( Zea mays L.) Inbred Lines upon Heat Stress. Int J Mol Sci 2023; 24:9782. [PMID: 37372930 DOI: 10.3390/ijms24129782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Maize, one of the world's major food crops, is facing the challenge of rising temperature. Leaf senescence is the most significant phenotypic change of maize under heat stress at the seedling stage, but the underlying molecular mechanism is still unknown. Here, we screened for three inbred lines (PH4CV, B73, and SH19B) that showed differentially senescing phenotypes under heat stress. Among them, PH4CV showed no obviously senescing phenotype under heat stress, while SH19B demonstrated a severely senescing phenotype, with B73 being between the two extremes. Subsequently, transcriptome sequencing showed that differentially expressed genes (DEGs) were generally enriched in response to heat stress, reactive oxygen species (ROS), and photosynthesis in the three inbred lines under heat treatment. Notably, ATP synthesis and oxidative phosphorylation pathway genes were only significantly enriched in SH19B. Then, the expression differences of oxidative phosphorylation pathways, antioxidant enzymes, and senescence-related genes in response to heat stress were analyzed in the three inbred lines. In addition, we demonstrated that silencing ZmbHLH51 by virus-induced gene silencing (VIGS) inhibits the heat-stress-induced senescence of maize leaves. This study helps to further elucidate the molecular mechanisms of heat-stress-induced leaf senescence at the seedling stage of maize.
Collapse
Affiliation(s)
- Xiaokang Han
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dingyu Zhang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Haibo Hao
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yong Luo
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ziwei Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Zhang Z, Chen W, Tao L, Wei X, Gao L, Gao Y, Suo J, Yu W, Hu Y, Yang B, Jiang H, Farag MA, Wu J, Song L. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses. Food Chem 2023; 408:135214. [PMID: 36565552 DOI: 10.1016/j.foodchem.2022.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/26/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Amino acids play critical roles in physiological processes and also contribute significantly to fruit quality. In this study, the effect of exogenous ethylene on amino acids metabolism and related genes expression in Torreya grandis were investigated. The results revealed that ethylene treatment (3000 μL L-1 for 24 h) significantly increased amino acids level. Umami amino acids were distinctly upregulated in ethylene-treated versus control nuts, with glutamic and aspartic acids to demonstrate 1.9-fold and 2.1-fold increase. Transcriptome analysis revealed that deferentially expressed genes were mainly enriched in alanine aspartate and glutamate metabolism. RT-qPCR confirmed that ethylene treatment up-regulated expression of their biosynthesis genes (TgGOGAT1, TgAATC1, TgAATC4) concurrent with suppression of their degradation enzymes (TgGS2, TgGAD1, TgGAD3, TgASNS1). Ethylene treatment appears to promote umami taste-active amino acids and improve T. grandis nut quality post-harvest.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Xixing Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lingling Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
Prerostova S, Rezek J, Jarosova J, Lacek J, Dobrev P, Marsik P, Gaudinova A, Knirsch V, Dolezal K, Plihalova L, Vanek T, Kieber J, Vankova R. Cytokinins act synergistically with heat acclimation to enhance rice thermotolerance affecting hormonal dynamics, gene expression and volatile emission. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107683. [PMID: 37062127 DOI: 10.1016/j.plaphy.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress is a frequent environmental constraint. Phytohormones can significantly affect plant thermotolerance. This study compares the effects of exogenous cytokinin meta-topolin-9-(tetrahydropyran-2-yl)purine (mT9THP) on rice (Oryza sativa) under control conditions, after acclimation by moderate temperature (A; 37 °C, 2h), heat stress (HS; 45 °C, 6h) and their combination (AHS). mT9THP is a stable cytokinin derivative that releases active meta-topolin gradually, preventing the rapid deactivation reported after exogenous cytokinin application. Under control conditions, mT9THP negatively affected jasmonic acid in leaves and abscisic and salicylic acids in crowns (meristematic tissue crucial for tillering). Exogenous cytokinin stimulated the emission of volatile organic compounds (VOC), especially 2,3-butanediol. Acclimation upregulated trans-zeatin, expression of stress- and hormone-related genes, and VOC emission. The combination of acclimation and mT9THP promoted the expression of stress markers and antioxidant enzymes and moderately increased VOC emission, including 2-ethylhexyl salicylate or furanones. AHS and HS responses shared some common features, namely, increase of ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), cis-zeatin and cytokinin methylthio derivatives, as well as the expression of heat shock proteins, alternative oxidases, and superoxide dismutases. AHS specifically induced jasmonic acid and auxin indole-3-acetic acid levels, diacylglycerolipids with fewer double bonds, and VOC emissions [e.g., acetamide, lipoxygenase (LOX)-derived volatiles]. Under direct HS, exogenous cytokinin mimicked some positive acclimation effects. The combination of mT9THP and AHS had the strongest thermo-protective effect, including a strong stimulation of VOC emissions (including LOX-derived ones). These results demonstrate for the first time the crucial contribution of volatiles to the beneficial effects of cytokinin and AHS on rice thermotolerance.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Jan Rezek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 313, 165 02, Prague, Czech Republic.
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Petr Marsik
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 313, 165 02, Prague, Czech Republic.
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| | - Karel Dolezal
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Chemical Biology, Faculty of Science, Palacky University, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic.
| | - Lucie Plihalova
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Chemical Biology, Faculty of Science, Palacky University, 17. listopadu 1192/12, 779 00, Olomouc, Czech Republic.
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 313, 165 02, Prague, Czech Republic.
| | - Joseph Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 165 02, Prague, Czech Republic.
| |
Collapse
|
10
|
Chen W, Huang B. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass. PHYSIOLOGIA PLANTARUM 2022; 174:e13766. [PMID: 36053893 DOI: 10.1111/ppl.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is a major abiotic stress for temperate plant species with characteristic symptoms of premature leaf senescence. The objectives of this study were to evaluate the physiological effects of cytokinins (CK) and an ethylene inhibitor, aminoethoxyvinylglycine (AVG) on heat-induced leaf senescence in the temperate perennial grass species, perennial ryegrass (Lolium perenne), and to investigate whether WRKY transcription factors (TFs) could be associated with CK- or ethylene-mediated regulation of heat-induced leaf senescence by exogenously applying CK or AVG to perennial ryegrass. Perennial ryegrass plants foliar-sprayed with 6-benzylaminopurine (6-BA), and AVG exhibited prolonged stay-green phenotypes and a lesser degree of leaf senescence under heat stress (35/30°C), as shown by a decline in electrolyte leakage, malondialdehyde content, hydrogen peroxide, and superoxide content, and increased chlorophyll (Chl) content along with reduced activities of Chl-degrading enzymes (pheophytinase and chlorophyllase) and increased activity of Chl-synthesizing enzyme (porphobilinogen deaminase) due to 6-BA or AVG application. The suppression of heat-induced leaf senescence by 6-BA or AVG treatment corresponded with the upregulation of LpWRKY69 and LpWRKY70. The LpWRKY69 and LpWRKY70 promoters were predicted to share conserved cis-elements potentially recognized by TFs in the CK or ethylene pathways. These results indicate that LpWRKY69 and LpWRKY70 may negatively regulate heat-induced leaf senescence through CK or ethylene pathways, conferring heat tolerance in perennial ryegrass.
Collapse
Affiliation(s)
- Wei Chen
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
11
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
12
|
The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022; 12:biom12050678. [PMID: 35625606 PMCID: PMC9138313 DOI: 10.3390/biom12050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.
Collapse
|
13
|
Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MIR. Ethylene involvement in the regulation of heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:675-698. [PMID: 33713206 DOI: 10.1007/s00299-021-02675-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.
Collapse
Affiliation(s)
- Peter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Kashif Nawaz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
14
|
Xu C, Liang L, Yang T, Feng L, Mao X, Wang Y. In-vitro bioactivity evaluation and non-targeted metabolomic analysis of green tea processed from different tea shoot maturity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Qian Y, Cao L, Zhang Q, Amee M, Chen K, Chen L. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC PLANT BIOLOGY 2020; 20:366. [PMID: 32746857 PMCID: PMC7397585 DOI: 10.1186/s12870-020-02572-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND As a cool-season grass species, tall fescue (Festuca arundinacea) is challenged by increasing temperatures. Heat acclimation or activation of leaf senescence, are two main strategies when tall fescue is exposed to heat stress (HS). However, lacking a genome sequence, the complexity of hexaploidy nature, and the short read of second-generation sequencing hinder a comprehensive understanding of the mechanism. This study aims to characterize the molecular mechanism of heat adaptation and heat-induced senescence at transcriptional and post-transcriptional levels. RESULTS Transcriptome of heat-treated (1 h and 72 h) and senescent leaves of tall fescue were generated by combining single-molecular real-time and Illumina sequencing. In total, 4076; 6917, and 11,918 differentially expressed genes (DEGs) were induced by short- and long-term heat stress (HS), and senescence, respectively. Venn and bioinformatics analyses of DEGs showed that short-term HS strongly activated heat shock proteins (Hsps) and heat shock factors (Hsfs), as well as specifically activated FK506-binding proteins (FKBPs), calcium signaling genes, glutathione S-transferase genes, photosynthesis-related genes, and phytohormone signaling genes. By contrast, long-term HS shared most of DEGs with senescence, including the up-regulated chlorophyll catabolic genes, phytohormone synthesis/degradation genes, stress-related genes, and NACs, and the down-regulated photosynthesis-related genes, FKBPs, and catalases. Subsequently, transient overexpression in tobacco showed that FaHsfA2a (up-regulated specifically by short-term HS) reduced cell membrane damages caused by HS, but FaNAC029 and FaNAM-B1 (up-regulated by long-term HS and senescence) increased the damages. Besides, alternative splicing was widely observed in HS and senescence responsive genes, including Hsps, Hsfs, and phytohormone signaling/synthesis genes. CONCLUSIONS The short-term HS can stimulate gene responses and improve thermotolerance, but long-term HS is a damage and may accelerate leaf senescence. These results contribute to our understanding of the molecular mechanism underlying heat adaptation and heat-induced senescence.
Collapse
Affiliation(s)
- Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, People’s Republic of China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, People’s Republic of China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Li Y, Jeyaraj A, Yu H, Wang Y, Ma Q, Chen X, Sun H, Zhang H, Ding Z, Li X. Metabolic Regulation Profiling of Carbon and Nitrogen in Tea Plants [ Camellia sinensis (L.) O. Kuntze] in Response to Shading. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:961-974. [PMID: 31910000 DOI: 10.1021/acs.jafc.9b05858] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Manipulating light transmission by shading is the most effective method of improving the nutritional value and sensory qualities of tea. In this study, the metabolic profiling of two tea cultivars ("Yulv" and "Maotouzhong") in response to different shading periods during the summer season was performed using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS). The metabolic pathway analyses showed that the glycolytic pathway and the tricarboxylic acid cycle (TCA cycle) in the leaves and shoots of "Maotouzhong" were significantly inhibited by long-term shading. The nitrogen metabolism in the leaves of the two cultivars was promoted by short-term shading, while it was inhibited by long-term shading. However, the nitrogen metabolism in the shoots of the two cultivars was always inhibited by shading, whether for short or long-term periods. In addition, the intensity of the flavonoid metabolism in both tea cultivars could be reduced by shading. These results revealed that shading could regulate the carbon and nitrogen metabolism and short-term shading could improve the tea quality to some extent.
Collapse
Affiliation(s)
- Yuchen Li
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Anburaj Jeyaraj
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Hanpu Yu
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Yu Wang
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
| | - Qingping Ma
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Xuan Chen
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Haiwei Sun
- Tai'an Academy of Agricultural Sciences , Tai'an , Shandong 271000 , China
| | - Hong Zhang
- Tai'an Academy of Agricultural Sciences , Tai'an , Shandong 271000 , China
| | - Zhaotang Ding
- Tea Research Institute , Qingdao Agricultural University , Qingdao , Shandong 266109 , China
| | - Xinghui Li
- Tea Research Institute , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| |
Collapse
|
18
|
Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. PLANT CELL REPORTS 2019; 38:847-867. [PMID: 30739138 DOI: 10.1007/s00299-019-02396-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 05/05/2023]
Abstract
Gamma-aminobutyric acid (GABA), a four-carbon non-protein amino acid, is found in most prokaryotic and eukaryotic organisms. Although, ample research into GABA has occurred in mammals as it is a major inhibitory neurotransmitter; in plants, a role for GABA has often been suggested as a metabolite that changes under stress rather than as a signal, as no receptor or motif for GABA binding was identified until recently and many aspects of its biological function (ranging from perception to function) remain to be answered. In this review, flexible properties of GABA in regulation of plant responses to various environmental biotic and abiotic stresses and its integration in plant growth and development either as a metabolite or a signaling molecule are discussed. We have elaborated on the role of GABA in stress adaptation (i.e., salinity, hypoxia/anoxia, drought, temperature, heavy metals, plant-insect interplay and ROS-related responses) and its contribution in non-stress-related biological pathways (i.e., involvement in plant-microbe interaction, contribution to the carbon and nitrogen metabolism and governing of signal transduction pathways). This review aims to represent the multifunctional contribution of GABA in various biological and physiological mechanisms under stress conditions; the objective is to review the current state of knowledge about GABA role beyond stress-related responses. Our effort is to place findings about GABA in an organized and broader context to highlight its shared metabolic and biologic functions in plants under variable conditions. This will provide potential modes of GABA crosstalk in dynamic plant cell responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Oksana Lastochkina
- Bashkir Research Institute of Agriculture, Russian Academy of Sciences, Ufa, Russia
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
19
|
Zhang H, Shi Y, Liu X, Wang R, Li J, Xu J. Transgenic creeping bentgrass plants expressing a Picea wilsonii dehydrin gene (PicW) demonstrate improved freezing tolerance. Mol Biol Rep 2018; 45:1627-1635. [PMID: 30105551 DOI: 10.1007/s11033-018-4304-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Agrostis stolonifera L. 'Penn A-4' is a common creeping bentgrass species that is widely used in urban landscaping and golf courses. To prolong the green stage of this grass, a dehydrin gene PicW isolated from Wilson's spruce (Picea wilsonii) was transformed into plants of 'Penn A-4' cultivar via a straightforward stolon node infection system. A putative transgenic plant was obtained and its tolerance to low-temperature stress was evaluated. When the transgenic line was subjected to a freezing (- 5 °C) treatment, it showed better viability and more robust physiology than wild type, as evidenced by higher soluble sugar and proline contents, and lower relative electrical conductivity and malondialdehyde content. The transgenic line also showed tolerance to a chilling treatment (5 °C), although its performance was not significantly different from that of wild-type plants. Overall, the research here clearly revealed the explicit role of PicW in increasing freezing tolerance of grass at the whole-plant level, and demonstrated that the straightforward stolon node transformation method could be well used to genetically modify turfgrass. The obtained transgenic line might be as genetic resource for breeding program and practiced to grow in cold temperate zones.
Collapse
Affiliation(s)
- Hao Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Yang Shi
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xinru Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Ruixue Wang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Jian Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
20
|
Abstract
As a representative form of plant senescence, leaf senescence has received the most attention during the last two decades. In this chapter we summarize the initiation of leaf senescence by various internal and external signals, the progression of senescence including switches in gene expression, as well as changes at the biochemical and cellular levels during leaf senescence. Impacts of leaf senescence in agriculture and genetic approaches that have been used in manipulating leaf senescence of crop plants are discussed.
Collapse
Affiliation(s)
- Akhtar Ali
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.,Nuclear Institute for Food and Agriculture, Peshawar, Pakistan
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
21
|
Jespersen D, Yu J, Huang B. Metabolic Effects of Acibenzolar- S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass. FRONTIERS IN PLANT SCIENCE 2017; 8:1224. [PMID: 28744300 PMCID: PMC5504235 DOI: 10.3389/fpls.2017.01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 05/27/2023]
Abstract
Acibenzolar-S-methyl (ASM) is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera) and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. 'Penncross') were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night), heat stress (35/30°C), or drought conditions (by withholding irrigation) in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling.
Collapse
Affiliation(s)
- David Jespersen
- Department of Plant Biology and Pathology, Rutgers University, New BrunswickNJ, United States
- Department of Crop and Soil Sciences, University of Georgia, GriffinGA, United States
| | - Jingjin Yu
- College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New BrunswickNJ, United States
| |
Collapse
|
22
|
Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP. The "STAY-GREEN" trait and phytohormone signaling networks in plants under heat stress. PLANT CELL REPORTS 2017; 36:1009-1025. [PMID: 28484792 DOI: 10.1007/s00299-017-2119-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 05/22/2023]
Abstract
The increasing demand for food and the heavy yield losses in primary crops due to global warming mean that there is an urgent need to improve food security. Therefore, understanding how plants respond to heat stress and its consequences, such as drought and increased soil salinity, has received much attention in plant science community. Plants exhibit stress tolerance, escape or avoidance via adaptation and acclimatization mechanisms. These mechanisms rely on a high degree of plasticity in their cellular metabolism, in which phytohormones play an important role. "STAY-GREEN" is a crucial trait for genetic improvement of several crops, which allows plants to keep their leaves on the active photosynthetic level under stress conditions. Understanding the physiological and molecular mechanisms concomitant with "STAY-GREEN" trait or delayed leaf senescence, as well as those regulating photosynthetic capability of plants under heat stress, with a certain focus on the hormonal pathways, may be a key to break the plateau of productivity associated with adaptation to high temperature. This review will discuss the recent findings that advance our understanding of the mechanisms controlling leaf senescence and hormone signaling cascades under heat stress.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Botany Department Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Magdi El-Sayed
- Botany Department Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580 003, India
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam.
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
23
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
24
|
Drapal M, Farfan-Vignolo ER, Gutierrez OR, Bonierbale M, Mihovilovich E, Fraser PD. Identification of metabolites associated with water stress responses in Solanum tuberosum L. clones. PHYTOCHEMISTRY 2017; 135:24-33. [PMID: 27964835 DOI: 10.1016/j.phytochem.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 05/25/2023]
Abstract
Water deficiency has become a major issue for modern agriculture as its effects on crop yields and tuber quality have become more pronounced. Potato genotypes more tolerant to water shortages have been identified through assessment of yield and dry matter. In the present study, a combination of metabolite profiling and physiological/agronomical measurements has been used to explore complex system level responses to non-lethal water restriction. The metabolites identified were associated with physiological responses in three different plant tissues (leaf, root and tuber) of five different potato genotypes varying in susceptibility/tolerance to drought. This approach explored the potential of metabolite profiling as a tool to unravel sectors of metabolism that react to stress conditions and could mirror the changes in the plant physiology. The metabolite results showed different responses of the three plant tissues to the water deficit, resulting either in different levels of the metabolites detected or different metabolites expressed. The leaf material displayed the most changes to drought as reported in literature. The results highlighted genotype-specific signatures to water restriction over all three plant tissues suggesting that the genetics can predominate over the environmental conditions. This will have important implications for future breeding approaches.
Collapse
Affiliation(s)
- M Drapal
- School of Biological Sciences, Royal Holloway University of London, CGIAR Research Program on Roots, Tubers and Bananas, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - E R Farfan-Vignolo
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - O R Gutierrez
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - M Bonierbale
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - E Mihovilovich
- International Potato Center (CIP), CGIAR Research Program on Roots, Tubers and Bananas, Lima, 12, Peru
| | - P D Fraser
- School of Biological Sciences, Royal Holloway University of London, CGIAR Research Program on Roots, Tubers and Bananas, Egham Hill, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
25
|
Li L, Zhao J, Zhao Y, Lu X, Zhou Z, Zhao C, Xu G. Comprehensive investigation of tobacco leaves during natural early senescence via multi-platform metabolomics analyses. Sci Rep 2016; 6:37976. [PMID: 27897248 PMCID: PMC5126694 DOI: 10.1038/srep37976] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 01/20/2023] Open
Abstract
Senescence is the final stage of leaf growth and development. Many different physiological activities occur during this process. A comprehensive metabolomics analysis of tobacco middle leaves at 5 different developmental stages was implemented through multi-platform methods based on liquid chromatography, capillary electrophoresis and gas chromatography coupled with mass spectrometry. In total, 412 metabolites were identified, including pigments, sterols, lipids, amino acids, polyamines, sugars and secondary metabolites. Dramatic metabolic changes were observed. Firstly, membrane degradation and chlorophyll down-regulation occurred after the 50% flower bud stage. Levels of major membrane lipids decreased, including those of the glycolipids in chloroplast thylakoids and phospholipids in membrane envelopes. Clear decreases in free sterols and acylated sterol glucosides were detected along with the accumulation of sterol esters. The accumulation of alkaloids was found. The amino acid levels were significantly decreased, particularly those of N-rich amino acids (glutamine and asparagine), thus reflecting N translocation. Subsequently, the antioxidant system was activated. Sugar alcohols and polyphenols accumulated when the lower leaves turned yellow. These results comprehensively revealed the metabolic changes that occur during tobacco leaf development and senescence under natural conditions.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jieyu Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Sci Rep 2016; 6:30338. [PMID: 27455877 PMCID: PMC4960583 DOI: 10.1038/srep30338] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.
Collapse
|