1
|
Alencar CLDS, Nogueira A, Vicente RE, Coutinho ÍAC. Plant species with larger extrafloral nectaries produce better quality nectar when needed and interact with the best ant partners. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4613-4627. [PMID: 37115640 DOI: 10.1093/jxb/erad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Few studies have explored the phenotypic plasticity of nectar production on plant attractiveness to ants. Here, we investigate the role of extrafloral nectary (EFN) size on the productivity of extrafloral nectar in three sympatric legume species. We hypothesized that plant species with larger EFNs (i) have higher induced nectar secretion after herbivory events, and (ii) are more likely to interact with more protective (i.e. dominant) ant partners. We target 90 plants of three Chamaecrista species in the field. We estimated EFN size and conducted field experiments to evaluate any differences in nectar traits before and after leaf damage to investigate the phenotypic plasticity of nectar production across species. We conducted multiple censuses of ant species feeding on EFNs over time. Plant species increased nectar descriptors after leaf damage, but in different ways. Supporting our hypothesis, C. duckeana, with the largest EFN size, increased all nectar descriptors, with most intense post-herbivory-induced response, taking its place as the most attractive to ants, including dominant species. EFN size variation was an excellent indicator of nectar productivity across species. The higher control over reward production in plants with larger sized EFNs reflects an induction mechanism under damage that reduces costs and increases the potential benefits of indirect biotic defences.
Collapse
Affiliation(s)
- Cícero Luanderson da Silva Alencar
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Ricardo Eduardo Vicente
- Instituto Nacional da Mata Atlântica, Ministério da Ciência, Tecnologia e Inovações, Santa Teresa, ES, Brazil
| | - Ítalo Antônio Cotta Coutinho
- Universidade Federal do Ceará, campus do Pici, Centro de Ciências, Departamento de Biologia, Laboratório de Morfoanatomia Funcional de Plantas, Programa de Pós-graduação em Ecologia e Recursos Naturais, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Domingos SS, Alves Silva E. Effect of ants on herbivory levels of Inga laurina: the interplay between space and time in an urban area. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467423000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
Extrafloral nectary plants not only occur in natural areas but also in urban parks. These areas are prone to edge effects, and plants face different microenvironmental conditions. We investigated the spatial variation of ant–plant interactions in an urban park, and we examined if plants with ants would show lower herbivory levels and if it depended on habitat type (interior or edges). Seedlings of Inga laurina were set in 200-m long transects (which covered both the west and east edges, and the interior) in an urban park and then experimentally assigned to be either ant-present or ant-excluded plants. Leaf herbivory was investigated throughout the wet season and was influenced by the interaction effect between ants and habitat type. Ants decreased the herbivory on the west edge, but on the east edge results were the opposite. The east edge had higher temperature and sunlight exposure in comparison to the other sites and was assumed to disrupt the stability of ant–plant interactions. In the interior of the fragment, herbivory depended on ant presence/absence and on the location of plants along the transect. Our study highlights how the outcomes of ant–plant interactions are spatially conditioned and affected by different types of habitats.
Collapse
|
3
|
Chinarelli HD, Nogueira A, Leal LC. Extrafloral nectar production induced by simulated herbivory does not improve ant bodyguard attendance and ultimately plant defence. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Highly competitive and aggressive ant species are efficient bodyguards that monopolize the more attractive plants bearing extrafloral nectaries. Given that herbivory often increases the quality of extrafloral nectar, we hypothesized that plants damaged by herbivory would be more prone to interact with high-quality ant bodyguards and be better defended against herbivores. We performed an experiment with Chamaecrista nictitans plants. We induced anti-herbivore responses by applying jasmonic acid to a group of plants while keeping another group unmanaged. We measured extrafloral nectar production, censused ants visiting extrafloral nectaries and, subsequently, added herbivore mimics to measure the efficiency of ant anti-herbivore defence in both conditions. Induction increased the volume of extrafloral nectar and the mass of sugar per nectary without affecting the sugar concentration or the patterns of plant attendance and defence by ants. Thus, we found no evidence that defence-induced C. nictitans plants are more prone to interact with high-quality bodyguards or to receive better anti-herbivore defence. These findings highlight that increases in extrafloral nectar production are not always rewarded with increases in the biotic defences; instead, these rewards might be dependent on the traits of the nectar induced by herbivory events and/or on the ecological context in which the interaction is embedded. Consequently, herbivory might increase the costs of this induced biotic defence to plants bearing extrafloral nectaries when the induced defence does not increase the attractiveness of the plants to ants.
Collapse
Affiliation(s)
- Henrique D Chinarelli
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275 , Eldorado, Diadema, São Paulo, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Alameda da Universidade, s/nº, Anchieta, São Bernardo do Campo, São Paulo, Brazil
| | - Laura C Leal
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275 , Eldorado, Diadema, São Paulo, Brazil
| |
Collapse
|
4
|
Câmara T, Reis DQDA, Arnan X, Oliveira FMP, Arruda ECP, Leal IR. Drought‐induced reductions in plant defenses: Insights from extrafloral nectaries in the Caatinga dry forest. Biotropica 2021. [DOI: 10.1111/btp.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Talita Câmara
- Departamento de Ciências Biológicas Universidade de Pernambuco Garanhuns PE Brazil
- Programa de Pós‐Graduação em Biologia Vegetal Universidade Federal de Pernambuco Recife PE Brazil
| | | | - Xavier Arnan
- Departamento de Ciências Biológicas Universidade de Pernambuco Garanhuns PE Brazil
| | | | | | - Inara Roberta Leal
- Departamento de Botânica Universidade Federal de Pernambuco Recife PE Brazil
| |
Collapse
|
5
|
Yamawo A, Suzuki N, Tagawa J. Species diversity and biological trait function: Effectiveness of ant–plant mutualism decreases as ant species diversity increases. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akira Yamawo
- Department of Applied Biological Sciences Faculty of Agriculture Saga University Saga Japan
| | - Nobuhiko Suzuki
- Department of Applied Biological Sciences Faculty of Agriculture Saga University Saga Japan
| | - Jun Tagawa
- Department of Biosphere–Geosphere System Science Faculty of Informatics Okayama University of Science Okayama Japan
| |
Collapse
|
6
|
The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Sci Rep 2019; 9:15206. [PMID: 31645656 PMCID: PMC6811555 DOI: 10.1038/s41598-019-51528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
In order to evaluate the geographic mosaic theory of coevolution, it is crucial to investigate geographical variation on the outcome of ecological interactions and the functional traits which dictate these outcomes. Plant populations are attacked by specialist and non-specialist herbivores and may have different types of chemical and biotic defences. We investigated geographical and seasonal variation in the interaction between the plant Crotalaria pallida and its two major herbivores (the specialist Utetheisa ornatrix and the non-specialist Etiella zinckenella). We first showed that attack by the two herbivores and a chemical and a biotic defence vary greatly in time and space. Second, we performed a common garden experiment that revealed genetic variation among populations in herbivore resistance and a chemical defence, but no genetic variation in a biotic defence. Third, we sampled 20 populations on a much larger geographical scale and showed great variation in attack rates by the two herbivores and a chemical defence. Finally, we showed that herbivory is not correlated with a chemical defence in the 20 field populations. Our study shows that to understand the evolution of ecological interactions it is crucial to investigate how the outcome of the interaction and the important species traits vary geographically and seasonally.
Collapse
|
7
|
Fernandes LD, Lemos-Costa P, Guimarães PR, Thompson JN, de Aguiar MAM. Coevolution Creates Complex Mosaics across Large Landscapes. Am Nat 2019; 194:217-229. [PMID: 31318284 DOI: 10.1086/704157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Rocha L, Ribeiro PL, Endress PK, Rapini A. A brainstorm on the systematics of Turnera (Turneraceae, Malpighiales) caused by insights from molecular phylogenetics and morphological evolution. Mol Phylogenet Evol 2019; 137:44-63. [PMID: 30999036 DOI: 10.1016/j.ympev.2019.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 11/17/2022]
Abstract
With 145 species, Turnera is the largest genus of Turneraceae (Malpighiales). Despite several morphotaxonomic and cytogenetic studies, our knowledge about the phylogenetic relationships in Turnera remains mainly based on morphological data. Here, we reconstruct the most comprehensive phylogeny of Turnera with molecular data to understand the morphological evolution within this group and to assess its circumscription and infrageneric classification. We analyzed two nuclear and six plastid markers and 112 taxa, including species and infraspecific taxa, 97 from Turnera, covering the 11 series of the genus. Bayesian inference, maximum parsimony and maximum likelihood analyses show that Turnera, as traditionally circumscribed, is not monophyletic. The genus is divided into two well-supported independent clades; one of them is sister to the genus Piriqueta and is here segregated as the new genus Oxossia. According to our reconstructions, Turnera probably evolved from an ancestor without extrafloral nectaries and with solitary, homostylous flowers with yellow petals. The emergences of extrafloral nectaries and distyly, both common in extant taxa, played an important role in the diversification of the genus. An updated infrageneric classification reflecting the relationships within Turnera is now possible based on morphological synapomorphies and is here designed for further studies.
Collapse
Affiliation(s)
- Lamarck Rocha
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-graduação em Botânica, Av. Transnordestina s.n., Feira de Santana, 44036-900 Bahia, Brazil.
| | - Patrícia Luz Ribeiro
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-graduação em Botânica, Av. Transnordestina s.n., Feira de Santana, 44036-900 Bahia, Brazil; Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Cruz das Almas, 44380-000 Bahia, Brazil.
| | - Peter K Endress
- University of Zurich, Department of Systematic and Evolutionary Botany, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| | - Alessandro Rapini
- Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-graduação em Botânica, Av. Transnordestina s.n., Feira de Santana, 44036-900 Bahia, Brazil.
| |
Collapse
|
9
|
Francisco JNC, Lohmann LG. Taxonomic revision of Pachyptera (Bignonieae, Bignoniaceae). PHYTOKEYS 2018; 92:89-131. [PMID: 29416412 PMCID: PMC5799743 DOI: 10.3897/phytokeys.92.20987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 05/24/2023]
Abstract
Pachyptera DC. is a small genus of neotropical lianas included in tribe Bignonieae (Bignoniaceae). The genus has a complicated taxonomic history but currently includes species distributed from Belize to Southern Amazon. Pachyptera is characterised by four main synapomorphies, namely, a papery peeling bark, prophylls of the axillary buds organised in a series of three, patelliform glands arranged in lines in the upper portions of the calyx and corolla tube. Furthermore, members of the genus also have stems with four phloem wedges in cross-section and conspicuous extrafloral nectaries between the interpetiolar region and at the petiole apex, although these characters are also shared with other genera of tribe Bignonieae. Here, we present a taxonomic revision of Pachyptera, which includes a complete list of synonyms, detailed morphological descriptions of species and an identification key, as well as information on the habitat, distribution and phenology, nomenclatural notes, taxonomic comments and illustrations of all the species. In addition, we designate three lectotypes, propose one new combination, raise one variety to species status and describe a new species. After these adjustments, a Pachyptera with five well-defined species is recognised.
Collapse
Affiliation(s)
| | - Lúcia G. Lohmann
- Universidade de São Paulo, Departamento de Botânica, Rua do Matão, 277, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Sanz-Veiga PA, Ré Jorge L, Benitez-Vieyra S, Amorim FW. Pericarpial nectary-visiting ants do not provide fruit protection against pre-dispersal seed predators regardless of ant species composition and resource availability. PLoS One 2017; 12:e0188445. [PMID: 29211790 PMCID: PMC5718428 DOI: 10.1371/journal.pone.0188445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022] Open
Abstract
Extrafloral nectaries can occur in both vegetative and reproductive plant structures. In many Rubiaceae species in the Brazilian Cerrado, after corolla abscission, the floral nectary continues to secret nectar throughout fruit development originating post-floral pericarpial nectaries which commonly attract many ant species. The occurrence of such nectar secreting structures might be strategic for fruit protection against seed predators, as plants are expected to invest higher on more valuable and vulnerable parts. Here, we performed ant exclusion experiments to investigate whether the interaction with ants mediated by the pericarpial nectaries of Tocoyena formosa affects plant reproductive success by reducing the number of pre-dispersal seed predators. We also assessed whether ant protection was dependent on ant species composition and resource availability. Although most of the plants were visited by large and aggressive ant species, such as Ectatomma tuberculatum and species of the genus Camponotus, ants did not protect fruits against seed predators. Furthermore, the result of the interaction was neither related to ant species composition nor to the availability of resources. We suggest that these results may be related to the nature and behavior of the most important seed predators, like Hemicolpus abdominalis weevil which the exoskeleton toughness prevent it from being predated by most ant species. On the other hand, not explored factors, such as reward quality, local ant abundance, ant colony characteristics and/or the presence of alternative energetic sources could also account for variations in ant frequency, composition, and finally ant protective effects, highlighting the conditionality of facultative plant-ant mutualisms.
Collapse
Affiliation(s)
- Priscila Andre Sanz-Veiga
- Laboratório de Ecologia da Polinização e Interações–LEPI, Programa de Pós-graduação em Ciências Biológicas (Botânica), Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, São Paulo, Brazil
- * E-mail: (PASV); (FWA)
| | - Leonardo Ré Jorge
- Departamento de Biologia animal, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Santiago Benitez-Vieyra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Ciudad de Córdoba, Córdoba, Argentina
| | - Felipe W. Amorim
- Laboratório de Ecologia da Polinização e Interações–LEPI, Programa de Pós-graduação em Ciências Biológicas (Botânica), Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, São Paulo, Brazil
- Laboratório de Ecologia da Polinização e Interações–LEPI, Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, São Paulo, Brazil
- * E-mail: (PASV); (FWA)
| |
Collapse
|
11
|
Firetti F, Zuntini AR, Gaiarsa JW, Oliveira RS, Lohmann LG, Van Sluys MA. Complete chloroplast genome sequences contribute to plant species delimitation: A case study of the Anemopaegma species complex. AMERICAN JOURNAL OF BOTANY 2017; 104:1493-1509. [PMID: 29885220 DOI: 10.3732/ajb.1700302] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Bignoniaceae is an important component of neotropical forests and a model for evolutionary and biogeographical studies. A previous combination of molecular markers and morphological traits improved the phylogeny of the group. Here we demonstrate the value of next-generation sequencing (NGS) to assemble the chloroplast genome of eight Anemopaegma species and solve taxonomic problems. METHODS Three NGS platforms were used to sequence total DNA of Anemopaegma species. After genome assembly and annotation, we compared chloroplast genomes within Anemopaegma, with other Lamiales species, and the evolutionary rates of protein-coding genes using Tanaecium tetragonolobum as the outgroup. Phylogenetic analyses of Anemopaegma with different data sets were performed. KEY RESULTS Chloroplast genomes of Anemopaegma species ranged from 167,413 bp in A. foetidum to 168,987 bp in A. acutifolium ("typical" form). They exhibited a characteristic quadripartite structure with a large single-copy region (75,070-75,761 bp), a small single-copy region (12,766-12,817 bp) and a pair of inverted repeat regions (IRs) (39,480-40,481) encoding an identical set of 112 genes. An inversion of a fragment with ca. 8 kb, located in the IRs and containing the genes trnI-AAU, ycf2, and trnL-CAA, was observed in these chloroplast genomes when compared with those of other Lamiales. CONCLUSIONS Anemopaegma species have the largest genomes within the Lamiales possibly due to the large amount of repetitive sequences and IR expansion. Variation was higher in coding regions than in noncoding regions, and some genes were identified as markers for differentiation between species. The use of the entire chloroplast genome gave better phylogenetic resolution of the taxonomic groups. We found that two forms of A. acutifolium result from different maternal lineages.
Collapse
Affiliation(s)
- Fabiana Firetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Alexandre Rizzo Zuntini
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, CEP 13083-970, Campinas, SP, Brazil
| | - Jonas Weismann Gaiarsa
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Renata Souza Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| |
Collapse
|