1
|
Sultan E, Pati D, Kumar S, Sahu BB. Arabidopsis METHYLENETETRAHYDROFOLATE REDUCTASE 2 functions independently of PENETRATION 2 during primary immunity against rice blast. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1032-1048. [PMID: 39450434 DOI: 10.1093/jxb/erae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Non-host resistance (NHR) is the most durable and robust form of innate immunity, with a surge of interest in its role in crop improvement. Of the NHR genes identified against rice blast, a devastating disease caused by Magnaporthe oryzae, Arabidopsis PEN2 is indispensable for pre-penetration resistance to M. oryzae, while a consortium of genes orchestrates post-penetration resistance via lesser known mechanisms. We identified M. oryzae-susceptible mosA (mthfr2 pen2-3) from a randomly mutagenized Arabidopsis pen2-3 population using forward genetics. Analysis of T-DNA-inserted mthfr2 lines and pen2-3-complemented mosA lines revealed that MTHFR2-dependent resistance to M. oryzae is independent of PEN2. MTHFR2-defective plants exhibited higher accumulation of reactive oxygen species and expression of salicylic acid-dependent defense markers. MTHFR2-ligand docking revealed that A55V non-synonymous substitution in mosA altered ligand binding efficiency. This further affected the metabolomic profile of mosA, effectively allowing in vitro germination and development of M. oryzae conidia. Moreover, the loss-of-function mutation in mthfr2 (involved in the 1C metabolic pathway) potentiated mosA immunity against Pst DC3000. In conclusion, our findings showed that MTHFR2 is a positive modulator of NHR against M. oryzae. This work documents another layer of conserved yet divergent metabolomic defense in Arabidopsis regulated by folate-mediated 1C metabolism that has the potential to revolutionize crop improvement.
Collapse
Affiliation(s)
- Eram Sultan
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasish Pati
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sanjeev Kumar
- Indian Agricultural Statistics Research Institute (ICAR-IASRI), Library Avenue, Pusa, New Delhi 110012, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
2
|
Jin Y, He N, Cheng Z, Lin S, Huang F, Wang W, Li QQ, Yang D. Resistance Spectrum Analysis and Breeding Utilization of Rice Blast Resistance Gene Pigm-1. PLANTS (BASEL, SWITZERLAND) 2025; 14:535. [PMID: 40006794 PMCID: PMC11859748 DOI: 10.3390/plants14040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Rice blast is one of the most important diseases of rice, causing significant economic losses to agricultural production. A new gene, Pigm-1, which is allelic to Pigm, was cloned from Shuangkang 77009 using map based cloning. However, it is unclear whether there is a difference in the resistance spectrum between Pigm and Pigm-1. In this study, using 195 rice blast isolates collected from different areas of the Fujian Province, the Pigm-1 and Pigm single gene lines were inoculated to test their resistance. There was only one blast fungus JL-37 that showed a differential response in Pigm and Pigm-1 single gene lines, while the remaining 194 showed no difference. To further explore the application range of Pigm-1, the resistant rice R20-4 containing Pigm-1 was used as the donor, and a sensitive sticky rice S19-118 was used as the receptor. The hybrid F1 was first backcrossed with S19-118 using a molecular marker-assisted selection breeding method, and a strain containing the Pigm-1 gene was selected to continue to backcross with S19-118 until BC3F1. A new blast resistance rice material, Xiannuo 23, containing Pigm-1 was developed and confirmed by laboratory and field tests. This material can be broadly used for the future breeding of rice blast resistant cultivars to reduce the loss of rice production.
Collapse
Affiliation(s)
- Yidan Jin
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niqing He
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
| | - Zhaoping Cheng
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
| | - Shaojun Lin
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
| | - Fenghuang Huang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
| | - Wenxiao Wang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingshun Q. Li
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; (Y.J.); (N.H.); (Z.C.); (S.L.); (F.H.); (W.W.); (Q.Q.L.)
| |
Collapse
|
3
|
Kim HJ, Jang JW, Pham T, Tuyet V, Kim JH, Park CW, Gho YS, Kim EJ, Kwon SW, Jeon JS, Kim ST, Jung KH, Kim YJ. OsLRR-RLP2 Gene Regulates Immunity to Magnaporthe oryzae in Japonica Rice. Int J Mol Sci 2024; 25:2216. [PMID: 38396893 PMCID: PMC10889788 DOI: 10.3390/ijms25042216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Rice is an important cereal crop worldwide, the growth of which is affected by rice blast disease, caused by the fungal pathogen Magnaporthe oryzae. As climate change increases the diversity of pathogens, the disease resistance genes (R genes) in plants must be identified. The major blast-resistance genes have been identified in indica rice varieties; therefore, japonica rice varieties with R genes now need to be identified. Because leucine-rich repeat (LRR) domain proteins possess R-gene properties, we used bioinformatics analysis to identify the rice candidate LRR domain receptor-like proteins (OsLRR-RLPs). OsLRR-RLP2, which contains six LRR domains, showed differences in the DNA sequence, containing 43 single-nucleotide polymorphisms (SNPs) in indica and japonica subpopulations. The results of the M. oryzae inoculation analysis indicated that indica varieties with partial deletion of OsLRR-RLP2 showed susceptibility, whereas japonica varieties with intact OsLRR-RLP2 showed resistance. The oslrr-rlp2 mutant, generated using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), showed increased pathogen susceptibility, whereas plants overexpressing this gene showed pathogen resistance. These results indicate that OsLRR-RLP2 confers resistance to rice, and OsLRR-RLP2 may be useful for breeding resistant cultivars.
Collapse
Affiliation(s)
- Hyo-Jeong Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (J.W.J.); (S.-W.K.); (S.T.K.)
| | - Thuy Pham
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Van Tuyet
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Ji-Hyun Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| | - Chan Woo Park
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| | - Yun-Shil Gho
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Eui-Jung Kim
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (J.W.J.); (S.-W.K.); (S.T.K.)
| | - Jong-Seong Jeon
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (J.W.J.); (S.-W.K.); (S.T.K.)
| | - Ki-Hong Jung
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| |
Collapse
|
4
|
Gao P, Li M, Wang X, Xu Z, Wu K, Sun Q, Du H, Younas MU, Zhang Y, Feng Z, Hu K, Chen Z, Zuo S. Identification of Elite R-Gene Combinations against Blast Disease in Geng Rice Varieties. Int J Mol Sci 2023; 24:ijms24043984. [PMID: 36835399 PMCID: PMC9960461 DOI: 10.3390/ijms24043984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rice blast, caused by the Magnaporthe oryzae fungus, is one of the most devastating rice diseases worldwide. Developing resistant varieties by pyramiding different blast resistance (R) genes is an effective approach to control the disease. However, due to complex interactions among R genes and crop genetic backgrounds, different R-gene combinations may have varying effects on resistance. Here, we report the identification of two core R-gene combinations that will benefit the improvement of Geng (Japonica) rice blast resistance. We first evaluated 68 Geng rice cultivars at seedling stage by challenging with 58 M. oryzae isolates. To evaluate panicle blast resistance, we inoculated 190 Geng rice cultivars at boosting stage with five groups of mixed conidial suspensions (MCSs), with each containing 5-6 isolates. More than 60% cultivars displayed moderate or lower levels of susceptibility to panicle blast against the five MCSs. Most cultivars contained two to six R genes detected by the functional markers corresponding to 18 known R genes. Through multinomial logistics regression analysis, we found that Pi-zt, Pita, Pi3/5/I, and Pikh loci contributed significantly to seedling blast resistance, and Pita, Pi3/5/i, Pia, and Pit contributed significantly to panicle blast resistance. For gene combinations, Pita+Pi3/5/i and Pita+Pia yielded more stable pyramiding effects on panicle blast resistance against all five MCSs and were designated as core R-gene combinations. Up to 51.6% Geng cultivars in the Jiangsu area contained Pita, but less than 30% harbored either Pia or Pi3/5/i, leading to less cultivars containing Pita+Pia (15.8%) or Pita+Pi3/5/i (5.8%). Only a few varieties simultaneously contained Pia and Pi3/5/i, implying the opportunity to use hybrid breeding procedures to efficiently generate varieties with either Pita+Pia or Pita+Pi3/5/i. This study provides valuable information for breeders to develop Geng rice cultivars with high resistance to blast, especially panicle blast.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Mingyou Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xiaoqiu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiwen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Keting Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Quanyi Sun
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Haibo Du
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (S.Z.)
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (S.Z.)
| |
Collapse
|
5
|
Xiang Z, Okada D, Asuke S, Nakayashiki H, Ikeda K. Novel insights into host specificity of Pyricularia oryzae and Pyricularia grisea in the infection of gramineous plant roots. MOLECULAR PLANT PATHOLOGY 2022; 23:1658-1670. [PMID: 35957505 PMCID: PMC9562571 DOI: 10.1111/mpp.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Pyricularia oryzae and Pyricularia grisea are pathogens that cause blast disease in various monocots. It has been reported that P. oryzae infects the leaves and roots of rice via different mechanisms. However, it is unclear to what extent the tissue types affect the host specificities of P. oryzae and P. grisea. Here, we evaluated the tissue-specific infection strategies of P. oryzae and P. grisea in various gramineous plants. Generally, mycelial plug inoculation caused root browning but the degree of browning did not simply follow the disease index on leaves. Interestingly, the Triticum and Digitaria pathotypes caused strong root growth inhibition in rice, wheat, and barley. Moreover, the Digitaria pathotype inhibited root branching only in rice. Culture filtrate reproduced these inhibitory effects on root, suggesting that some secreted molecules are responsible for the inhibitions. Observation of root sections revealed that most of the infection hyphae penetrated intercellular spaces and further extended into root cells, regardless of pathotype and host plant. The infection hyphae of Digitaria and Triticum pathotypes tended to localize in the outer layer of rice roots, but not in those of wheat and barley roots. The infection hyphae of the Oryza pathotype were distributed in both the intercellular and intracellular spaces of rice root cells. Pathogenesis-related genes and reactive oxygen species accumulation were induced after root inoculation with all combinations. These results suggest that resistance reactions were induced in the roots of gramineous plants against the infection with Pyricularia isolates but failed to prevent fungal invasion.
Collapse
Affiliation(s)
- Zikai Xiang
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | - Daiki Okada
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | - Soichiro Asuke
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | | | - Kenichi Ikeda
- Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
6
|
Feng Z, Li M, Xu Z, Gao P, Wu Y, Wu K, Zhao J, Wang X, Wang J, Li M, Hu K, Chen H, Deng Y, Li A, Chen Z, Zuo S. Development of Rice Variety With Durable and Broad-Spectrum Resistance to Blast Disease Through Marker-Assisted Introduction of Pigm Gene. FRONTIERS IN PLANT SCIENCE 2022; 13:937767. [PMID: 35937342 PMCID: PMC9354813 DOI: 10.3389/fpls.2022.937767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/02/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most destructive diseases threatening rice production worldwide. Development of resistant cultivars using broad-spectrum resistance (R) genes with high breeding value is the most effective and economical approach to control this disease. In this study, the breeding potential of Pigm gene in geng/japonica rice breeding practice in Jiangsu province was comprehensively evaluated. Through backcross and marker-assisted selection (MAS), Pigm was introduced into two geng rice cultivars (Wuyungeng 32/WYG32 and Huageng 8/HG8). In each genetic background, five advanced backcross lines with Pigm (ABLs) and the same genotypes as the respective recurrent parent in the other 13 known R gene loci were developed. Compared with the corresponding recurrent parent, all these ABLs exhibited stronger resistance in seedling inoculation assay using 184 isolates collected from rice growing regions of the lower region of the Yangtze River. With respect to panicle blast resistance, all ABLs reached a high resistance level to blast disease in tests conducted in three consecutive years with the inoculation of seven mixed conidial suspensions collected from different regions of Jiangsu province. In natural field nursery assays, the ABLs showed significantly higher resistance than the recurrent parents. No common change on importantly morphological traits and yield-associated components was found among the ABLs, demonstrating the introduction of Pigm had no tightly linked undesirable effect on rice economically important traits and its associated grain weight reduction effect could be probably offset by others grain weight genes or at least in the background of the aforementioned two varieties. Notably, one rice line with Pigm, designated as Yangnonggeng 3091, had been authorized as a new variety in Jiangsu province in 2021, showing excellent performance on both grain yield and quality, as well as the blast resistance. Together, these results suggest that the Pigm gene has a high breeding value in developing rice varieties with durable and broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Mingyou Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zhiwen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Peng Gao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Yunyu Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Keting Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xiaoqiu Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Jianan Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Mengchen Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Hongqi Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc Natl Acad Sci U S A 2022; 119:e2116896119. [PMID: 35771942 PMCID: PMC9271155 DOI: 10.1073/pnas.2116896119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.
Collapse
|
8
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
9
|
Lo KL, Chen YN, Chiang MY, Chen MC, Panibe JP, Chiu CC, Liu LW, Chen LJ, Chen CW, Li WH, Wang CS. Two genomic regions of a sodium azide induced rice mutant confer broad-spectrum and durable resistance to blast disease. RICE (NEW YORK, N.Y.) 2022; 15:2. [PMID: 35006368 PMCID: PMC8748607 DOI: 10.1186/s12284-021-00547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Rice blast, one of the most destructive epidemic diseases, annually causes severe losses in grain yield worldwide. To manage blast disease, breeding resistant varieties is considered a more economic and environment-friendly strategy than chemical control. For breeding new resistant varieties, natural germplasms with broad-spectrum resistance are valuable resistant donors, but the number is limited. Therefore, artificially induced mutants are an important resource for identifying new broad-spectrum resistant (R) genes/loci. To pursue this approach, we focused on a broad-spectrum blast resistant rice mutant line SA0169, which was previously selected from a sodium azide induced mutation pool of TNG67, an elite japonica variety. We found that SA0169 was completely resistant against the 187 recently collected blast isolates and displayed durable resistance for almost 20 years. Linkage mapping and QTL-seq analysis indicated that a 1.16-Mb region on chromosome 6 (Pi169-6(t)) and a 2.37-Mb region on chromosome 11 (Pi169-11(t)) conferred the blast resistance in SA0169. Sequence analysis and genomic editing study revealed 2 and 7 candidate R genes in Pi169-6(t) and Pi169-11(t), respectively. With the assistance of mapping results, six blast and bacterial blight double resistant lines, which carried Pi169-6(t) and/or Pi169-11(t), were established. The complementation of Pi169-6(t) and Pi169-11(t), like SA0169, showed complete resistance to all tested isolates, suggesting that the combined effects of these two genomic regions largely confer the broad-spectrum resistance of SA0169. The sodium azide induced mutant SA0169 showed broad-spectrum and durable blast resistance. The broad resistance spectrum of SA0169 is contributed by the combined effects of two R regions, Pi169-6(t) and Pi169-11(t). Our study increases the understanding of the genetic basis of the broad-spectrum blast resistance induced by sodium azide mutagenesis, and lays a foundation for breeding new rice varieties with durable resistance against the blast pathogen.
Collapse
Affiliation(s)
- Kuan-Lin Lo
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Nian Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Min-Yu Chiang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chun Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Jerome P Panibe
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chung-Chun Chiu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Lu-Wei Liu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Wei Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan.
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
10
|
Wu Y, Xiao N, Li Y, Gao Q, Ning Y, Yu L, Cai Y, Pan C, Zhang X, Huang N, Zhou C, Ji H, Liu J, Shi W, Chen Z, Liang C, Li A. Identification and fine mapping of qPBR10-1, a novel locus controlling panicle blast resistance in Pigm-containing P/TGMS line. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:75. [PMID: 37309514 PMCID: PMC10236096 DOI: 10.1007/s11032-021-01268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in the identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using genotyping by sequencing (GBS) method. A total of seven QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explains 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified using the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01268-3.
Collapse
Affiliation(s)
- Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Yue Cai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Niansheng Huang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Changhai Zhou
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Hongjuan Ji
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Jianju Liu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Wei Shi
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Zichun Chen
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Jiangsu Collaborative Innovation Center for Modern Crop Production, Yangzhou, 225009 China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095 China
| |
Collapse
|
11
|
Peng M, Lin X, Xiang X, Ren H, Fan X, Chen K. Characterization and Evaluation of Transgenic Rice Pyramided with the Pi Genes Pib, Pi25 and Pi54. RICE (NEW YORK, N.Y.) 2021; 14:78. [PMID: 34494175 PMCID: PMC8423957 DOI: 10.1186/s12284-021-00512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Emergence of new pathogen strains of Magnaporthe oryzae is a major reason for recurrent failure of the resistance mediated by a single resistance gene (Pi) in rice. Stacking various Pi genes in the genome through marker-assisted selection is thus an effective strategy in rice breeding for achieving durable resistance against the pathogen. However, the effect of pyramiding of multiple Pi genes using transgenesis still remains largely unknown. RESULTS Three Pi genes Pib, Pi25 and Pi54 were transferred together into two rice varieties, the indica variety Kasalath and the japonica variety Zhenghan 10. Transgenic plants of both Kasalath and Zhenghan 10 expressing the Pi transgenes showed imparted pathogen resistance. All the transgenic lines of both cultivars also exhibited shorter growth periods with flowering 2-4 days early, and shorter plant heights with smaller panicle. Thus, pyramiding of the Pi genes resulted in reduced grain yields in both rice cultivars. However, tiller numbers and grain weight were generally similar between the pyramided lines and corresponding parents. A global analysis of gene expression by RNA-Seq suggested that both enhancement and, to a lesser extent, inhibition of gene transcription occurred in the pyramided plants. A total of 264 and 544 differentially expressed genes (DEGs) were identified in Kasalath and Zhenghan 10, respectively. Analysis of the DEGs suggested that presence of the Pi transgenes did not alter gene expression only related to disease resistance, but also impacted many gene transcriptions in the pathways for plant growth and development, in which several were common for both Kasalath and Zhenghan 10. CONCLUSION Pyramiding of the Pi genes Pib, Pi25 and Pi54 via transgenesis is a potentially promising approach for improving rice resistance to the pathogen Magnaporthe oryzae. However, pleiotropic effects of the Pi genes could potentially result in yield loss. These findings support the idea that immunity is often associated with yield penalties. Rational combination of the Pi genes based on the genetic background may be important to balance yield and disease resistance.
Collapse
Affiliation(s)
- Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, 106 Shizishan Road, Chengdu, 610061, Sichuan, China
| | - Xiaomin Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, 106 Shizishan Road, Chengdu, 610061, Sichuan, China
| | - Xiaoli Xiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, 106 Shizishan Road, Chengdu, 610061, Sichuan, China
| | - Huibo Ren
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, 106 Shizishan Road, Chengdu, 610061, Sichuan, China
| | - Xiaoli Fan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, 106 Shizishan Road, Chengdu, 610061, Sichuan, China
| | - Kegui Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, 106 Shizishan Road, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
12
|
Tian D, Lin Y, Chen Z, Chen Z, Yang F, Wang F, Wang Z, Wang M. Exploring the Distribution of Blast Resistance Alleles at the Pi2/9 Locus in Major Rice-Producing Areas of China by a Novel Indel Marker. PLANT DISEASE 2020; 104:1932-1938. [PMID: 32432983 DOI: 10.1094/pdis-10-19-2187-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast disease caused by the fungus Magnaporthe oryzae damages cereal crops and poses a high risk to rice production around the world. Currently, planting cultivars with resistance (R) genes is still the most environment-friendly approach to control this disease. Effective identification of R genes existing in diverse rice cultivars is important for understanding the distribution of R genes and predicting their contribution to resistance against blast isolates in regional breeding. Here, we developed a new insertion/deletion (InDel) marker, Pigm/2/9InDel, that can differentiate the cloned R genes (Pigm, Pi9, and Pi2/Piz-t) at the Pi2/9 locus. Pigm/2/9InDel combined with the marker Pi2-LRR for Pi2 was applied to determine the distribution of these four R genes among 905 rice varieties, most of which were collected from the major rice-producing regions in China. In brief, nine Pigm-containing varieties from Fujian and Guangdong provinces were identified. All of the 62 Pi2-containing varieties were collected from Guangdong, and 60 varieties containing Piz-t were from seven provinces. However, Pi9 was not found in any of the Chinese varieties. The newly identified varieties carrying the Pi2/9 alleles were further subjected to inoculation tests with regional blast isolates and field trials. Our results indicate that Pigm and Pi2 alleles have been introgressed for blast resistance breeding mainly in the Fujian and Guangdong region, and Pi9 is a valuable blast resistance resource to be introduced into China.
Collapse
Affiliation(s)
- Dagang Tian
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Zaijie Chen
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Fang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Mo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
13
|
Taddesse L, Fukuta Y, Ishikawa R. Genetic study of diversity and blast resistance in Ethiopian rice cultivars adapted to different ecosystems. BREEDING SCIENCE 2020; 70:303-312. [PMID: 32714052 PMCID: PMC7372019 DOI: 10.1270/jsbbs.18198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Rice (Oryza sativa L.) has been considered one of the most important crops in Ethiopia. Landraces and improved accessions in Ethiopia were characterized on the basis of polymorphism data for SSR markers, and classified into two groups: I and II. Cluster I was further divided into two sub-clusters, Ia and Ib. Cluster Ia corresponded to Japonica-like type, Cluster Ib to Japonica type, and Cluster II to Indica type with some Indica-like type. Many landraces and improved varieties belonged to Cluster Ia. Superior landraces were included in Cluster Ib. Further categorization based on blast resistance demonstrated three groups: Clusters A, B1, and B2. Cluster A comprised accessions with relatively high resistance, whereas Clusters B1 and B2 included susceptible accessions. Most of the improved varieties were found in Cluster A. Superior landraces, X-Jigna classified into Ib or DNA type tended to be susceptible in Cluster B2 for blast resistance. These results demonstrated that traditional landraces preferred by farmers should be improved for disease resistance using blast-resistant varieties. In order to avoid hybrid sterility occurring in cross-hybridizing breeding between Indica and Japonica types, desirable parental accessions can be chosen within the same DNA cluster. The clustering information among accessions may be useful in breeding schemes for selection of counterparts in cross-breeding programs.
Collapse
Affiliation(s)
- Lakew Taddesse
- Fogera National Rice Research and Training Centre, Ethiopian Institute of Agricultural Research, 1937, Bahir Dar, Ethiopia
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Yoshimichi Fukuta
- Tropical Agriculture Research Front (TARF), Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa 907-0002, Japan
| | - Ryuji Ishikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
14
|
Dixit S, Singh UM, Singh AK, Alam S, Venkateshwarlu C, Nachimuthu VV, Yadav S, Abbai R, Selvaraj R, Devi MN, Ramayya PJ, Badri J, Ram T, Lakshmi J, Lakshmidevi G, Lrk JV, Padmakumari AP, Laha GS, Prasad MS, Seetalam M, Singh VK, Kumar A. Marker Assisted Forward Breeding to Combine Multiple Biotic-Abiotic Stress Resistance/Tolerance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:29. [PMID: 32472217 PMCID: PMC7260318 DOI: 10.1186/s12284-020-00391-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/12/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Unfavorable climatic changes have led to an increased threat of several biotic and abiotic stresses over the past few years. Looking at the massive damage caused by these stresses, we undertook a study to develop high yielding climate-resilient rice, using genes conferring resistance against blast (Pi9), bacterial leaf blight (BLB) (Xa4, xa5, xa13, Xa21), brown planthopper (BPH) (Bph3, Bph17), gall midge (GM) (Gm4, Gm8) and QTLs for drought tolerance (qDTY1.1 and qDTY3.1) through marker-assisted forward breeding (MAFB) approach. RESULT Seven introgression lines (ILs) possessing a combination of seven to ten genes/QTLs for different biotic and abiotic stresses have been developed using marker-assisted selection (MAS) breeding method in the background of Swarna with drought QTLs. These ILs were superior to the respective recurrent parent in agronomic performance and also possess preferred grain quality with intermediate to high amylose content (AC) (23-26%). Out of these, three ILs viz., IL1 (Pi9+ Xa4+ xa5+ Xa21+ Bph17+ Gm8+ qDTY1.1+ qDTY3.1), IL6 (Pi9+ Xa4+ xa5+ Xa21+ Bph3+ Bph17+ Gm4+ Gm8+ qDTY1.1+ qDTY3.1) and IL7 (Pi9+ Xa4+ xa5+ Bph3+ Gm4+ qDTY1.1+ qDTY3.1) had shown resistance\tolerance for multiple biotic and abiotic stresses both in the field and glasshouse conditions. Overall, the ILs were high yielding under various stresses and importantly they also performed well in non-stress conditions without any yield penalty. CONCLUSION The current study clearly illustrated the success of MAS in combining tolerance to multiple biotic and abiotic stresses while maintaining higher yield potential and preferred grain quality. Developed ILs with seven to ten genes in the current study showed superiority to recurrent parent Swarna+drought for multiple-biotic stresses (blast, BLB, BPH and GM) together with yield advantages of 1.0 t ha- 1 under drought condition, without adverse effect on grain quality traits under non-stress.
Collapse
Affiliation(s)
- Shilpi Dixit
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, 221006, India
| | - Arun Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Shamshad Alam
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Challa Venkateshwarlu
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Shailesh Yadav
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Ragavendran Abbai
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ramchander Selvaraj
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - M Nagamallika Devi
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Jyothi Badri
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - T Ram
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Jhansi Lakshmi
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - G Lakshmidevi
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Jai Vidhya Lrk
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | | | - G S Laha
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - M S Prasad
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Malathi Seetalam
- Professor Jayashankar Telangana State Agricultural University (PJTSAU), RARS, Warangal, India
| | - Vikas Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Arvind Kumar
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India.
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, 221006, India.
| |
Collapse
|
15
|
Singh J, Gupta SK, Devanna BN, Singh S, Upadhyay A, Sharma TR. Blast resistance gene Pi54 over-expressed in rice to understand its cellular and sub-cellular localization and response to different pathogens. Sci Rep 2020; 10:5243. [PMID: 32251298 PMCID: PMC7090074 DOI: 10.1038/s41598-020-59027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022] Open
Abstract
Rice blast resistance gene, Pi54 provides broad-spectrum resistance against different strains of Magnaporthe oryzae. Understanding the cellular localization of Pi54 protein is an essential step towards deciphering its place of interaction with the cognate Avr-gene. In this study, we investigated the sub-cellular localization of Pi54 with Green Fluorescent Protein (GFP) as a molecular tag through transient and stable expression in onion epidermal cells (Allium cepa) and susceptible japonica cultivar rice Taipei 309 (TP309), respectively. Confocal microscopy based observations of the onion epidermal cells revealed nucleus and cytoplasm specific GFP signals. In the stable transformed rice plants, GFP signal was recorded in the stomata, upper epidermal cells, mesophyll cells, vascular bundle, and walls of bundle sheath and bulliform cells of leaf tissues. These observations were further confirmed by Immunocytochemical studies. Using GFP specific antibodies, it was found that there was sufficient aggregation of GFP::Pi54protein in the cytoplasm of the leaf mesophyll cells and periphery of the epidermal cells. Interestingly, the transgenic lines developed in this study could show a moderate level of resistance to Xanthomonas oryzae and Rhizoctonia solani, the causal agents of the rice bacterial blight and sheath blight diseases, respectively. This study is a first detailed report, which emphasizes the cellular and subcellular distribution of the broad spectrum blast resistance gene Pi54 in rice and the impact of its constitutive expression towards resistance against other fungal and bacterial pathogens of rice.
Collapse
Affiliation(s)
- Jyoti Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Hislop College, R.T.M Nagpur University, Nagpur, India
| | | | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Sunil Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Tilak R Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
16
|
Kitazawa N, Shomura A, Mizubayashi T, Ando T, Nagata K, Hayashi N, Takahashi A, Yamanouchi U, Fukuoka S. Rapid DNA-genotyping system targeting ten loci for resistance to blast disease in rice. BREEDING SCIENCE 2019; 69:68-83. [PMID: 31086485 PMCID: PMC6507720 DOI: 10.1270/jsbbs.18143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
The fungal pathogen Pyricularia oryzae causes blast, a severe disease of rice (Oryza sativa L.). Improving blast resistance is important in rice breeding programs. Inoculation tests have been used to select for resistance genotypes, with DNA marker-based selection becoming an efficient alternative. No comprehensive DNA marker system for race-specific resistance alleles in the Japanese rice breeding program has been developed because some loci contain multiple resistance alleles. Here, we used the Fluidigm SNP genotyping platform to determine a set of 96 single nucleotide polymorphism (SNP) markers for 10 loci with race-specific resistance. The markers were then used to evaluate the presence or absence of 24 resistance alleles in 369 cultivars; results were 93.5% consistent with reported inoculation test-based genotypes in japonica varieties. The evaluation system was successfully applied to high-yield varieties with indica genetic backgrounds. The system includes polymorphisms that distinguish the resistant alleles at the tightly linked Pita and Pita-2 loci, thereby confirming that all the tested cultivars with Pita-2 allele carry Pita allele. We also developed and validated insertion/deletion (InDel) markers for ten resistance loci. Combining SNP and InDel markers is an accurate and efficient strategy for selection for race-specific resistance to blast in breeding programs.
Collapse
Affiliation(s)
- Noriyuki Kitazawa
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Ayahiko Shomura
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Tatsumi Mizubayashi
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Tsuyu Ando
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Kazufumi Nagata
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Nagao Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Akira Takahashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Utako Yamanouchi
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Shuichi Fukuoka
- Institute of Crop Science, National Agriculture and Food Research Organization,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| |
Collapse
|
17
|
Bousset L, Sprague SJ, Thrall PH, Barrett LG. Spatio-temporal connectivity and host resistance influence evolutionary and epidemiological dynamics of the canola pathogen Leptosphaeria maculans. Evol Appl 2018; 11:1354-1370. [PMID: 30151045 PMCID: PMC6099830 DOI: 10.1111/eva.12630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/07/2018] [Indexed: 11/27/2022] Open
Abstract
Genetic, physiological and physical homogenization of agricultural landscapes creates ideal environments for plant pathogens to proliferate and rapidly evolve. Thus, a critical challenge in plant pathology and epidemiology is to design durable and effective strategies to protect cropping systems from damage caused by pathogens. Theoretical studies suggest that spatio-temporal variation in the diversity and distribution of resistant hosts across agricultural landscapes may have strong effects on the epidemiology and evolutionary potential of crop pathogens. However, we lack empirical tests of spatio-temporal deployment of host resistance to pathogens can be best used to manage disease epidemics and disrupt pathogen evolutionary dynamics in real-world systems. In a field experiment, we simulated how differences in Brassica napus resistance deployment strategies and landscape connectivity influence epidemic severity and Leptosphaeria maculans pathogen population composition. Host plant resistance, spatio-temporal connectivity [stubble loads], and genetic connectivity of the inoculum source [composition of canola stubble mixtures] jointly impacted epidemiology (disease severity) and pathogen evolution (population composition). Changes in population composition were consistent with directional selection for the ability to infect the host (infectivity), leading to changes in pathotype (multilocus phenotypes) and infectivity frequencies. We repeatedly observed decreases in the frequency of unnecessary infectivity, suggesting that carrying multiple infectivity genes is costly for the pathogen. From an applied perspective, our results indicate that varying resistance genes in space and time can be used to help control disease, even when resistance has already been overcome. Furthermore, our approach extends our ability to test not only for the efficacy of host varieties in a given year, but also for durability over multiple cropping seasons, given variation in the combination of resistance genes deployed.
Collapse
Affiliation(s)
- Lydia Bousset
- CSIRO Agriculture & FoodCanberraACTAustralia
- UMR1349 IGEPPINRALe RheuFrance
| | | | | | | |
Collapse
|
18
|
Stacking of blast resistance orthologue genes in susceptible indica rice line improves resistance against Magnaporthe oryzae. 3 Biotech 2018; 8:37. [PMID: 29291150 DOI: 10.1007/s13205-017-1062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023] Open
Abstract
The emergence of new strains of Magnaporthe oryzae (M. oryzae) is associated with recurrent failure of resistance response mediated by single resistance (R) gene in rice. Therefore, stacking or combining of multiple R genes could improve the durability of resistance against multiple strains of M. oryzae. To achieve this, in the present study, intragenic stacking of rice blast resistance orthologue genes Pi54 and Pi54rh was performed through co-transformation approach. Both these genes were expressed under the control of independent promoters and blast susceptible indica rice line IET17021 was used for transformation. The highly virulent M. oryzae strain Mo-ei-ger1 that could knock down most of the major single blast R genes including Pi54 and exhibiting 89% virulence spectrum was used for phenotypic analysis. The stacked transgenic IET17021 lines (Pi54 + Pi54rh) have shown complete resistance to Mo-ei-ger1 strain in comparison to non-transgenic lines. These two R gene stacked indica transgenic lines could serves as a novel germplasm for rice blast resistance breeding programmes.
Collapse
|
19
|
Kumari M, Rai AK, Devanna BN, Singh PK, Kapoor R, Rajashekara H, Prakash G, Sharma V, Sharma TR. Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaporthe oryzae. PLANT CELL REPORTS 2017; 36:1747-1755. [PMID: 28905253 DOI: 10.1007/s00299-017-2189-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/27/2017] [Indexed: 05/25/2023]
Abstract
This is the first report of stacking two major blast resistance genes in blast susceptible rice variety using co-transformation method to widen the resistance spectrum against different isolates of Magnaporthe oryzae. Single resistance (R-) gene mediated approach for the management of rice blast disease has met with frequent breakdown in resistance response. Besides providing the durable resistance, gene pyramiding or stacking also imparts broad spectrum resistance against plant pathogens, including rice blast. In the present study, we stacked two R-genes; Pi54 and Pi54rh having broad spectrum resistance against multiple isolates of Magnaporthe oryzae (M. oryzae). Both Pi54 and Pi54rh expressed under independent promoters were transferred into the blast susceptible japonica rice Taipei 309 (TP309) using particle gun bombardment method. Functional complementation analysis of stacked transgenic rice lines showed higher level of resistance to a set of highly virulent M. oryzae isolates collected from different rice growing regions. qRT-PCR analysis has shown M. oryzae induced expression of both the R-genes in stacked transgenic lines. The present study also demonstrated the effectiveness of the strategy for rapid single step gene stacking using co-transformation approach to engineer durable resistance against rice blast disease and also this is the first report in which two blast R-genes are stacked together using co-transformation approach. The two-gene-stacked transgenic line developed in this study can be used further to understand the molecular aspects of defense-related pathways vis-a-vis single R-gene containing transgenic lines.
Collapse
Affiliation(s)
- Mandeep Kumari
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Amit Kumar Rai
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - B N Devanna
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Pankaj Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Ritu Kapoor
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - H Rajashekara
- Crop Protection Section, Vivekananda Institute of Hill Agriculture, Almora, 263 601, Uttarakhand, India
| | - G Prakash
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
20
|
Wu Y, Chen Y, Pan C, Xiao N, Yu L, Li Y, Zhang X, Pan X, Chen X, Liang C, Dai Z, Li A. Development and Evaluation of Near-Isogenic Lines with Different Blast Resistance Alleles at the Piz Locus in japonica Rice from the Lower Region of the Yangtze River, China. PLANT DISEASE 2017; 101:1283-1291. [PMID: 30682968 DOI: 10.1094/pdis-12-16-1855-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, threatens rice production in most of the rice-growing areas in China, especially in regions that have grown Oryza sativa subsp. japonica in recent years. The use of resistance genes is the most effective and economical approach for blast control. In our study, a set of six near-isogenic lines (NIL) were developed by introgression of six resistance alleles of the Piz locus (Pi2, Pigm, Pi40, Pi9, Piz, and Pizt) into a blast-susceptible, high-yielding, high-quality japonica '07GY31' via marker-assisted backcross breeding. Artificial inoculation using 144 M. oryzae isolates collected from the lower region of the Yangtze River, China, revealed that most of the NIL, including NIL-Pi2, NIL-Pigm, NIL-Pi40, NIL-Pi9, and NIL-Pizt, exhibited broad-spectrum resistance against rice blast at the seedling stage, with resistance frequencies (RF) of 93.06 to 98.61%. NIL-Piz was an exception, with an RF of 21.53%, which was slightly higher than the recurrent parent 07GY31. NIL-Pi40 and NIL-Pigm had broad-spectrum resistance (RF of 93.33 and 71.67%, respectively) at the heading stage following inoculation of 60 isolates of M. oryzae. Field trials with artificial inoculation at the seedling and heading stage showed that NIL-Pigm and NIL-Pi40 were highly resistant in four locations under high disease pressure. NIL-Pizt showed effective resistance in three locations from Zhejiang and Jiangsu Provinces. This study shows that O. sativa subsp. japonica alleles of the Piz locus confer resistance to M. oryzae, and provides an effective method to enhance seedling and panicle blast resistance in rice plants in the lower region of the Yangtze River, China.
Collapse
Affiliation(s)
- Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225009, China; and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Yu Chen
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing; and Key Laboratory of Plant Functional Genomics, Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing
| | - Xuebiao Pan
- Key Laboratory of Plant Functional Genomics, Ministry of Education, Yangzhou University, Yangzhou
| | - Xijun Chen
- Key Laboratory of Plant Functional Genomics, Ministry of Education, Yangzhou University, Yangzhou
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengyuan Dai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225009, China; and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225009, China; and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| |
Collapse
|
21
|
Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G, Li Y, Zhang X, Wang Z, Dai Z, Liang C, Li A. Improving of Rice Blast Resistances in Japonica by Pyramiding Major R Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:1918. [PMID: 28096805 PMCID: PMC5206849 DOI: 10.3389/fpls.2016.01918] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/02/2016] [Indexed: 05/04/2023]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a major constraint to rice production worldwide. In this study, we developed monogenic near-isogenic lines (NILs) NIL Pi9, NIL Pizt , and NIL Pi54 carrying genes Pi9, Pizt, and Pi54, respectively, by marker assisted backcross breeding using 07GY31 as the japonica genetic background with good agronomic traits. Polygene pyramid lines (PPLs) PPL Pi9+Pi54 combining Pi9 with Pi54, and PPL Pizt+Pi54 combining Pizt with Pi54 were then developed using corresponding NILs with genetic background recovery rates of more than 97%. Compared to 07GY31, the above NILs and PPLs exhibited significantly enhanced resistance frequencies (RFs) for both leaf and panicle blasts. RFs of both PPLs for leaf blast were somewhat higher than those of their own parental NILs, respectively, and PPL Pizt+Pi54 exhibited higher RF for panicle blast than NIL Pizt and NIL Pi54 (P < 0.001), hinting an additive effect on the resistance. However, PPL Pi9+Pi54 exhibited lower RF for panicle blast than NIL Pi9 (P < 0.001), failing to realize an additive effect. PPL Pizt+Pi54 showed higher resistant level for panicle blast and better additive effects on the resistance than PPL Pi9+Pi54. It was suggested that major R genes interacted with each other in a way more complex than additive effect in determining panicle blast resistance levels. Genotyping by sequencing analysis and extreme-phenotype genome-wide association study further confirmed the above results. Moreover, data showed that pyramiding multiple resistance genes did not affect the performance of basic agronomic traits. So the way to enhance levels of leaf and panicle blast resistances for rice breeding in this study is effective and may serve as a reference for breeders. Key Message: Resistant levels of rice blast is resulted from different combinations of major R genes, PPL Pizt+Pi54 showed higher resistant level and better additive effects on the panicle blast resistance than PPL Pi9+Pi54.
Collapse
Affiliation(s)
- Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Yu Chen
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Guangqing Liu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Zhiping Wang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Zhengyuan Dai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Aihong Li, Chengzhi Liang,
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
- *Correspondence: Aihong Li, Chengzhi Liang,
| |
Collapse
|