1
|
Yan T, Zhou A. Crystallization and crystallographic studies of human serine protease inhibitor (serpin) B9. Acta Crystallogr F Struct Biol Commun 2024; 80:286-293. [PMID: 39382088 PMCID: PMC11533364 DOI: 10.1107/s2053230x24009439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Serine protease inhibitor B9 (serpin B9, also known as protease inhibitor 9 or PI9) plays a critical role in regulating the immune response by specifically inhibiting granzyme B, a serine protease found in cytotoxic T lymphocytes and natural killer cells. Despite its potential as an anticancer drug target, the structural details of serpin B9 have remained elusive until now. In this study, a cleaved form of recombinant human serpin B9 was successfully prepared and crystallized. The crystals belonged to space group P212121, with unit-cell parameters a = 68.51, b = 82.32, c = 101.17 Å, and an X-ray diffraction data set was collected at 1.9 Å resolution. The structure shows that serpin B9 adopts a relaxed conformation, with its cleaved reactive-centre loop inserted into the central β-sheet. Unlike other serpins, serpin B9 shows significant structural deviations around helix D, with a larger surface cavity, which could serve as a promising target for small-molecule inhibitors.
Collapse
Affiliation(s)
- Teng Yan
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai200025, People’s Republic of China
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai200025, People’s Republic of China
| |
Collapse
|
2
|
Lim J, Lee K, Im H. Reinforcement of the Unfolded Protein Response Mitigates Cytotoxicity Induced by Human Z‐Type α
1
‐Antitrypsin. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaeyeon Lim
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| | - Kyunghee Lee
- Department of Chemistry Sejong University Seoul 05006 South Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| |
Collapse
|
3
|
Bianchera A, Alomari E, Bruno S. Augmentation therapy with alpha 1-antitrypsin: present and future of production, formulation, and delivery. Curr Med Chem 2021; 29:385-410. [PMID: 34036902 DOI: 10.2174/0929867328666210525161942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Alpha 1-antitrypsin is one of the first protein therapeutics introduced on the market - more than 30 years ago - and, to date, it is indicated only for the treatment of the severe forms of a genetic condition known as alpha-1 antitrypsin deficiency. The only approved preparations are derived from plasma, posing potential problems associated with its limited supply and high processing costs. Moreover, augmentation therapy with alpha 1-antitrypsin is still limited to intravenous infusions, a cumbersome regimen for patients. Here, we review the recent literature on its possible future developments, focusing on i) the recombinant alternatives to the plasma-derived protein, ii) novel formulations, and iii) novel administration routes. Regulatory issues and the still unclear noncanonical functions of alpha 1-antitrypsin - possibly associated with the glycosylation pattern found only in the plasma-derived protein - have hindered the introduction of new products. However, potentially new therapeutic indications other than the treatment of alpha-1 antitrypsin deficiency might open the way to new sources and new formulations.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Esraa Alomari
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Kellici TF, Pilka ES, Bodkin MJ. Small-molecule modulators of serine protease inhibitor proteins (serpins). Drug Discov Today 2020; 26:442-454. [PMID: 33259801 DOI: 10.1016/j.drudis.2020.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/11/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Serine protease inhibitors (serpins) are a large family of proteins that regulate and control crucial physiological processes, such as inflammation, coagulation, thrombosis and thrombolysis, and immune responses. The extraordinary impact that these proteins have on numerous crucial pathways makes them an attractive target for drug discovery. In this review, we discuss recent advances in research on small-molecule modulators of serpins, examine their mode of action, analyse the structural data from crystallised protein-ligand complexes, and highlight the potential obstacles and possible therapeutic perspectives. The application of in silico methods for rational drug discovery is also summarised. In addition, we stress the need for continued research in this field.
Collapse
|
5
|
Post-Transcriptional Regulation of Alpha One Antitrypsin by a Proteasome Inhibitor. Int J Mol Sci 2020; 21:ijms21124318. [PMID: 32560429 PMCID: PMC7352753 DOI: 10.3390/ijms21124318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
Alpha one antitrypsin (α1AT), a serine proteinase inhibitor primarily produced by the liver, protects pulmonary tissue from neutrophil elastase digestion. Mutations of the SERPINA1 gene results in a misfolded α1AT protein which aggregates inside hepatocytes causing cellular damage. Therefore, inhibition of mutant α1AT production is one practical strategy to alleviate liver damage. Here we show that proteasome inhibitors can selectively downregulate α1AT expression in human hepatocytes by suppressing the translation of α1AT. Translational suppression of α1AT is mediated by phosphorylation of eukaryotic translation initiation factor 2α and increased association of RNA binding proteins, especially stress granule protein Ras GAP SH3 binding protein (G3BP1), with α1AT mRNA. Treatment of human-induced pluripotent stem cell-derived hepatocytes with a proteasome inhibitor also results in translational inhibition of mutant α1AT in a similar manner. Together we revealed a previously undocumented role of proteasome inhibitors in the regulation of α1AT translation.
Collapse
|
6
|
Strandback E, Lienhart W, Hromic‐Jahjefendic A, Bourgeois B, Högler A, Waltenstorfer D, Winkler A, Zangger K, Madl T, Gruber K, Macheroux P. A small molecule chaperone rescues the stability and activity of a cancer-associated variant of NAD(P)H:quinone oxidoreductase 1 in vitro. FEBS Lett 2020; 594:424-438. [PMID: 31605637 PMCID: PMC7027498 DOI: 10.1002/1873-3468.13636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/23/2023]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a human FAD-dependent enzyme that plays a crucial role in the antioxidant defense system. A naturally occurring single-nucleotide polymorphism (NQO1*2) in the NQO1 gene leads to an amino acid substitution (P187S), which severely compromises the activity and stability of the enzyme. The NQO1*2 genotype has been linked to a higher risk for several types of cancer and poor survival rate after anthracycline-based chemotherapy. In this study, we show that a small molecular chaperone (N-(2-bromophenyl)pyrrolidine-1-sulfonamide) repopulates the native wild-type conformation. As a consequence of the stabilizing effect, the enzymatic activity of the P187S variant protein is strongly improved in the presence of the molecular chaperone in vitro.
Collapse
Affiliation(s)
| | | | - Altijana Hromic‐Jahjefendic
- Institute of Molecular BiosciencesUniversity of GrazAustria
- Department of Genetics and BioengineeringFaculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and BiochemistryMedical University of GrazAustria
| | - Anja Högler
- Institute of BiochemistryGraz University of TechnologyAustria
| | | | - Andreas Winkler
- Institute of BiochemistryGraz University of TechnologyAustria
| | | | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and BiochemistryMedical University of GrazAustria
- BioTechMed‐GrazAustria
| | - Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyAustria
| |
Collapse
|
7
|
Mitchell EL, Khan Z. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Approaches and Future Directions. CURRENT PATHOBIOLOGY REPORTS 2017; 5:243-252. [PMID: 29399420 PMCID: PMC5780543 DOI: 10.1007/s40139-017-0147-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review The aim of the study is to review the liver disease caused by alpha-1 antitrypsin deficiency (A1ATD), including pathogenesis, epidemiology, diagnostic testing, and recent therapeutic developments. Recent Findings Therapeutic approaches target several intracellular pathways to reduce the cytotoxic effects of the misfolded mutant globular protein (ATZ) on the hepatocyte. These include promoting ATZ transport out of the endoplasmic reticulum (ER), enhancing ATZ degradation, and preventing ATZ globule-aggregation. Summary A1ATD is the leading genetic cause of liver disease among children. It is a protein-folding disorder in which toxic insoluble ATZ proteins aggregate in the ER of hepatocytes leading to inflammation, fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. The absence of the normal A1AT serum protein also predisposes patients to pan lobar emphysema as adults. At this time, the only approved therapy for A1ATD-associated liver disease is orthotopic liver transplantation, which is curative. However, there has been significant recent progress in the development of small molecule therapies with potential both to preserve the native liver and prevent hepatotoxicity.
Collapse
Affiliation(s)
- Ellen L Mitchell
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Zahida Khan
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,3Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,4McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,5Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
8
|
Gaczynska M, Karpowicz P, Stuart CE, Norton MG, Teckman JH, Marszal E, Osmulski PA. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor. PLoS One 2016; 11:e0151902. [PMID: 27008547 PMCID: PMC4805282 DOI: 10.1371/journal.pone.0151902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Przemyslaw Karpowicz
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christine E. Stuart
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Malgorzata G. Norton
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jeffrey H. Teckman
- Department of Pediatrics and Biochemistry, Saint Louis University School of Medicine, Cardinal Glennon Children’s Medical Center, St. Louis, Missouri, United States of America
| | - Ewa Marszal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|