1
|
Abu-Nassar J, Matzrafi M. Effect of Different Temperatures on Herbicide Efficacy for the Management of the Invasive Weed Solanum rostratum Dunal (Family: Solanaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:574. [PMID: 40006833 PMCID: PMC11858994 DOI: 10.3390/plants14040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Solanum rostratum Dunal, an invasive weed first recorded in Israel in the 1950s, undergoes multiple germination waves from early spring to late summer. Recently, its distribution has significantly expanded, with new populations reported throughout the country. This study assessed the efficacy of various herbicides for controlling S. rostratum populations under two distinct temperature regimes, focusing on temperature-dependent variations in herbicide performance. The results demonstrated that fluroxypyr and tembotrione consistently achieved high levels of control across all temperature conditions. Conversely, oxyfluorfen exhibited low performance under elevated temperatures and showed greater population-specific variability, while metribuzin proved more effective at higher temperatures across all S. rostratum populations. These findings emphasize the pivotal role of post-application temperature in influencing herbicide efficacy and underscore the importance of a precise application timing to optimize the control outcomes. Temperature-optimized herbicide strategies could play a critical role in limiting the spread and establishment of S. rostratum in agricultural systems, contributing to a sustainable and effective weed management.
Collapse
Affiliation(s)
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization—Volcani Institute, Ramat Yishay 30095, Israel
| |
Collapse
|
2
|
Torra J, Alcántara-de la Cruz R, de Figueiredo MRA, Gaines TA, Jugulam M, Merotto A, Palma-Bautista C, Rojano-Delgado AM, Riechers DE. Metabolism of 2,4-D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. PEST MANAGEMENT SCIENCE 2024; 80:6041-6052. [PMID: 39132883 DOI: 10.1002/ps.8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs. This review explores 2,4-D tolerance in crops and evolved resistance in weeds, emphasizing an in-depth understanding of 2,4-D metabolic detoxification. Nine confirmed 2,4-D-resistant weed species, driven by rapid metabolism, highlight cytochrome P450 monooxygenases in Phase I and glycosyltransferases in Phase II as key enzymes. Resistance to 2,4-D may also involve impaired translocation associated with mutations in auxin/indole-3-acetic acid (Aux/IAA) co-receptor genes. Moreover, temperature variations affect 2,4-D efficacy, with high temperatures increasing herbicide metabolism rates and reducing weed control, while drought stress did not affect 2,4-D efficacy. Research on 2,4-D resistance has primarily focused on non-target-site resistance (NTSR) mechanisms, including 2,4-D metabolic detoxification, with limited exploration of the inheritance and genetic basis underlying these traits. Resistance to 2,4-D in weeds is typically governed by a single gene, either dominant or incompletely dominant, raising questions about gain-of-function or loss-of-function mutations that confer resistance. Future research should unravel the physiological and molecular-genetic basis of 2,4-D NTSR, exploring potential cross-resistance patterns and assessing fitness costs that may affect future evolution of auxin-resistant weeds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Torra
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - Agrotecnio CERCA Center, Lleida, Spain
| | | | | | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Dean E Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Gafni R, Nassar JA, Matzrafi M, Blank L, Eizenberg H. Unraveling the reasons for failure to control Amaranthus albus: insights into herbicide application at different growth stages, temperature effect, and herbicide resistance on a regional scale. PEST MANAGEMENT SCIENCE 2024; 80:4757-4769. [PMID: 38809094 DOI: 10.1002/ps.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study investigates factors contributing Amaranthus albus control failure in processing tomato fields in northern Israel. The study region is characterized by a significant climate gradient from east to west, providing the opportunity to investigate the effect of critical elements of the agricultural environment, e.g., temperature. Eight populations were collected from commercial fields in this region. Post-emergence herbicide efficacy of metribuzin, a photosystem II inhibitor, and rimsulfuron, an acetolactate synthase (ALS) inhibitor, was assessed through dose-response analyses at various growth stages. Temperature effects on control efficacy and resistance mechanisms were also explored. RESULTS Standard metribuzin dose (X) was ineffective on A. albus plants with more than six true-leaves, whereas 2X dose proved effective. Rimsulfuron at 16X dose was ineffective on plants with more than four true-leaves. We report here the first case of target site resistance to ALS inhibitors in A. albus, due to point mutation in the ALS gene (Pro197 to Leu). Furthermore, our findings suggest potential involvement of CYT P450 enzymes in enhanced metabolizing of rimsulfuron. An overall decrease in dry weight was observed in response to both herbicides at 16/22 °C (P < 0.0001). Rimsulfuron was effective against only one population when applied at 28/34 °C. A possible fitness cost associated with target site-resistant biotypes was observed under low temperature conditions, leading to effective control. CONCLUSION This regional-scale study highlights the challenges faced by growers, emphasizes the need for adapting management practices to the local climatic conditions and lays the groundwork for implementing location-specific weed management strategies in commercial fields. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roni Gafni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon LeZion, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
4
|
Vaseva II, Petrakova M, Blagoeva A, Todorova D. Divergent Cross-Adaptation of Herbicide-Treated Wheat and Triticale Affected by Drought or Waterlogging. Int J Mol Sci 2023; 24:12503. [PMID: 37569877 PMCID: PMC10419764 DOI: 10.3390/ijms241512503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Widely used agrochemicals that do not exert negative effects on crops and selectively target weeds could influence plant resilience under unfavorable conditions. The cross-adaptation of wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittm.) exposed to two environmental abiotic stressors (drought and waterlogging) was evaluated after treatment with a selective herbicide (Serrate®, Syngenta). The ambivalent effects of the herbicide on the two studied crops were particularly distinct in waterlogged plants, showing a significant reduction in wheat growth and better performance of triticale individuals exposed to the same combined treatment. Histochemical staining for the detection of reactive oxygen species (ROS) confirmed that the herbicide treatment increased the accumulation of superoxide anion in the flooded wheat plants, and this effect persisted in the younger leaves of the recovered individuals. Comparative transcript profiling of ROS scavenging enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) in stressed and recovered plants revealed crop-specific variations resulting from the unfavorable water regimes in combination with the herbicide treatment. Short-term dehydration was relatively well tolerated by the hybrid crop triticale and this aligned with the considerable upregulation of genes for L-Proline biosynthesis. Its drought resilience was diminished by herbicide application, as evidenced by increased ROS accumulation after prolonged water deprivation.
Collapse
Affiliation(s)
| | | | | | - Dessislava Todorova
- Institute of Plant Physiology and Genetics–Bulgarian Academy of Sciences, Acad G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.I.V.); (M.P.); (A.B.)
| |
Collapse
|
5
|
Pandian BA, Varanasi A, Vennapusa AR, Thompson C, Tesso T, Prasad PVV, Jugulam M. Identification and Characterization of Mesotrione-Resistant Grain Sorghum [ Sorghum bicolor (L.) Moench]: A Viable Option for Postemergence Grass Weed Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1035-1045. [PMID: 36602944 DOI: 10.1021/acs.jafc.2c05865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mesotrione is effective in controlling a wide spectrum of weeds in corn but not registered for postemergence use in sorghum because of crop injury. We screened a sorghum germplasm collection and identified two mesotrione-resistant sorghum genotypes (G-1 and G-10) and one susceptible genotype (S-1) in an in vitro plate assay. A mesotrione dose-response assay under greenhouse and field conditions confirmed that G-1 and G-10 are highly resistant compared to S-1. We found enhanced metabolism of mesotrione in G-1 and G-10 using HPLC assay, and a significant reduction in biomass accumulation was found in G-1 and G-10 plants pretreated with cytochrome P450 (CYP)-inhibitors malathion or piperonyl butoxide, indicating the involvement of CYPs in the metabolism of mesotrione. Genetic analyses using F1 and F2 progenies generated by crossing G-1 and G-10 separately with S-1 revealed that mesotrione resistance in sorghum is controlled by a single dominant gene along with several genes with minor effects.
Collapse
Affiliation(s)
| | - Aruna Varanasi
- Bayer Crop Science, St. Louis, Missouri 63017, United States
| | - Amaranatha Reddy Vennapusa
- Department of Agriculture & Natural Resources, Delaware State University, Dover, Delaware 19904, United States
| | - Curtis Thompson
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, United States
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, United States
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, United States
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
6
|
Žaltauskaitė J, Dikšaitytė A, Miškelytė D, Kacienė G, Sujetovienė G, Januškaitienė I, Juknys R. Effects of elevated CO2 concentration and temperature on the mixed-culture grown wild mustard (Sinapis arvensis L.) response to auxin herbicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13711-13725. [PMID: 36136189 DOI: 10.1007/s11356-022-23134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Recently, there has been growing concern over the potential impact of CO2 concentration and temperature on herbicide efficacy. The aim of the study was to examine the influence of single elevated CO2 (400 vs. 800 ppm) and elevated CO2 in combination with temperature (21 °C vs. 25 °C) on the effects of auxin herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) (0.5-2 × field recommended rate) to wild mustard (Sinapis arvensis L.) grown in mixed-culture with spring barley (Hordeum vulgare L.). MCPA had a detrimental effect on aboveground and belowground biomass, content of chlorophylls, enzymatic and non-enzymatic antioxidants and induced oxidative stress. The significant decline in photosynthetic rate, stomatal conductance and transpiration with MCPA dose was detected. Elevated CO2 reinforced MCPA efficacy on S. arvensis: sharper decline in biomass, photosynthetic rate and antioxidant enzymes and more pronounced lipid peroxidation were detected. Under elevated CO2 and temperature, MCPA efficacy to control S. arvensis dropped due to herbicide dilution because of increased root:shoot ratio, higher activity of antioxidants and less pronounced oxidative damage. Reinforced MCPA impact on weeds under elevated CO2 resulted in higher H. vulgare biomass, while decreased MCPA efficacy under elevated CO2 and temperature reduced H. vulgare biomass.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania.
| | - Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania
| | - Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania
| | - Giedrė Kacienė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania
| | - Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania
| | - Irena Januškaitienė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania
| | - Romualdas Juknys
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10-307, Akademija, 53361, Kaunas District, Lithuania
| |
Collapse
|
7
|
Freezing stress affects the efficacy of clodinafop-propargyl and 2,4-D plus MCPA on wild oat (Avena ludoviciana Durieu) and turnipweed [Rapistrum rugosum (L.) All.] in wheat (Triticum aestivum L.). PLoS One 2022; 17:e0274945. [PMID: 36201477 PMCID: PMC9536574 DOI: 10.1371/journal.pone.0274945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
The occurrence of freezing stress around herbicides application is one of the most important factors influencing their performance. This experiment was performed to evaluate the efficacy of clodinafop-propargyl and 2,4-D plus MCPA (2,4-Dichlorophenoxyacetic acid plus 2-methyl-4-chlorophenoxyacetic acid), the most important herbicides used in wheat fields in Iran, under the influence of a freezing treatment (-4°C). Wheat and its two common weeds, winter wild oat (Avena ludoviciana Durieu) and turnipweed [Rapistrum rugosum (L.) All.], were exposed to the freezing treatment for three nights from 7:00 P.M. to 5:00 A.M. before and after herbicide application, and their response was compared with plants that did not grow under freezing stress. Under no freezing (NF) and freezing after spray (FAS) conditions, winter wild oat was completely controlled with the recommended dose of clodinafop-propargyl (64 g ai ha-1; hereafter g ha-1). However, the survival percentage of winter wild oat in the freezing before spray (FBS) of clodinafop-propargyl 64 g ha-1 was 7%, and it was completely controlled with twice the recommended dose (128 g ha-1). Under NF conditions and FAS treatment, turnipweed was completely controlled with twice the recommended dose of 2,4-D plus MCPA (2025 g ae ha-1; hereafter g ha-1), while there was no complete control under recommended rate. However, in the FBS treatment, the survival of turnipweed was 7% under double dose. The LD50 (dose required to control 50% of individuals in the population) and GR50 (dose causing 50% growth reduction of plants) rankings were NF<FBS<FAS for clodinafop-propargyl and NF<FAS<FBS for 2,4-D plus MCPA. Selectivity index for clodinafop-propargyl in NF conditions, FBS, and FAS treatments was 2.4, 0.91, and 0.78, respectively, and, for 2,4-D plus MCPA, it was 2.6, 0.12, and 0.88, respectively. According to the results of LD50, it can be stated that the freezing stress after the spraying of clodinafop-propargyl and before the spraying of 2,4-D plus MCPA would further reduce the efficacy of these herbicides.
Collapse
|
8
|
Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E. Survey on the Recent Advances in 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Inhibition by Diketone and Triketone Derivatives and Congeneric Compounds: Structural Analysis of HPPD/Inhibitor Complexes and Structure-Activity Relationship Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6963-6981. [PMID: 35652597 DOI: 10.1021/acs.jafc.2c02010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
9
|
Hu W, Gao S, Zhao LX, Guo KL, Wang JY, Gao YC, Shao XX, Fu Y, Ye F. Design, synthesis and biological activity of novel triketone-containing quinoxaline as HPPD inhibitor. PEST MANAGEMENT SCIENCE 2022; 78:938-946. [PMID: 34719096 DOI: 10.1002/ps.6703] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 4-Hydroxyphenyl pyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the important target enzymes used to address the issue of weed control. HPPD-inhibiting herbicides can reduce the carotenoid content in plants and hinder photosynthesis, eventually causing albinism and death. Exploring novel HPPD-inhibiting herbicides is a significant direction in pesticide research. In the process of exploring new high-efficiency HPPD inhibitors, a series of novel quinoxaline derivatives were designed and synthesized using an active fragment splicing strategy. RESULTS The title compounds were unambiguously characterized by infrared, 1 H NMR, 13 C NMR, and high-resolution mass spectroscopy. The results of the in vitro tests indicated that the majority of the title compounds showed potent inhibition of Arabidopsis thaliana HPPD (AtHPPD). Preliminary bioevaluation results revealed that a number of novel compounds displayed better or excellent herbicidal activity against broadleaf and monocotyledonous weeds. Compound III-5 showed herbicidal effects comparable to those of mesotrione at a rate of 150 g of active ingredient (ai)/ha for post-emergence application. The results of molecular dynamics verified that compound III-5 had a more stable protein-binding ability. Molecular docking results showed that compound III-5 and mesotrione shared homologous interplay with the surrounding residues. In addition, the enlarged aromatic ring system adds more force, and the hydrogen bond formed can enhance the synergy with π-π stacking. CONCLUSIONS The present work indicates that compound III-5 may be a potential lead structure for the development of new HPPD inhibitors.
Collapse
Affiliation(s)
- Wei Hu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ke-Liang Guo
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jia-Yu Wang
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ying-Chao Gao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xin-Xin Shao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
10
|
Holmes KH, Lindquist JL, Rebarber R, Werle R, Yerka M, Tenhumberg B. Modeling the evolution of herbicide resistance in weed species with a complex life cycle. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02473. [PMID: 34652876 DOI: 10.1002/eap.2473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
A growing number of weed species have evolved resistance to herbicides in recent years, which causes an immense financial burden to farmers. An increasingly popular method of weed control is the adoption of crops that are resistant to specific herbicides, which allows farmers to apply the herbicide during the growing season without harming the crop. If such crops are planted in the presence of closely related weed species, it is possible that resistance genes could transfer from the crop species to feral populations of the wild species via gene flow and become stably introgressed under ongoing selective pressure by the herbicide. We use a density-dependent matrix model to evaluate the effect of planting such crops on the evolution of herbicide resistance under a range of management scenarios. Our model expands on previous simulation studies by considering weed species with a more complex life cycle (perennial, rhizomatous weed species), studying the effect of environmental variation in herbicide effectiveness, and evaluating the role of common simplifying genetic assumptions on resistance evolution. Our model predictions are qualitatively similar to previous modeling studies using species with a simpler life cycle, which is, crop rotation in combination with rotation of herbicide site of action effectively controls weed populations and slows the evolution of herbicide resistance. We find that ignoring the effect of environmental variation can lead to an over- or under-prediction of the speed of resistance evolution. The effect of environmental variation in herbicide effectiveness depends on the resistance allele frequency in the weed population at the beginning of the simulation. Finally, we find that degree of dominance and ploidy level have a much larger effect on the predicted speed of resistance evolution compared to the rate of gene flow.
Collapse
Affiliation(s)
- K Harrison Holmes
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - John L Lindquist
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Richard Rebarber
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Melinda Yerka
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada-Reno, Reno, Nevada, 89557, USA
| | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
11
|
Recurrent Selection with Sub-Lethal Doses of Mesotrione Reduces Sensitivity in Amaranthus palmeri. PLANTS 2021; 10:plants10071293. [PMID: 34202011 PMCID: PMC8308957 DOI: 10.3390/plants10071293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Amaranthus palmeri, ranked as the most prolific and troublesome weed in North America, has evolved resistance to several herbicide sites of action. Repeated use of any one herbicide, especially at lower than recommended doses, can lead to evolution of weed resistance, and, therefore, a better understanding of the process of resistance evolution is essential for the management of A. palmeri and other difficult-to-control weed species. Amaranthus palmeri rapidly developed resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors such as mesotrione. The objective of this study was to test the potential for low-dose applications of mesotrione to select for reduced susceptibility over multiple generations in an A. palmeri population collected from an agricultural field in 2001. F0 plants from the population were initially treated with sub-lethal mesotrione rates and evaluated for survival three weeks after treatment. All F0 plants were controlled at the 1× rate (x = 105 g ai ha−1). However, 2.5% of the F0 plants survived the 0.5× treatment. The recurrent selection process using plants surviving various mesotrione rates was continued until the F4 generation was reached. Based on the GR50 values, the sensitivity index was determined to be 1.7 for the F4 generation. Compared to F0, HPPD gene expression level in the F3 population increased. Results indicate that after several rounds of recurrent selection, the successive generations of A. palmeri became less responsive to mesotrione, which may explain the reduced sensitivity of this weed to HPPD-inhibiting herbicides. The results have significance in light of the recently released soybean and soon to be released cotton varieties with resistance to HPPD inhibitors.
Collapse
|
12
|
Landau CA, Hager AG, Tranel PJ, Davis AS, Martin NF, Williams MM. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. PEST MANAGEMENT SCIENCE 2021; 77:2683-2689. [PMID: 33512060 PMCID: PMC8248441 DOI: 10.1002/ps.6309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND By 2050, weather is expected to become more variable with a shift towards higher temperatures and more erratic rainfall throughout the U.S. Corn Belt. The effects of this predicted weather change on pre-emergence (PRE) herbicide efficacy have been inadequately explored. Using an extensive database, spanning 252 unique weather environments, the efficacy of atrazine, acetochlor, S-metolachlor, and mesotrione, applied PRE alone and in combinations, was modeled on common weed species in corn (Zea mays L.). RESULTS Adequate rainfall to dissolve the herbicide into soil water solution so that it could be absorbed by developing weed seedlings within the first 15 days after PRE application was essential for effective weed control. Across three annual weed species, the probability of effective control increased as rainfall increased and was maximized when rainfall was 10 cm or more. When rainfall was less than 10 cm, increasing soil temperatures had either a positive or negative effect on the probability of effective control, depending on the herbicide(s) and weed species. Herbicide combinations required less rainfall to maximize the probability of effective control and had higher odds of successfully controlling weeds compared with the herbicides applied individually. CONCLUSIONS Results of this study highlight the importance of rainfall following PRE herbicide application. As rainfall becomes more variable in future, the efficacy of common PRE herbicides will likely decline. However, utilizing combinations of PRE herbicides along with additional cultural, mechanical, biological, and chemical weed control methods will create a more sustainable integrated weed management system and help U.S. corn production adapt to more extreme weather. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Aaron G Hager
- Department of Crop SciencesUniversity of IllinoisUrbanaILUSA
| | | | - Adam S Davis
- Department of Crop SciencesUniversity of IllinoisUrbanaILUSA
| | | | | |
Collapse
|
13
|
Hussain A, Ding X, Alariqi M, Manghwar H, Hui F, Li Y, Cheng J, Wu C, Cao J, Jin S. Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. PLANTS (BASEL, SWITZERLAND) 2021; 10:621. [PMID: 33805182 PMCID: PMC8064318 DOI: 10.3390/plants10040621] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Weeds have continually interrupted crop plants since their domestication, leading to a greater yield loss compared to diseases and pests that necessitated the practice of weed control measures. The control of weeds is crucial to ensuring the availability of sufficient food for a rapidly increasing human population. Chemical weed control (herbicides) along with integrated weed management (IWM) practices can be the most effective and reliable method of weed management programs. The application of herbicides for weed control practices calls for the urgency to develop herbicide-resistant (HR) crops. Recently, genome editing tools, especially CRISPR-Cas9, have brought innovation in genome editing technology that opens up new possibilities to provide sustainable farming in modern agricultural industry. To date, several non-genetically modified (GM) HR crops have been developed through genome editing that can present a leading role to combat weed problems along with increasing crop productivity to meet increasing food demand around the world. Here, we present the chemical method of weed control, approaches for herbicide resistance development, and possible advantages and limitations of genome editing in herbicide resistance. We also discuss how genome editing would be effective in combating intensive weed problems and what would be the impact of genome-edited HR crops in agriculture.
Collapse
Affiliation(s)
- Amjad Hussain
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Xiao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Hakim Manghwar
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Fengjiao Hui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| | - Yapei Li
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Junqi Cheng
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Chenglin Wu
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Jinlin Cao
- Tobacco Research Institute of Hubei Province, Wuhan 430030, China; (A.H.); (Y.L.); (J.C.); (C.W.)
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (X.D.); (M.A.); (F.H.)
| |
Collapse
|
14
|
Pandian BA, Varanasi A, Vennapusa AR, Sathishraj R, Lin G, Zhao M, Tunnell M, Tesso T, Liu S, Prasad PVV, Jugulam M. Characterization, Genetic Analyses, and Identification of QTLs Conferring Metabolic Resistance to a 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor in Sorghum ( Sorghum bicolor). FRONTIERS IN PLANT SCIENCE 2020; 11:596581. [PMID: 33362828 PMCID: PMC7756693 DOI: 10.3389/fpls.2020.596581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/09/2020] [Indexed: 05/24/2023]
Abstract
Postemergence grass weed control continues to be a major challenge in grain sorghum [Sorghum bicolor (L.) Moench], primarily due to lack of herbicide options registered for use in this crop. The development of herbicide-resistant sorghum technology to facilitate broad-spectrum postemergence weed control can be an economical and viable solution. The 4-hydroxyphenylpyruvate dioxygenase-inhibitor herbicides (e.g., mesotrione or tembotrione) can control a broad spectrum of weeds including grasses, which, however, are not registered for postemergence application in sorghum due to crop injury. In this study, we identified two tembotrione-resistant sorghum genotypes (G-200, G-350) and one susceptible genotype (S-1) by screening 317 sorghum lines from a sorghum association panel (SAP). These tembotrione-resistant and tembotrione-susceptible genotypes were evaluated in a tembotrione dose-response [0, 5.75, 11.5, 23, 46, 92 (label recommended dose), 184, 368, and 736 g ai ha-1] assay. Compared with S-1, the genotypes G-200 and G-350 exhibited 10- and seven fold more resistance to tembotrione, respectively. To understand the inheritance of tembotrione-resistant trait, crosses were performed using S-1 and G-200 or G-350 to generate F1 and F2 progeny. The F1 and F2 progeny were assessed for their response to tembotrione treatment. Genetic analyses of the F1 and F2 progeny demonstrated that the tembotrione resistance in G-200 and G-350 is a partially dominant polygenic trait. Furthermore, cytochrome P450 (CYP)-inhibitor assay using malathion and piperonyl butoxide suggested possible CYP-mediated metabolism of tembotrione in G-200 and G-350. Genotype-by-sequencing based quantitative trait loci (QTL) mapping revealed QTLs associated with tembotrione resistance in G-200 and G-350 genotypes. Overall, the genotypes G-200 and G-350 confer a high level of metabolic resistance to tembotrione and controlled by a polygenic trait. There is an enormous potential to introgress the tembotrione resistance into breeding lines to develop agronomically desirable sorghum hybrids.
Collapse
Affiliation(s)
| | | | | | | | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Madison Tunnell
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
15
|
Based on the Virtual Screening of Multiple Pharmacophores, Docking and Molecular Dynamics Simulation Approaches toward the Discovery of Novel HPPD Inhibitors. Int J Mol Sci 2020; 21:ijms21155546. [PMID: 32756361 PMCID: PMC7432800 DOI: 10.3390/ijms21155546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of 4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target. Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were developed. The ZINC and natural product database were virtually screened, and 29 compounds were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD inhibitory herbicides.
Collapse
|
16
|
Wang H, Liu W, Jin T, Peng X, Zhang L, Wang J. Bipyrazone: a new HPPD-inhibiting herbicide in wheat. Sci Rep 2020; 10:5521. [PMID: 32218463 PMCID: PMC7098957 DOI: 10.1038/s41598-020-62116-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2020] [Indexed: 01/07/2023] Open
Abstract
Bipyrazone, 1,3-dimethyl-4-(2-(methylsulfonyl)-4-(trifluoromethyl) benzoyl)-1H-pyrazol-5-yl 1,3-dimethyl-1H-pyrazole- 4-carboxylate, is a 4-hydroxyphenylpyaunate dioxygenase (HPPD)-inhibiting herbicide. Greenhouse and field experiments were conducted to explore the potential of post-emergence (POST) application of bipyrazone in wheat fields in China. In the greenhouse study, bipyrazone at 10 and 20 g active ingredient (a.i.) ha−1 effectively controlled Descurainia sophia L., Capsella bursa-pastoris (L.) Medic., Lithospermum arvense L. and Myosoton aquaticum L. Whereas, all tested 16 wheat cultivars showed high degree of tolerance to bipyrazone at 375 and 750 g a.i. ha−1. In a dose-response experiment carried on the Shannong 6 wheat cultivar and five weed biotypes, bipyrazone was safe to the wheat cultivar, and C. bursa-pastoris, M. aquaticum and D. sophia were sensitive to this herbicide. The selectivity index (SI) between the Shannong 6 and weeds ranged from 34 to 39. The field experiments confirmed that a mixture of bipyrazone and fluroxypyr-mepthyl is practical for controlling broadleaf weeds, and bipyrazone applied alone at 30 to 40 g a.i. ha−1 can also provide satisfactory control of sensitive broadleaf weeds. These findings suggest that bipyrazone POST application has good potential for broadleaf weed management in wheat fields.
Collapse
Affiliation(s)
- Hengzhi Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, P.R. China.,Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, P.R. China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, P.R. China.,Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, P.R. China
| | - Tao Jin
- Qingdao Kingagroot Chemical Compound Co., Ltd., Qingdao, 266000, Shandong, P.R. China
| | - Xuegang Peng
- Qingdao Kingagroot Chemical Compound Co., Ltd., Qingdao, 266000, Shandong, P.R. China
| | - Lele Zhang
- Administration Bureau of the Yellow River Delta National Nature Reserve, Dongying, 257091, Shandong, P.R. China
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, P.R. China. .,Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, P.R. China.
| |
Collapse
|
17
|
Evolution of Target-Site Resistance to Glyphosate in an Amaranthus palmeri Population from Argentina and Its Expression at Different Plant Growth Temperatures. PLANTS 2019; 8:plants8110512. [PMID: 31744154 PMCID: PMC6918357 DOI: 10.3390/plants8110512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
The mechanism and expression of resistance to glyphosate at different plant growing temperatures was investigated in an Amaranthus palmeri population (VM1) from a soybean field in Vicuña Mackenna, Cordoba, Argentina. Resistance was not due to reduced glyphosate translocation to the meristem or to EPSPS duplication, as reported for most US samples. In contrast, a proline 106 to serine target-site mutation acting additively with EPSPS over-expression (1.8-fold increase) was respectively a major and minor contributor to glyphosate resistance in VM1. Resistance indices based on LD50 values generated using progenies from a cross between 52 PS106 VM1 individuals were estimated at 7.1 for homozygous SS106 and 4.3 for heterozygous PS106 compared with homozygous wild PP106 plants grown at a medium temperature of 24 °C day/18 °C night. A larger proportion of wild and mutant progenies survived a single commonly employed glyphosate rate when maintained at 30 °C day/26 °C night compared with 20 °C day/16 night in a subsequent experiment. Interestingly, the P106S mutation was not identified in any of the 920 plants analysed from 115 US populations, thereby potentially reflecting the difference in A. palmeri control practices in Argentina and USA.
Collapse
|
18
|
Shyam C, Jhala AJ, Kruger G, Jugulam M. Rapid metabolism increases the level of 2,4-D resistance at high temperature in common waterhemp (Amaranthus tuberculatus). Sci Rep 2019; 9:16695. [PMID: 31723191 PMCID: PMC6853974 DOI: 10.1038/s41598-019-53164-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022] Open
Abstract
Common waterhemp emerges throughout the crop growing season in the Midwestern United States, and as a result, the seedlings are exposed to a wide range of temperature regimes. Typically, 2,4-D is used in the Midwest to control winter annual broad-leaf weeds before planting soybean and in an early post-emergence application in corn and sorghum; however, the evolution of 2,4-D-resistant common waterhemp in several Midwestern states may limit the use of 2.4-D for controlling this problem weed. Moreover, temperature is one of the crucial factors affecting weed control efficacy of 2,4-D. This research investigated the effect of temperature on efficacy of 2,4-D to control 2,4-D susceptible (WHS) and -resistant (WHR) common waterhemp. Do se-response of WHS and WHR to 2,4-D was assessed at two temperature regimes, high (HT; 34/20 °C, d/n) and low (LT; 24/10 °C, d/n). Whole plant dose response study indicated an increased level of 2,4-D resistance in WHR at HT compared to LT. Additional investigation of the physiological mechanism of this response indicated that both WHS and WHR common waterhemp plants rapidly metabolized 14C 2,4-D at HT compared to LT. In conclusion, a rapid metabolism of 2,4-D conferred increased level of resistance to 2,4-D in WHR at HT. Therefore, application of 2,4-D when temperatures are cooler can improve control of 2,4-D resistant common waterhemp.
Collapse
Affiliation(s)
- Chandrima Shyam
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, 1712 Claflin Road, Manhattan, KS, 66506, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA
| | - Greg Kruger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA.,University of Nebraska-Lincoln, North Platte, NE, 69101, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, 1712 Claflin Road, Manhattan, KS, 66506, USA.
| |
Collapse
|
19
|
Fu Y, Zhang D, Zhang SQ, Liu YX, Guo YY, Wang MX, Gao S, Zhao LX, Ye F. Discovery of N-Aroyl Diketone/Triketone Derivatives as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11839-11847. [PMID: 31589436 DOI: 10.1021/acs.jafc.9b01412] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an important target site for discovering new bleaching herbicides. To explore novel HPPD inhibitors with excellent herbicidal activity, a series of novel N-aroyl diketone/triketone derivatives were rationally designed by splicing active groups and bioisosterism. Bioassays revealed that most of these derivatives displayed preferable herbicidal activity against Echinochloa crus-galli (EC) at 0.045 mmol/m2 and Abutilon juncea (AJ) at 0.090 mmol/m2. In particular, compound I-f was more potent compared to the commercialized compound mesotrione. Molecular docking indicated that the corresponding active molecules of target compounds and mesotrione shared similar interplay with surrounding residues, which led to a perfect interaction with the active site of Arabidopsis thaliana HPPD.
Collapse
Affiliation(s)
- Ying Fu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Dong Zhang
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuai-Qi Zhang
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yong-Xuan Liu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - You-Yuan Guo
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Meng-Xia Wang
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
20
|
Non-Target-Site Resistance to Herbicides: Recent Developments. PLANTS 2019; 8:plants8100417. [PMID: 31618956 PMCID: PMC6843234 DOI: 10.3390/plants8100417] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 01/07/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides in weeds can be conferred as a result of the alteration of one or more physiological processes, including herbicide absorption, translocation, sequestration, and metabolism. The mechanisms of NTSR are generally more complex to decipher than target-site resistance (TSR) and can impart cross-resistance to herbicides with different modes of action. Metabolism-based NTSR has been reported in many agriculturally important weeds, although reduced translocation and sequestration of herbicides has also been found in some weeds. This review focuses on summarizing the recent advances in our understanding of the physiological, biochemical, and molecular basis of NTSR mechanisms found in weed species. Further, the importance of examining the co-existence of TSR and NTSR for the same herbicide in the same weed species and influence of environmental conditions in the altering and selection of NTSR is also discussed. Knowledge of the prevalence of NTSR mechanisms and co-existing TSR and NTSR in weeds is crucial for designing sustainable weed management strategies to discourage the further evolution and selection of herbicide resistance in weeds.
Collapse
|
21
|
Westneat DF, Potts LJ, Sasser KL, Shaffer JD. Causes and Consequences of Phenotypic Plasticity in Complex Environments. Trends Ecol Evol 2019; 34:555-568. [PMID: 30871734 DOI: 10.1016/j.tree.2019.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Phenotypic plasticity is a ubiquitous and necessary adaptation of organisms to variable environments, but most environments have multiple dimensions that vary. Many studies have documented plasticity of a trait with respect to variation in multiple environmental factors. Such multidimensional phenotypic plasticity (MDPP) exists at all levels of organismal organization, from the whole organism to within cells. This complexity in plasticity cannot be explained solely by scaling up ideas from models of unidimensional plasticity. MDPP generates new questions about the mechanism and function of plasticity and its role in speciation and population persistence. Here we review empirical and theoretical approaches to plasticity in response to multidimensional environments and we outline new opportunities along with some difficulties facing future research.
Collapse
Affiliation(s)
- David F Westneat
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Leslie J Potts
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Katherine L Sasser
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| | - James D Shaffer
- Department of Biology, 101 T.H. Morgan Building, University of Kentucky, Lexington, KY 40506-0225, USA
| |
Collapse
|
22
|
Refatti JP, de Avila LA, Camargo ER, Ziska LH, Oliveira C, Salas-Perez R, Rouse CE, Roma-Burgos N. High [CO 2] and Temperature Increase Resistance to Cyhalofop-Butyl in Multiple-Resistant Echinochloa colona. FRONTIERS IN PLANT SCIENCE 2019; 10:529. [PMID: 31139198 PMCID: PMC6518978 DOI: 10.3389/fpls.2019.00529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/05/2019] [Indexed: 05/10/2023]
Abstract
Changes in the environment, specifically rising temperature and increasing atmospheric carbon dioxide concentration [CO2], can alter the growth and physiology of weedy plants. These changes could alter herbicide efficacy, crop-weed interaction, and weed management. The objectives of this research were to quantify the effects of increased atmospheric [CO2] and temperature on absorption, translocation and efficacy of cyhalofop-butyl on multiple-resistant (MR) and susceptible (S) Echinochloa colona genotypes. E. colona, or junglerice, is a troublesome weed in rice and in agronomic and horticultural crops worldwide. Cyhalofop-butyl is a grass herbicide that selectively controls Echinochloa spp. in rice. Maximum 14C-cyhalofop-butyl absorption occurred at 120 h after herbicide treatment (HAT) with >97% of cyhalofop-butyl retained in the treated leaf regardless of [CO2], temperature, or genotype. Neither temperature nor [CO2] affected herbicide absorption into the leaf. The translocation of herbicide was slightly reduced in the MR plants vs. S plants either under elevated [CO2] or high temperature. Although plants grown under high [CO2] or high temperature were taller than those in ambient conditions, neither high [CO2] nor high temperature reduced the herbicide efficacy on susceptible plants. However, herbicide efficacy was reduced on MR plants grown under high [CO2] or high temperature about 50% compared to MR plants at ambient conditions. High [CO2] and high temperature increased the resistance level of MR E. colona to cyhalofop-butyl. To mitigate rapid resistance evolution under a changing climate, weed management practitioners must implement measures to reduce the herbicide selection pressure. These measures include reduction of weed population size through reduction of the soil seedbank, ensuring complete control of current infestations with multiple herbicide modes of action in mixture and in sequence, augmenting herbicides with mechanical control where possible, rotation with weed-competitive crops, use of weed-competitive cultivars, use of weed-suppressive cover crops, and other practices recommended for integrated weed management.
Collapse
Affiliation(s)
- João Paulo Refatti
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Luis Antonio de Avila
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | | | - Lewis Hans Ziska
- United States Department of Agriculture - Agricultural Research Service, Beltsville, MD, United States
| | - Claudia Oliveira
- Department of Plant Protection, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Reiofeli Salas-Perez
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Christopher Edward Rouse
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Nilda Roma-Burgos
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nilda Roma-Burgos,
| |
Collapse
|
23
|
Matzrafi M. Climate change exacerbates pest damage through reduced pesticide efficacy. PEST MANAGEMENT SCIENCE 2019; 75:9-13. [PMID: 29920926 DOI: 10.1002/ps.5121] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Pesticide efficacy is strongly associated with environmental conditions. Conditional resistance defined as a reduction in pesticide sensitivity under changed environmental conditions has been widely detected under climatic changes such as elevated temperatures and CO2 enrichment. Given the effects of environmental conditions on pesticide sensitivity, many of the putative resistance reports made by farmers may be due to pesticide application followed by non-optimal environmental conditions rather than the evolution of resistance. This type of conditional resistance may be the result of phenotypic plasticity or epigenetic changes in response to environmental changes. Elevated temperatures and CO2 enrichment can directly lead to reduced pesticide efficacy by altering pesticide metabolism and translocation, or indirectly increasing pesticide detoxification in host-plants thus reducing pesticide availability for the target pest. Stress-related signal transduction pathways, as well as physiological changes, can both be associated with accelerated pesticide detoxification under climatic changes. The possibility for parallel mechanisms controlling these responses in different pest species should be considered. It is proposed that the same mechanisms leading to non-target site resistance in pests may also play a role in conditional resistance, suggesting we can predict the pesticides to which pests are likely to be less responsive under changing climatic conditions. Using adjuvants to improve pesticide translocation or reduce pesticide metabolism, alongside with new technologies such as using nanoparticles may result in higher pesticide functionality under the projected climate change. Exploring the physiological, transcriptional and biochemical basis underlying conditional resistance is crucial in maintaining future pest management under changing environmental conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maor Matzrafi
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
24
|
Oliveira MC, Gaines TA, Patterson EL, Jhala AJ, Irmak S, Amundsen K, Knezevic SZ. Interspecific and intraspecific transference of metabolism-based mesotrione resistance in dioecious weedy Amaranthus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1051-1063. [PMID: 30218635 DOI: 10.1111/tpj.14089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Pollen-mediated gene flow (PMGF) might play an important role in dispersing herbicide resistance alleles in dioecious weedy Amaranthus species. Field experiments in a concentric donor-receptor design were conducted to quantify two sets of PMGF studies, an interspecific (Amaranthus tuberculatus × Amaranthus palmeri) and an intraspecific (A. tuberculatus × A. tuberculatus). In both studies, PMGF was evaluated using a resistant A. tuberculatus phenotype with enhanced mesotrione detoxification via P450 enzymes as a source of resistance alleles. For interspecific hybridization, more than 104 000 putative hybrid seedlings were screened with three markers, one phenotypic and two molecular. The two molecular markers used, including 2-bp polymorphisms in the internal transcribed spacer region, distinguished A. palmeri, A. tuberculatus and their hybrids. Results showed that 0.1% hybridization between A. tuberculatus × A. palmeri occurred under field research conditions. For intraspecific hybridization, 22 582 seedlings were screened to assess the frequency of gene flow. The frequency of gene flow (FGF ) varied with distance, direction and year of the study. The farthest distance for 90% reduction of FGF was at 69 m in 2015 however, after averaging across directions it was 13.1 and 26.1 m in 2014 and 2015, respectively. This study highlights the transfer of metabolism-based mesotrione resistance from A. tuberculatus to A. palmeri under field research conditions. The results presented here might aid in the rapid detection of A. palmeri among other Amaranthus species and show that PMFG could be expediting the increase of herbicide resistance in A. palmeri and A. tuberculatus across US crop production areas.
Collapse
Affiliation(s)
- Maxwel C Oliveira
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Suat Irmak
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stevan Z Knezevic
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
25
|
Pettinga DJ, Ou J, Patterson EL, Jugulam M, Westra P, Gaines TA. Increased chalcone synthase (CHS) expression is associated with dicamba resistance in Kochia scoparia. PEST MANAGEMENT SCIENCE 2018; 74:2306-2315. [PMID: 29083527 DOI: 10.1002/ps.4778] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Resistance to the synthetic auxin herbicide dicamba is increasingly problematic in Kochia scoparia. The resistance mechanism in an inbred dicamba-resistant K. scoparia line (9425R) was investigated using physiological and transcriptomics (RNA-Seq) approaches. RESULTS No differences were found in dicamba absorption or metabolism between 9425R and a dicamba-susceptible line, but 9425R was found to have significantly reduced dicamba translocation. Known auxin-responsive genes ACC synthase (ACS) and indole-3-acetic acid amino synthetase (GH3) were transcriptionally induced following dicamba treatment in dicamba-susceptible K. scoparia but not in 9425R. Chalcone synthase (CHS), the gene regulating synthesis of the flavonols quertecin and kaemperfol, was found to have twofold higher transcription in 9425R both without and 12 h after dicamba treatment. Increased CHS transcription co-segregated with dicamba resistance in a forward genetics screen using an F2 population. CONCLUSION Prior work has shown that the flavonols quertecin and kaemperfol compete with auxin for intercellular movement and vascular loading via ATP-binding cassette subfamily B (ABCB) membrane transporters. The results of this study support a model in which constitutively increased CHS expression in the meristem produces more flavonols that would compete with dicamba for intercellular transport by ABCB transporters, resulting in reduced dicamba translocation. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dean J Pettinga
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Junjun Ou
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
26
|
Figueiredo MR, Leibhart LJ, Reicher ZJ, Tranel PJ, Nissen SJ, Westra P, Bernards ML, Kruger GR, Gaines TA, Jugulam M. Metabolism of 2,4-dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (Amaranthus tuberculatus) population. PEST MANAGEMENT SCIENCE 2018; 74:2356-2362. [PMID: 29194949 DOI: 10.1002/ps.4811] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/12/2017] [Accepted: 11/23/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Synthetic auxins such as 2,4-dichlorophenoxyacetic acid (2,4-D) have been widely used for selective control of broadleaf weeds since the mid-1940s. In 2009, an Amaranthus tuberculatus (common waterhemp) population with 10-fold resistance to 2,4-D was found in Nebraska, USA. The 2,4-D resistance mechanism was examined by conducting [14 C] 2,4-D absorption, translocation and metabolism experiments. RESULTS No differences were found in 2,4-D absorption or translocation between resistant and susceptible A. tuberculatus plants. Resistant plants metabolized [14 C] 2,4-D more rapidly than did susceptible plants. The half-life of [14 C] 2,4-D in susceptible plants was 105 h, compared with 22 h in resistant plants. Pretreatment with the cytochrome P450 inhibitor malathion inhibited [14 C] 2,4-D metabolism in resistant plants and reduced the 2,4-D dose required for 50% growth inhibition (GR50 ) of resistant plants by 7-fold to 27 g ha-1 , similar to the GR50 for susceptible plants in the absence of malathion. CONCLUSION Our results demonstrate that rapid 2,4-D metabolism is a contributing factor to resistance in A. tuberculatus, potentially mediated by cytochrome P450. Metabolism-based resistance to 2,4-D could pose a serious challenge for A. tuberculatus control because of the potential for cross-resistance to other herbicides. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marcelo Ra Figueiredo
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Lacy J Leibhart
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zachary J Reicher
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Scott J Nissen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Mark L Bernards
- School of Agriculture, Western Illinois University, Macomb, IL, USA
| | - Greg R Kruger
- Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
27
|
Küpper A, Peter F, Zöllner P, Lorentz L, Tranel PJ, Beffa R, Gaines TA. Tembotrione detoxification in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor-resistant Palmer amaranth (Amaranthus palmeri S. Wats.). PEST MANAGEMENT SCIENCE 2018; 74:2325-2334. [PMID: 29105299 DOI: 10.1002/ps.4786] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Resistance to the 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide tembotrione in an Amaranthus palmeri population from Nebraska (NER) has previously been confirmed to be attributable to enhanced metabolism. The objective of this study was to identify and quantify the metabolites formed in Nebraska susceptible (NES) and resistant (NER) biotypes. RESULTS NER and NES formed the same metabolites. Tembotrione metabolism in NER differed from that in NES in that resistant plants showed faster 4-hydroxylation followed by glycosylation. The T50 value (time for 50% production of the maximum 4-hydroxylation product) was 4.9 and 11.9 h for NER and NES, respectively. This process is typically catalyzed by cytochrome P450 enzymes. Metabolism differences between NER and NES were most prominent under 28 °C conditions and herbicide application at the four-leaf stage. CONCLUSION Further research with the aim of identifying the gene or genes responsible for conferring metabolic resistance to HPPD inhibitors should focus on cytochrome P450s. Such research is important because non-target-site-based resistance (NTSR) poses the threat of cross resistance to other chemical classes of HPPD inhibitors, other herbicide modes of action, or even unknown herbicides. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anita Küpper
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Falco Peter
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Peter Zöllner
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Lothar Lorentz
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Roland Beffa
- Bayer AG, CropScience Division, Frankfurt am Main, Germany
| | - Todd A Gaines
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Tehranchian P, Nandula V, Jugulam M, Putta K, Jasieniuk M. Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance. PEST MANAGEMENT SCIENCE 2018; 74:868-877. [PMID: 29072814 DOI: 10.1002/ps.4774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/16/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Glyphosate, paraquat and acetyl CoA carboxylase (ACCase)-inhibiting herbicides are widely used in California annual and perennial cropping systems. Recently, glyphosate, paraquat, and ACCase- and acetolactate synthase (ALS)-inhibitor resistance was confirmed in several Italian ryegrass populations from the Central Valley of California. This research characterized the possible mechanisms of resistance. RESULTS Multiple-resistant populations (MR1, MR2) are resistant to several herbicides from at least three modes of action. Dose-response experiments revealed that the MR1 population was 45.9-, 122.7- and 20.5-fold, and the MR2 population was 24.8-, 93.9- and 4.0-fold less susceptible to glyphosate, sethoxydim and paraquat, respectively, than the susceptible (Sus) population. Accumulation of shikimate in Sus plants was significantly greater than in MR plants 32 h after light pretreatments. Glyphosate resistance in MR plants was at least partially due to Pro106-to-Ala and Pro106-to-Thr substitutions at site 106 of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS gene copy number and expression level were similar in plants from the Sus and MR populations. An Ile1781-to-Leu substitution in ACCase gene of MR plants conferred a high level of resistance to sethoxydim and cross-resistance to other ACCase-inhibitors. Radiolabeled herbicide studies and phosphorimaging indicated that MR plants had restricted translocation of 14 C-paraquat to untreated leaves compared to Sus plants. CONCLUSION This study shows that multiple herbicide resistance in Italian ryegrass populations in California, USA, is due to both target-site and non-target-site resistance mechanisms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Parsa Tehranchian
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Vijay Nandula
- Crop Production Systems Research Unit, United States Department of Agriculture, Stoneville, MS, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Karthik Putta
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Marie Jasieniuk
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Koo DH, Molin WT, Saski CA, Jiang J, Putta K, Jugulam M, Friebe B, Gill BS. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri. Proc Natl Acad Sci U S A 2018; 115:3332-3337. [PMID: 29531028 PMCID: PMC5879691 DOI: 10.1073/pnas.1719354115] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock's postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - William T Molin
- Crop Production Systems Research Unit, US Department of Agriculture-Agricultural Research Services, Stoneville, MS 38776
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Karthik Putta
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Bernd Friebe
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Bikram S Gill
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506;
| |
Collapse
|
30
|
Nakka S, Godar AS, Thompson CR, Peterson DE, Jugulam M. Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri). PEST MANAGEMENT SCIENCE 2017; 73:2236-2243. [PMID: 28500680 DOI: 10.1002/ps.4615] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Palmer amaranth (Amaranthus palmeri) is an economically troublesome, aggressive and damaging weed that has evolved resistance to six herbicide modes of action including photosystem II (PS II) inhibitors such as atrazine. The objective of this study was to investigate the mechanism and inheritance of atrazine resistance in Palmer amaranth. RESULTS A population of Palmer amaranth from Kansas (KSR) had a high level (160 - 198-fold more; SE ±21 - 26) of resistance to atrazine compared to the two known susceptible populations MSS and KSS, from Mississippi and Kansas, respectively. Sequence analysis of the chloroplastic psbA gene did not reveal any known mutations conferring resistance to PS II inhibitors, including the most common Ser264Gly substitution for triazine resistance. However, the KSR plants rapidly conjugated atrazine at least 24 times faster than MSS via glutathione S-transferase (GST) activity. Furthermore, genetic analyses of progeny generated from reciprocal crosses of KSR and MSS demonstrate that atrazine resistance in Palmer amaranth is a nuclear trait. CONCLUSION Although triazine resistance in Palmer amaranth was reported more than 20 years ago in the USA, this is the first report elucidating the underlying mechanism of resistance to atrazine. The non-target-site based metabolic resistance to atrazine mediated by GST activity may predispose the Palmer amaranth populations to have resistance to other herbicide families, and the nuclear inheritance of the trait in this dioecious species further exacerbates the propensity for its rapid spread. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sridevi Nakka
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, Manhattan, KS, USA
| | - Amar S Godar
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Curtis R Thompson
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, Manhattan, KS, USA
| | - Dallas E Peterson
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, Manhattan, KS, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, 2004 Throckmorton Plant Sciences Center, Manhattan, KS, USA
| |
Collapse
|
31
|
Matzrafi M, Shaar-Moshe L, Rubin B, Peleg Z. Unraveling the Transcriptional Basis of Temperature-Dependent Pinoxaden Resistance in Brachypodium hybridum. FRONTIERS IN PLANT SCIENCE 2017; 8:1064. [PMID: 28680434 PMCID: PMC5478685 DOI: 10.3389/fpls.2017.01064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 05/26/2023]
Abstract
Climate change endangers food security and our ability to feed the ever-increasing human population. Weeds are the most important biotic stress, reducing crop-plant productivity worldwide. Chemical control, the main approach for weed management, can be strongly affected by temperature. Previously, we have shown that temperature-dependent non-target site (NTS) resistance of Brachypodium hybridum is due to enhanced detoxification of acetyl-CoA carboxylase inhibitors. Here, we explored the transcriptional basis of this phenomenon. Plants were characterized for the transcriptional response to herbicide application, high-temperature and their combination, in an attempt to uncover the genetic basis of temperature-dependent pinoxaden resistance. Even though most of the variance among treatments was due to pinoxaden application (61%), plants were able to survive pinoxaden application only when grown under high-temperatures. Biological pathways and expression patterns of members of specific gene families, previously shown to be involved in NTS metabolic resistance to different herbicides, were examined. Cytochrome P450, glucosyl transferase and glutathione-S-transferase genes were found to be up-regulated in response to pinoxaden application under both control and high-temperature conditions. However, biological pathways related to oxidation and glucose conjugation were found to be significantly enriched only under the combination of pinoxaden application and high-temperature. Analysis of reactive oxygen species (ROS) was conducted at several time points after treatment using a probe detecting H2O2/peroxides. Comparison of ROS accumulation among treatments revealed a significant reduction in ROS quantities 24 h after pinoxaden application only under high-temperature conditions. These results may indicate significant activity of enzymatic ROS scavengers that can be correlated with the activation of herbicide-resistance mechanisms. This study shows that up-regulation of genes related to metabolic resistance is not sufficient to explain temperature-dependent pinoxaden resistance. We suggest that elevated activity of enzymatic processes at high-temperature may induce rapid and efficient pinoxaden metabolism leading to temperature-dependent herbicide resistance.
Collapse
Affiliation(s)
| | | | | | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
32
|
Nakka S, Godar AS, Wani PS, Thompson CR, Peterson DE, Roelofs J, Jugulam M. Physiological and Molecular Characterization of Hydroxyphenylpyruvate Dioxygenase (HPPD)-inhibitor Resistance in Palmer Amaranth ( Amaranthus palmeri S.Wats.). FRONTIERS IN PLANT SCIENCE 2017; 8:555. [PMID: 28443128 PMCID: PMC5387043 DOI: 10.3389/fpls.2017.00555] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 05/24/2023]
Abstract
Herbicides that inhibit hydroxyphenylpyruvate dioxygenase (HPPD) such as mesotrione are widely used to control a broad spectrum of weeds in agriculture. Amaranthus palmeri is an economically troublesome weed throughout the United States. The first case of evolution of resistance to HPPD-inhibiting herbicides in A. palmeri was documented in Kansas (KS) and later in Nebraska (NE). The objective of this study was to investigate the mechansim of HPPD-inhibitor (mesotrione) resistance in A. palmeri. Dose response analysis revealed that this population (KSR) was 10-18 times more resistant than their sensitive counterparts (MSS or KSS). Absorbtion and translocation analysis of [14C] mesotrione suggested that these mechanisms were not involved in the resistance in A. palmeri. Importantly, mesotrione (>90%) was detoxified markedly faster in the resistant populations (KSR and NER), within 24 hours after treatment (HAT) compared to sensitive plants (MSS, KSS, or NER). However, at 48 HAT all populations metabolized the mesotrione, suggesting additional factors may contribute to this resistance. Further evaluation of mesotrione-resistant A. palmeri did not reveal any specific resistance-conferring mutations nor amplification of HPPD gene, the molecular target of mesotrione. However, the resistant populations showed 4- to 12-fold increase in HPPD gene expression. This increase in HPPD transcript levels was accompanied by increased HPPD protein expression. The significant aspects of this research include: the mesotrione resistance in A. palmeri is conferred primarily by rapid detoxification (non-target-site based) of mesotrione; additionally, increased HPPD gene expression (target-site based) also contributes to the resistance mechanism in the evolution of herbicide resistance in this naturally occurring weed species.
Collapse
Affiliation(s)
- Sridevi Nakka
- Department of Agronomy, Kansas State University, ManhattanKS, USA
| | - Amar S. Godar
- Department of Plant Sciences, University of California, DavisCA, USA
| | | | | | | | - Jeroen Roelofs
- Division of Biology, Kansas State University, ManhattanKS, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, ManhattanKS, USA
| |
Collapse
|
33
|
Dumas E, Giraudo M, Goujon E, Halma M, Knhili E, Stauffert M, Batisson I, Besse-Hoggan P, Bohatier J, Bouchard P, Celle-Jeanton H, Costa Gomes M, Delbac F, Forano C, Goupil P, Guix N, Husson P, Ledoigt G, Mallet C, Mousty C, Prévot V, Richard C, Sarraute S. Fate and ecotoxicological impact of new generation herbicides from the triketone family: An overview to assess the environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:136-156. [PMID: 27930998 DOI: 10.1016/j.jhazmat.2016.11.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/21/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Triketones, derived chemically from a natural phytotoxin (leptospermone), are a good example of allelochemicals as lead molecules for the development of new herbicides. Targeting a new and key enzyme involved in carotenoid biosynthesis, these latest-generation herbicides (sulcotrione, mesotrione and tembotrione) were designed to be eco-friendly and commercialized fifteen-twenty years ago. The mechanisms controlling their fate in different ecological niches as well as their toxicity and impact on different organisms or ecosystems are still under investigation. This review combines an overview of the results published in the literature on β-triketones and more specifically, on the commercially-available herbicides and includes new results obtained in our interdisciplinary study aiming to understand all the processes involved (i) in their transfer from the soil to the connected aquatic compartments, (ii) in their transformation by photochemical and biological mechanisms but also to evaluate (iii) the impacts of the parent molecules and their transformation products on various target and non-target organisms (aquatic microorganisms, plants, soil microbial communities). Analysis of all the data on the fate and impact of these molecules, used pure, as formulation or in cocktails, give an overall guide for the assessment of their environmental risks.
Collapse
Affiliation(s)
- E Dumas
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Giraudo
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - E Goujon
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - E Knhili
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Stauffert
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France; Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - I Batisson
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Besse-Hoggan
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France.
| | - J Bohatier
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Bouchard
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - H Celle-Jeanton
- Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6524, LMV, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Costa Gomes
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - F Delbac
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Forano
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Goupil
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - N Guix
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France; VetAgro Sup, 89 avenue de l'Europe, BP 35, 63370 Lempdes, France; UMR Génétique Diversité et Ecophysiologie des Céréales, INRA-UBP, UMR 1095, 63000 Clermont-Ferrand, France
| | - P Husson
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - G Ledoigt
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Mallet
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - V Prévot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Richard
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - S Sarraute
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| |
Collapse
|
34
|
Fu Y, Wang MX, Zhang D, Hou YW, Gao S, Zhao LX, Ye F. Design, synthesis, and herbicidal activity of pyrazole benzophenone derivatives. RSC Adv 2017. [DOI: 10.1039/c7ra09858h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Design of pyrazole benzophenones as potent HPPD inhibitors with excellent herbicidal activities.
Collapse
Affiliation(s)
- Ying Fu
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Meng-Xia Wang
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Dong Zhang
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yu-Wen Hou
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Shuang Gao
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Li-Xia Zhao
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Fei Ye
- Department of Applied Chemistry
- College of Science
- Northeast Agricultural University
- Harbin
- P. R. China
| |
Collapse
|
35
|
Matzrafi M, Herrmann I, Nansen C, Kliper T, Zait Y, Ignat T, Siso D, Rubin B, Karnieli A, Eizenberg H. Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth). FRONTIERS IN PLANT SCIENCE 2017; 8:474. [PMID: 28421101 PMCID: PMC5376577 DOI: 10.3389/fpls.2017.00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/17/2017] [Indexed: 05/15/2023]
Abstract
Weed infestations in agricultural systems constitute a serious challenge to agricultural sustainability and food security worldwide. Amaranthus palmeri S. Watson (Palmer amaranth) is one of the most noxious weeds causing significant yield reductions in various crops. The ability to estimate seed viability and herbicide susceptibility is a key factor in the development of a long-term management strategy, particularly since the misuse of herbicides is driving the evolution of herbicide response in various weed species. The limitations of most herbicide response studies are that they are conducted retrospectively and that they use in vitro destructive methods. Development of a non-destructive method for the prediction of herbicide response could vastly improve the efficacy of herbicide applications and potentially delay the evolution of herbicide resistance. Here, we propose a toolbox based on hyperspectral technologies and data analyses aimed to predict A. palmeri seed germination and response to the herbicide trifloxysulfuron-methyl. Complementary measurement of leaf physiological parameters, namely, photosynthetic rate, stomatal conductence and photosystem II efficiency, was performed to support the spectral analysis. Plant response to the herbicide was compared to image analysis estimates using mean gray value and area fraction variables. Hyperspectral reflectance profiles were used to determine seed germination and to classify herbicide response through examination of plant leaves. Using hyperspectral data, we have successfully distinguished between germinating and non-germinating seeds, hyperspectral classification of seeds showed accuracy of 81.9 and 76.4%, respectively. Sensitive and resistant plants were identified with high degrees of accuracy (88.5 and 90.9%, respectively) from leaf hyperspectral reflectance profiles acquired prior to herbicide application. A correlation between leaf physiological parameters and herbicide response (sensitivity/resistance) was also demonstrated. We demonstrated that hyperspectral reflectance analyses can provide reliable information about seed germination and levels of susceptibility in A. palmeri. The use of reflectance-based analyses can help to better understand the invasiveness of A. palmeri, and thus facilitate the development of targeted control methods. It also has enormous potential for impacting environmental management in that it can be used to prevent ineffective herbicide applications. It also has potential for use in mapping tempo-spatial population dynamics in agro-ecological landscapes.
Collapse
Affiliation(s)
- Maor Matzrafi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Ittai Herrmann
- The Remote Sensing Laboratory, Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevSede Boker Campus, Israel
| | - Christian Nansen
- Department of Entomology and Nematology, University of California, Davis, DavisCA, USA
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Tom Kliper
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Timea Ignat
- Institute of Agricultural Engineering, Volcani Center, Agricultural Research OrganizationBet Dagan, Israel
| | - Dana Siso
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Newe Ya’ar Research CenterRamat Yishay, Israel
| | - Baruch Rubin
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Arnon Karnieli
- The Remote Sensing Laboratory, Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevSede Boker Campus, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Newe Ya’ar Research CenterRamat Yishay, Israel
- *Correspondence: Hanan Eizenberg,
| |
Collapse
|
36
|
Alberto D, Serra AA, Sulmon C, Gouesbet G, Couée I. Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1618-1628. [PMID: 27318518 DOI: 10.1016/j.scitotenv.2016.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/13/2023]
Abstract
Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms. Moreover, groundbreaking studies have revealed that herbicide action and responses strongly interact with hormone signaling pathways, with numerous regulatory protein-kinases and -phosphatases, with metabolic and circadian clock regulators and with oxidative stress signaling pathways. These interactions are likely to result in mechanisms of adjustment that can determine the level of sensitivity or tolerance to a given herbicide or to a mixture of herbicides depending on the environmental and developmental status of the plant. Such regulations can be described as rheostatic and their importance is discussed in relation with herbicide use strategies, environmental risk assessment and global change assessment challenges.
Collapse
Affiliation(s)
- Diana Alberto
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Anne-Antonella Serra
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France
| | - Ivan Couée
- UMR 6553 Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, Campus de Beaulieu, Bâtiment 14A, F-35042 Rennes Cedex, France.
| |
Collapse
|