1
|
Gasparella M, Cenzi C, Piccione M, Madia VN, Di Santo R, Tudino V, Artico M, Taurone S, De Ponte C, Costi R, Di Liddo R. Effects of Modified Glucosamine on the Chondrogenic Potential of Circulating Stem Cells under Experimental Inflammation. Int J Mol Sci 2023; 24:10397. [PMID: 37373540 DOI: 10.3390/ijms241210397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 μg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.
Collapse
Affiliation(s)
- Marco Gasparella
- Local Health Unit Treviso, Department of Pediatric Surgery, 31100 Treviso, Italy
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Noemi Madia
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Roberto Di Santo
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Valeria Tudino
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Samanta Taurone
- Department of Movement, Human and Health Sciences-Division of Health Sciences, University of Rome "Foro Italico", 00185 Rome, Italy
| | - Chiara De Ponte
- Department of Sensory Organs, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Roberta Costi
- Department of Drug Chemistry and Technology, University of Rome "La Sapienza", 00185 Rome, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
2
|
Ji X, Li Y, Kong X, Chen D, Lu J. Discovery of Prodrug of MRTX1133 as an Oral Therapy for Cancers with KRAS G12D Mutation. ACS OMEGA 2023; 8:7211-7221. [PMID: 36844555 PMCID: PMC9948199 DOI: 10.1021/acsomega.3c00329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Effective oral therapies are urgently required to treat KRASG12D mutant cancers. Therefore, synthesis and screening were performed for 38 prodrugs of MRTX1133 to identify an oral prodrug of MRTX1133, a KRASG12D mutant protein-specific inhibitor. In vitro and in vivo evaluations revealed prodrug 9 as the first orally available KRASG12D inhibitor. Prodrug 9 exhibited improved pharmacokinetic properties for the parent compound in mice and was efficacious in a KRASG12D mutant xenograft mouse tumor model after oral administration.
Collapse
Affiliation(s)
- Xiang Ji
- Department
of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200437, China
- Risen
(Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Yan Li
- Risen
(Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Xianqi Kong
- Risen
(Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Dawei Chen
- Risen
(Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
| | - Jiasheng Lu
- Risen
(Shanghai) Pharma Tech Co., Ltd., Shanghai 201210, China
- Guangdong
Key Laboratory of Nanomedicine, Chinese
Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
4
|
Intestinal membrane transporter-mediated approaches to improve oral drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00515-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
6
|
Cheng C, Huang DC, Zhao LY, Cao CJ, Chen GT. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (III) complex from Flammulina velutipes. Int J Biol Macromol 2019; 132:801-810. [DOI: 10.1016/j.ijbiomac.2019.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
|
7
|
Goethe O, Heuer A, Ma X, Wang Z, Herzon SB. Antibacterial properties and clinical potential of pleuromutilins. Nat Prod Rep 2019; 36:220-247. [PMID: 29979463 DOI: 10.1039/c8np00042e] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2018Pleuromutilins are a clinically validated class of antibiotics derived from the fungal diterpene (+)-pleuromutilin (1). Pleuromutilins inhibit bacterial protein synthesis by binding to the peptidyl transferase center (PTC) of the ribosome. In this review we summarize the biosynthesis and recent total syntheses of (+)-pleuromutilin (1). We review the mode of interaction of pleuromutilins with the bacterial ribosome, which involves binding of the C14 extension and the tricyclic core to the P and A sites of the PTC, respectively. We provide an overview of existing clinical agents, and discuss the three primary modes of bacterial resistance (mutations in ribosomal protein L3, Cfr methylation, and efflux). Finally we collect structure-activity relationships from publicly available reports, and close with some forward looking statements regarding future development.
Collapse
Affiliation(s)
- Olivia Goethe
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Abigail Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Xiaoshen Ma
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Spanier B, Rohm F. Proton Coupled Oligopeptide Transporter 1 (PepT1) Function, Regulation, and Influence on the Intestinal Homeostasis. Compr Physiol 2018; 8:843-869. [PMID: 29687907 DOI: 10.1002/cphy.c170038] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Yao H, Xue J, Xie R, Liu S, Wang Y, Song W, Wang DA, Ren L. A novel glucosamine derivative with low cytotoxicity enhances chondrogenic differentiation of ATDC5. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:170. [PMID: 28956208 DOI: 10.1007/s10856-017-5971-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Glucosamine (GlcN) is a component of native cartilage extracellular matrix and useful in cartilage repair, but it was limited by toxicity in high concentrations. With the aim of altering bioactive properties of GlcN to reduce the toxicity and to facilitate chondrogenesis for hyaline cartilage formation, we introduced an amino-group modification with double bond into GlcN to produce N-acryloyl-glucosamine (AGA). The cell ATDC5 was chosen to evaluate its cytotoxicity and chondrogenesis capability. Cell proliferation and cytotoxicity assay showed that AGA had significantly reduced the cytotoxicity compared to GlcN, and promoted ATDC5 proliferation. Alcian blue staining and biochemical analysis indicated that AGA enhanced extracellular matrix deposition. Both the mRNA and protein levels of articular cartilage markers, like Collagen II and Aggrecan were up-regulated, as shown by quantitative real-time PCR and immunofluorescence staining. Moreover, the level of fibrocartilage marker Collagen I and hypertrophic marker Collagen Χ weren't significantly changed. Overall, these results demonstrated that the AGA achieved the functional double-bond, reduction in toxicity and enhancement in chondrogenesis could be more potential in cartilage repair.
Collapse
Affiliation(s)
- Hang Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - Jingchen Xue
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Renjian Xie
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Thakkar BS, Svendsen JSM, Engh RA. Cis/Trans Isomerization in Secondary Amides: Reaction Paths, Nitrogen Inversion, and Relevance to Peptidic Systems. J Phys Chem A 2017; 121:6830-6837. [DOI: 10.1021/acs.jpca.7b05584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Balmukund S. Thakkar
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø-9037, Norway
| | | | - Richard A. Engh
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø-9037, Norway
| |
Collapse
|
11
|
Feng M, Betti M. Both PepT1 and GLUT Intestinal Transporters Are Utilized by a Novel Glycopeptide Pro-Hyp-CONH-GlcN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3295-3304. [PMID: 28391691 DOI: 10.1021/acs.jafc.7b00815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pro-Hyp (PO) accounts for many beneficial biological effects of collagen hydrolysates for skin and bone health. The objective of this study was to conjugate PO with glucosamine (GlcN) to create a novel glycopeptide Pro-Hyp-CONH-GlcN (POGlcN) and then to investigate the potential involvement of multiple transepithelial transport pathways for this glycopeptide. Nuclear magnetic resonance results revealed the amide nature of this glycopeptide with α and β configurations derived from GlcN. This glycopeptide was very resistant to simulated gastrointestinal digestion. Also, it showed a rate of transepithelial transport [permeability coefficient (Papp) of (2.82 ± 0.15) × 10-6 cm/s] across the Caco-2 cell monolayer superior to those of parental dipeptide PO and GlcN [Papp values of (1.45 ± 0.17) × 10-6 and (1.87 ± 0.15) × 10-6 cm/s, respectively]. A transport mechanism experiment indicated that the improved transport efficiency of POGlcN is attributed to the introduction of glucose transporters.
Collapse
Affiliation(s)
- Mengmeng Feng
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta , 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
12
|
Azzolini M, Mattarei A, La Spina M, Fanin M, Chiodarelli G, Romio M, Zoratti M, Paradisi C, Biasutto L. New natural amino acid-bearing prodrugs boost pterostilbene's oral pharmacokinetic and distribution profile. Eur J Pharm Biopharm 2017; 115:149-158. [PMID: 28254379 DOI: 10.1016/j.ejpb.2017.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 12/14/2022]
Abstract
The biomedical effects of the natural phenol pterostilbene are of great interest but its bioavailability is negatively affected by the phenolic group in position 4' which is an ideal target for the conjugative enzymes of phase II metabolism. We report the synthesis and characterization of prodrugs in which the hydroxyl moiety is reversibly protected as a carbamate ester linked to the N-terminus of a natural amino acid. Prodrugs comprising amino acids with hydrophobic side chains were readily absorbed after intragastric administration to rats. The Area Under the Curve for pterostilbene in blood was optimal when prodrugs with isoleucine or β-alanine were used. The prodrug incorporating isoleucine was used for further studies to map distribution into major organs. When compared to pterostilbene itself, administration of the isoleucine prodrug afforded increased absorption, reduced metabolism and higher concentrations of pterostilbene, sustained for several hours, in most of the organs examined. Experiments using Caco-2 cells as an in vitro model for human intestinal absorption suggest that the prodrug could have promising absorption profiles also in humans; its uptake is partly due to passive diffusion, and partly mediated by H+-dependent transporters expressed on the apical membrane of enterocytes, such as PepT1 and OATP.
Collapse
Affiliation(s)
- Michele Azzolini
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Andrea Mattarei
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Martina La Spina
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Fanin
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Giacomo Chiodarelli
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Matteo Romio
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mario Zoratti
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy
| | - Cristina Paradisi
- University of Padova, Department of Chemical Sciences, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
13
|
Murakami T. A Minireview: Usefulness of Transporter-Targeted Prodrugs in Enhancing Membrane Permeability. J Pharm Sci 2016; 105:2515-2526. [DOI: 10.1016/j.xphs.2016.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
|
14
|
Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci 2016; 152:21-9. [PMID: 27012765 DOI: 10.1016/j.lfs.2016.03.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Glucosamine and its acetylated derivative, N-acetyl glucosamine, are naturally occurring amino sugars found in human body. They are important components of glycoproteins, proteoglycans and glycosaminoglycans. Scientific studies have supported that glucosamine has the beneficial pharmacological effects to relieve osteoarthritis symptoms. Glucosamine can also be as a promising candidate for the prevention and/or treatment of some other diseases due to its anti-oxidant and anti-inflammatory activities. Most of its function is exerted by modulation of inflammatory responses especially through Nuclear Factor-κB (NF-κB) that can control inflammatory cytokine production and cell survival. In this review, we present a concise update on additional new therapeutic applications of glucosamine including treatment of cardiovascular disease, neurological deficits, skin disorders, cancer and the molecular mechanistic rationale for these uses. This article will also examine safety profile and adverse effects of glucosamine in human.
Collapse
|
15
|
Xue J, Song W, Yao H, Hou S, Liu S, Wang Y, Pei D, Zhu X, Qin D, Ren L. Effects of cholic acid modified glucosamine on chondrogenic differentiation. RSC Adv 2016. [DOI: 10.1039/c6ra09547j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucosamine hydrochloride is a widely used drug for the treatment of osteoarthritis and can be easily modified by other molecules because of its alterable functional groups.
Collapse
|