1
|
Wu Z, Wang S, Wu Z, Tao J, Li L, Zheng C, Xu Z, Du Z, Zhao C, Liang P, Xu A, Wang Z. Altered immune cell in human severe acute pancreatitis revealed by single-cell RNA sequencing. Front Immunol 2024; 15:1354926. [PMID: 39372399 PMCID: PMC11449708 DOI: 10.3389/fimmu.2024.1354926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zheyi Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Shijie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhiheng Wu
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Junjie Tao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuanming Zheng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhipeng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaohui Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengpu Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Pengzhen Liang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Aman Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Institute of Acute and Critical Care, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
2
|
González-Zamora J, Hernandez M, Recalde S, Bezunartea J, Montoliu A, Bilbao-Malavé V, Llorente-González S, García-Layana A, Fernández-Robredo P. Matrix Metalloproteinase 13 Is Associated with Age-Related Choroidal Neovascularization. Antioxidants (Basel) 2023; 12:antiox12040884. [PMID: 37107259 PMCID: PMC10135211 DOI: 10.3390/antiox12040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision loss in older individuals in developed countries. Despite advances in our understanding of AMD, its pathophysiology remains poorly understood. Matrix metalloproteinases (MMPs) have been proposed to play a role in AMD development. In this study, we aimed to characterize MMP-13 in AMD. We used retinal pigment epithelial cells, a murine model of laser-induced choroidal neovascularization, and plasma samples from patients with neovascular AMD to conduct our study. Our results show that MMP13 expression significantly increased under oxidative stress conditions in cultured retinal pigment epithelial cells. In the murine model, MMP13 was overexpressed in both retinal pigment epithelial cells and endothelial cells during choroidal neovascularization. Additionally, the total MMP13 levels in the plasma of patients with neovascular AMD were significantly lower than those in the control group. This suggests a reduced diffusion from the tissues or release from circulating cells in the bloodstream, given that the number and function of monocytes have been reported to be deficient in patients with AMD. Although more studies are needed to elucidate the role of MMP13 in AMD, it could be a promising therapeutic target for treating AMD.
Collapse
Affiliation(s)
- Jorge González-Zamora
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Navarra Institute for Health Research, IdiSNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Navarra Institute for Health Research, IdiSNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Navarra Institute for Health Research, IdiSNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ana Montoliu
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Valentina Bilbao-Malavé
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Sara Llorente-González
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Navarra Institute for Health Research, IdiSNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alfredo García-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Navarra Institute for Health Research, IdiSNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Patricia Fernández-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Navarra Institute for Health Research, IdiSNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Rangwani SM, Hawn S, Sklar NC, Mirza RG, Lavine JA. Macrophage-like Cells Are Increased in Retinal Vein Occlusion and Correlate with More Intravitreal Injections and Worse Visual Acuity Outcomes. J Pers Med 2022; 13:45. [PMID: 36675705 PMCID: PMC9860779 DOI: 10.3390/jpm13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Macrophage-like cells (MLCs) are an emerging retinal biomarker. MLCs are increased in retinal vein occlusion (RVO) eyes, but their predictive value is unknown. This study investigated if MLCs can predict meaningful clinical outcomes. This prospective, cross-sectional study involved 46 eyes from 23 patients with unilateral RVO. Patients' unaffected eyes were used as matched controls. MLCs were quantified to determine MLC density and percent image area. We collected demographic, clinical, ocular, and imaging characteristics at the time of MLC imaging. We additionally recorded best corrected visual acuity (BCVA) and number of intravitreal injections at 6 months and 12 months post-imaging. MLC density and percent area increased by 1.86 (p = 0.0266)- and 1.94 (p = 0.0415)-fold in RVO compared to control eyes. We found no significant correlation between MLC parameters and any baseline characteristic. MLC density was positively correlated with the number of intravitreal injections at 6 months (n = 12, r = 0.62, p = 0.03) and 12 months (n = 9, r = 0.80, p = 0.009) post-imaging. MLC percent area was correlated with LogMAR BCVA change over 12 months (n = 17, r = 0.57, p = 0.02). High MLC counts correlated with more future intravitreal injections and worse visual acuity outcomes, suggesting that MLCs are a biomarker for treatment resistant RVO eyes.
Collapse
Affiliation(s)
| | | | | | | | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Rangel B, Mesentier-Louro LA, Lowe LL, Shariati AM, Dalal R, Imventarza JA, Liao YJ. Upregulation of retinal VEGF and connexin 43 in murine nonarteritic anterior ischemic optic neuropathy induced with 577 nm laser. Exp Eye Res 2022; 225:109139. [PMID: 35691373 PMCID: PMC10870834 DOI: 10.1016/j.exer.2022.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022]
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is a common acute optic neuropathy and cause of irreversible vision loss in those older than 50 years of age. There is currently no effective treatment for NAION and the biological mechanisms leading to neuronal loss are not fully understood. Promising novel targets include glial cells activation and intercellular communication mediated by molecules such as gap junction protein Connexin 43 (Cx43), which modulate neuronal fate in central nervous system disorders. In this study, we investigated retinal glial changes and neuronal loss following a novel NAION animal model using a 577 nm yellow laser. We induced unilateral photochemical thrombosis using rose bengal at the optic nerve head vasculature in adult C57BL/6 mice using a 577 nm laser and performed morphometric analysis of the retinal structure using serial in vivo optical coherence tomography (OCT) and histology for glial and neuronal markers. One day after experimental NAION, in acute phase, OCT imaging revealed peripapillary thickening of the retinal ganglion cell complex (GCC, baseline: 79.5 ± 1.0 μm, n = 8; NAION: 93.0 ± 2.5 μm, n = 8, P < 0.01) and total retina (baseline: 202.9 ± 2.4 μm, n = 8; NAION: 228.1 ± 6.8 μm, n = 8, P < 0.01). Twenty-one days after ischemia, at a chronic phase, there was significant GCC thinning (baseline 78.3 ± 2.1 μm, n = 6; NAION: 72.2 ± 1.9 μm, n = 5, P < 0.05), mimicking human disease. Examination of molecular changes in the retina one day after ischemia revealed that NAION induced a significant increase in retinal VEGF levels (control: 2319 ± 195, n = 5; NAION: 4549 ± 683 gray mean value, n = 5, P < 0.05), which highly correlated with retinal thickness (r = 0.89, P < 0.05). NAION also led to significant increase in mRNA level for Cx43 (Gj1a) at day 1 (control: 1.291 ± 0.38; NAION: 3.360 ± 0.58 puncta/mm2, n = 5, P < 0.05), but not of glial fibrillary acidic protein (Gfap) at the same time (control: 2,800 ± 0.59; NAION: 4,690 ± 0.90 puncta/mm2 n = 5, P = 0.19). Retinal ganglion cell loss at day 21 was confirmed by a 30% decrease in Brn3a+ cells (control: 2,844 ± 235; NAION: 2,001 ± 264 cells/mm2, n = 4, P < 0.05). We described a novel protocol of NAION induction by photochemical thrombosis using a 577 nm laser, leading to retinal edema and VEGF increase at day 1 and RGCs loss at day 21 after injury, consistent with the pathophysiology of human NAION. Early changes in glial cells intercommunication revealed by increased Cx43+ gap junctions are consistent with a retinal glial role in mediating cell-to-cell signaling after an ischemic insult. Our study demonstrates an early glial response in a novel NAION animal model and reveals glial intercommunication molecules such as Cx43 as a promising therapeutic target in acute NAION.
Collapse
Affiliation(s)
- Barbara Rangel
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | | | - Lauryn L Lowe
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Ali Mohammad Shariati
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Joel A Imventarza
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, 94303, USA; Department of Neurology, Stanford University School of Medicine, Stanford, CA, 94304, USA.
| |
Collapse
|
5
|
Neurovascular injury associated non-apoptotic endothelial caspase-9 and astroglial caspase-9 mediate inflammation and contrast sensitivity decline. Cell Death Dis 2022; 13:937. [PMID: 36347836 PMCID: PMC9643361 DOI: 10.1038/s41419-022-05387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Retinal neurovascular injuries are a leading cause of vision loss in young adults presenting unmet therapeutic needs. Neurovascular injuries damage homeostatic communication between endothelial, pericyte, glial, and neuronal cells through signaling pathways that remain to be established. To understand the mechanisms that contribute to neuronal death, we use a mouse model of retinal vein occlusion (RVO). Using this model, we previously discovered that after vascular damage, there was non-apoptotic activation of endothelial caspase-9 (EC Casp9); knock-out of EC Casp9 led to a decrease in retinal edema, capillary ischemia, and neuronal death. In this study, we aimed to explore the role of EC Casp9 in vision loss and inflammation. We found that EC Casp9 is implicated in contrast sensitivity decline, induction of inflammatory cytokines, and glial reactivity. One of the noted glial changes was increased levels of astroglial cl-caspase-6, which we found to be activated cell intrinsically by astroglial caspase-9 (Astro Casp9). Lastly, we discovered that Astro Casp9 contributes to capillary ischemia and contrast sensitivity decline after RVO (P-RVO). These findings reveal specific endothelial and astroglial non-apoptotic caspase-9 roles in inflammation and neurovascular injury respectively; and concomitant relevancy to contrast sensitivity decline.
Collapse
|
6
|
Alfaar AS, Stürzbecher L, Diedrichs-Möhring M, Lam M, Roubeix C, Ritter J, Schumann K, Annamalai B, Pompös IM, Rohrer B, Sennlaub F, Reichhart N, Wildner G, Strauß O. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. J Neuroinflammation 2022; 19:260. [PMID: 36273134 PMCID: PMC9588251 DOI: 10.1186/s12974-022-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood–retina barrier of the immune privileged eye. Methods We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02620-w.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.,Department of Ophthalmology, University Hospital of Ulm, 89075, Ulm, Germany
| | - Lucas Stürzbecher
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marion Lam
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Christophe Roubeix
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Julia Ritter
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Kathrin Schumann
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Inga-Marie Pompös
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Florian Sennlaub
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Differential expression of aqueous humor microRNAs in central retinal vein occlusion and its association with matrix metalloproteinases: a pilot study. Sci Rep 2022; 12:16429. [PMID: 36180575 PMCID: PMC9525721 DOI: 10.1038/s41598-022-20834-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to investigate the differential expression of microRNAs (miRNAs) in the aqueous humor (AH) of patients with central retinal vein occlusion (CRVO), and their association with AH matrix metalloproteinase (MMP) activity. Eighteen subjects, including 10 treatment naïve patients with CRVO and 8 control subjects, scheduled for intravitreal injection and cataract surgery, respectively, were included. AH samples were collected at the beginning of the procedure. A microarray composed of 84 miRNAs was performed to identify differentially expressed miRNAs in CRVO AH, which were further analyzed using bioinformatic tools to identify directly related cytokines/proteins. Eight miRNAs (hsa-mir-16-5p, hsa-mir-142-3p, hsa-mir-19a-3p, hsa-mir-144-3p, hsa-mir-195-5p, hsa-mir-17-5p, hsa-mir-93-5p, and hsa-mir-20a-5p) were significantly downregulated in the CRVO group. Bioinformatic analysis revealed a direct relationship among downregulated miRNAs, CRVO, and the following proteins: MMP-2, MMP-9, tumor necrosis factor, transforming growth factor beta-1, caspase-3, interleukin-6, interferon gamma, and interleukin-1-beta. Activities of MMP-2 and -9 in AH were detected using gelatin zymography, showing significant increase in the CRVO group compared to the control group (p < 0.01). This pilot study first revealed that MMP-2 and -9 were directly related to downregulated miRNAs and showed significant increase in activity in AH of patients with CRVO. Therefore, the relevant miRNAs and MMPs in AH could serve as potential biomarkers or therapeutic targets for CRVO.
Collapse
|
8
|
González-Zamora J, Hernandez M, Recalde S, Bezunartea J, Montoliu A, Bilbao-Malavé V, Orbe J, Rodríguez JA, Llorente-González S, Fernández-Robredo P, García-Layana A. Matrix Metalloproteinase 10 Contributes to Choroidal Neovascularisation. Biomedicines 2022; 10:biomedicines10071557. [PMID: 35884862 PMCID: PMC9313238 DOI: 10.3390/biomedicines10071557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is currently the main cause of severe visual loss among older adults in developed countries. The pathophysiology has not been clarified, but oxidative stress is believed to play a major role. Matrix metalloproteinases (MMP) may play a prominent role in several steps of the pathophysiology of AMD, especially in its neovascular form; therefore, there is of great interest in understanding their role in choroidal neovascularisation. This study aimed to elucidate the role of MMP10 in the development of choroidal neovascularisation (CNV). We have demonstrated that MMP10 was expressed by retinal pigment epithelium cells and endothelial cells of the neovascular membrane, in cell culture, mouse and human retina. MMP10 expression and activity increased under oxidative stress conditions in ARPE-19 cells. MMP10-/- mice developed smaller laser-induced areas of CNV. Furthermore, to exclude a systemic MMP10 imbalance in these patients, plasma MMP10 concentrations were assessed in an age- and sex-matched sample of 52 control patients and 52 patients with neovascular AMD and no significant differences were found between the groups, demonstrating that MMP10 induction is a local phenomenon. Our findings suggest that MMP10 participates in the development of choroidal neovascularisation and promotes MMP10 as a possible new therapeutic target.
Collapse
Affiliation(s)
- Jorge González-Zamora
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
| | - María Hernandez
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Correspondence: (M.H.); (P.F.-R.)
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| | - Jaione Bezunartea
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| | - Ana Montoliu
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
| | - Valentina Bilbao-Malavé
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
| | - Josune Orbe
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-Universidad de Navarra, CIBERCV, 31008 Pamplona, Spain
| | - José A. Rodríguez
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-Universidad de Navarra, CIBERCV, 31008 Pamplona, Spain
| | - Sara Llorente-González
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| | - Patricia Fernández-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
- Correspondence: (M.H.); (P.F.-R.)
| | - Alfredo García-Layana
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-Z.); (S.R.); (J.B.); (A.M.); (V.B.-M.); (S.L.-G.); (A.G.-L.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain; (J.O.); (J.A.R.)
| |
Collapse
|
9
|
Moin ASM, Nandakumar M, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Potential Biomarkers to Predict Acute Ischemic Stroke in Type 2 Diabetes. Front Mol Biosci 2021; 8:744459. [PMID: 34926573 PMCID: PMC8671883 DOI: 10.3389/fmolb.2021.744459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose: Patients with type 2 diabetes (T2D) have increased risk of cardiovascular disease (CVD), encompassing myocardial infarction, stroke, and peripheral vascular disease. We hypothesized that those biomarkers indicative of acute ischemic stroke (AIS) seen in large vessel occlusion (LVO) may also be elevated in T2D and further enhanced by stress conditions; therefore, these proteins represent potentially predictive biomarkers for those T2D patients at high risk of AIS. Methods: We performed an exploratory proteomic analysis in control subjects (n = 23) versus those with type 2 diabetes (T2D) (n = 23) who underwent a hyperinsulinemic clamp study to transient severe hypoglycemia [blood glucose <2.0 mmol/L (36 mg/dl)] in a prospective case-control study. We compared these proteins described as diagnostic and prognostic biomarkers for AIS due to LVO: lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE1), thrombospondin-1 (THBS1), pro-platelet basic protein (PPBP), and cadherin 1 (CDH1). Results: At baseline (BL), PPBP (p < 0.05), THBS1 (p < 0.05), and CDH1 (p < 0.01) were elevated in T2D; LYVE1 was not different between controls and T2D subjects at BL or at subsequent timepoints. PPBP and THBS1 tended to increase at hypoglycemia in both cohorts, though reached significance only in controls (p < 0.05), returning to BL levels post-hypoglycemia. CDH1 levels were higher in T2D at BL, at hypoglycemia and up to 2-h posthypoglycemia, thereafter reverting to BL levels. Conclusion: Elevated levels of PPBP, THBS1, and CDH1, circulatory proteins suggested as biomarkers of AIS due to LVO, may, in T2D patients, be prognostically indicative of a cohort of T2D patients at increased risk of ischaemic stroke. Prospective studies are needed to determine if this reflects future clinical risk. Clinical trial reg. no: NCT03102801.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Manjula Nandakumar
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Heslington, United Kingdom.,Leeds Medical School, Leeds, United Kingdom
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Heslington, United Kingdom
| | - Stephen L Atkin
- Department of Research, Royal College of Surgeons of Ireland, Al Muharraq, Bahrain
| | - Alexandra E Butler
- Department of Research, Royal College of Surgeons of Ireland, Al Muharraq, Bahrain
| |
Collapse
|
10
|
Meng Y, Zhao H, Zhao Z, Yin Z, Chen Z, Du J. Sec62 promotes pro-angiogenesis of hepatocellular carcinoma cells under hypoxia. Cell Biochem Biophys 2021; 79:747-755. [PMID: 34120320 DOI: 10.1007/s12013-021-01008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the underlying molecular pathogenic mechanism of Sec62 in hepatocellular carcinoma (HCC). Microarray analysis was conducted to profile the global gene expression in the HCC cell line Huh7 cells transfected with Sec62high vs. NC and Sec62low vs. NC. Ingenuity pathway analysis and gene set enrichment analysis were used to perform Sec62-related signaling pathway analysis from screened differentially expressed genes (DEGs). A protein-protein interaction network was constructed. Experimental validation of the expression of key DEGs was conducted. Hypoxia-induced tube formation was undertaken to investigate the role of Sec62 in angiogenesis. A total of 74 intersected DEGs were identified from Huh7 cells with Sec62high vs. NC and Sec62low vs. NC. Among them, 65 DEGs were correlated with the expression of Sec62. The P53 signaling pathway was found to be enriched in Huh7 cells with Sec62high vs. NC, while the acute phase response signaling pathway was enriched in Huh7 cells with Sec62low vs. NC. DEGs, such as serine protease inhibitor E (SERPINE) and tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B), were not only identified as the lead genes of these enriched pathways, but were also found to be closely related to Sec62. Moreover, knockdown of Sec62 decreased the expression of SERPINE1 (plasminogen activator inhibitor type 1 (PAI-1)) and TNFRSF11B, whereas overexpression of Sec62 had the opposite effects. In addition, knockdown of Sec62 inhibited hypoxia-induced tube formation via PAI-1. Sec62 promoted pro-angiogenesis of HCC under hypoxia by regulating PAI-1, and it may be a crucial angiogenic switch in HCC.
Collapse
Affiliation(s)
- Yongbin Meng
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hetong Zhao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhihao Zhao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zifei Yin
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhe Chen
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Juan Du
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
11
|
Spooner K, Fraser-Bell S, Hong T, Chang A. Optical-coherence tomography angiography and ultrawide-field angiography findings in eyes with refractory macular edema secondary to retinal vein occlusion switched to aflibercept: A subanalysis from a 48-week prospective study. Taiwan J Ophthalmol 2021; 11:352-358. [PMID: 35070663 PMCID: PMC8757531 DOI: 10.4103/tjo.tjo_17_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE: To evaluate anatomical changes on ultra-wide-field fluorescein-angiography and optical coherence angiography (OCT-A) among a cohort with treatment-resistant macular edema secondary to retinal vein occlusions (RVO) switched to aflibercept. MATERIALS AND METHODS: Patients with persistent macular edema despite previous bevacizumab and/or ranibizumab were switched to aflibercept in a 48-week prospective trial. Ultra-wide-field fluorescein angiography (UWFFA) and OCT-A were performed at baseline, week-24 and week-48. The ischemic index was calculated from UWFFA and the areas of vascular perfusion. The foveal avascular zone (FAZ) were quantitatively evaluated on OCT-A. RESULTS: Eighteen patients (mean age, 70.3±8.6 years) were recruited. Mean central macular thickness (CMT) was significantly reduced at 48-weeks compared to baseline (-87.6±48.8 μm, P < 0.001 and -191.0±128.3μm, P < 0.001 among BRVO and CRVO eyes, respectively). The mean baseline ischemic index as measured on Optos wide-field angiography was 10.9%±8.3 and decreased to 5.7%±4.2 (P = 0.028), at week 48. The mean FAZ areas of the SCP and DCP reduced by -0.06 ± 0.12 mm 2 and -0.17± 0.45 mm 2 , respectively. FAZ area on OCT-A was stable in eyes with stable or improved vision but increased in size in eyes with baseline macular ischemia and those with lower gains in BCVA at week 48 (R 2 =0.719, P = 0.05 and R 2 =0.516, P = 0.01). CONCLUSION: There was a reduction in macular edema measured on OCT at 48-weeks in eyes switched to aflibercept with chronic macular edema due to retinal vein occlusion. There was also a reduction in retinal ischemia as measured using UWFFA.
Collapse
Affiliation(s)
- Kimberly Spooner
- Sydney Retina, Sydney NSW, Australia.,Sydney Institute of Vision Science, Sydney, NSW, Australia.,University of Sydney, Sydney NSW, Australia
| | - Samantha Fraser-Bell
- Sydney Retina, Sydney NSW, Australia.,University of Sydney, Sydney NSW, Australia
| | - Thomas Hong
- Sydney Retina, Sydney NSW, Australia.,Sydney Institute of Vision Science, Sydney, NSW, Australia
| | - Andrew Chang
- Sydney Retina, Sydney NSW, Australia.,Sydney Institute of Vision Science, Sydney, NSW, Australia.,University of Sydney, Sydney NSW, Australia
| |
Collapse
|
12
|
Mesentier-Louro LA, Rangel B, Stell L, Shariati MA, Dalal R, Nathan A, Yuan K, de Jesus Perez V, Liao YJ. Hypoxia-induced inflammation: Profiling the first 24-hour posthypoxic plasma and central nervous system changes. PLoS One 2021; 16:e0246681. [PMID: 33661927 PMCID: PMC7932147 DOI: 10.1371/journal.pone.0246681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 11/18/2022] Open
Abstract
Central nervous system and visual dysfunction is an unfortunate consequence of systemic hypoxia in the setting of cardiopulmonary disease, including infection with SARS-CoV-2, high-altitude cerebral edema and retinopathy and other conditions. Hypoxia-induced inflammatory signaling may lead to retinal inflammation, gliosis and visual disturbances. We investigated the consequences of systemic hypoxia using serial retinal optical coherence tomography and by assessing the earliest changes within 24h after hypoxia by measuring a proteomics panel of 39 cytokines, chemokines and growth factors in the plasma and retina, as well as using retinal histology. We induced severe systemic hypoxia in adult C57BL/6 mice using a hypoxia chamber (10% O2) for 1 week and rapidly assessed measurements within 1h compared with 18h after hypoxia. Optical coherence tomography revealed retinal tissue edema at 18h after hypoxia. Hierarchical clustering of plasma and retinal immune molecules revealed obvious segregation of the 1h posthypoxia group away from that of controls. One hour after hypoxia, there were 10 significantly increased molecules in plasma and 4 in retina. Interleukin-1β and vascular endothelial growth factor were increased in both tissues. Concomitantly, there was significantly increased aquaporin-4, decreased Kir4.1, and increased gliosis in retinal histology. In summary, the immediate posthypoxic period is characterized by molecular changes consistent with systemic and retinal inflammation and retinal glial changes important in water transport, leading to tissue edema. This posthypoxic inflammation rapidly improves within 24h, consistent with the typically mild and transient visual disturbance in hypoxia, such as in high-altitude retinopathy. Given hypoxia increases risk of vision loss, more studies in at-risk patients, such as plasma immune profiling and in vivo retinal imaging, are needed in order to identify novel diagnostic or prognostic biomarkers of visual impairment in systemic hypoxia.
Collapse
Affiliation(s)
- Louise A. Mesentier-Louro
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Barbara Rangel
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Laurel Stell
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, California, United States of America
| | - M. Ali Shariati
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Abinaya Nathan
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Vinicio de Jesus Perez
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, United States of America
- Department of Neurology, Stanford University, School of Medicine, Stanford, California, United States of America
| |
Collapse
|
13
|
Establishment of a pigmented murine model abundant with characteristics of retinal vein occlusion. Exp Eye Res 2021; 204:108441. [PMID: 33453278 DOI: 10.1016/j.exer.2021.108441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Retinal vein occlusion (RVO) is a vascular disease that represents characteristic retinal hemorrhage and dilated retinal veins. Despite its clinical importance, its pathogenesis remains largely unknown because of limited opportunities to acquire human retinal samples. Therefore, an animal model that reproduces the clinical features of RVO patients is required for further investigation. In this study, we established a pigmented murine RVO model that reproduced characteristic fundus appearances similar to human RVO findings. Retinal edema in this model was observed in both optical coherence tomography and histological analysis, which is a clinically important outcome. With quantitative real-time PCR analysis on retinal samples, we revealed that the mRNA level of vascular endothelial growth factor (VEGF) increased in the retina induced RVO. Moreover, this retinal edema was reduced by intravitreal injection of anti-VEGF antibody. These results were consistent with human clinical knowledge and suggested that this model could be a useful tool for research into new therapeutic approaches.
Collapse
|
14
|
Sijilmassi O, López-Alonso JM, Del Río Sevilla A, Del Carmen Barrio Asensio M. Development of a polarization imaging method to detect paraffin-embedded pathology tissues before applying other techniques. JOURNAL OF BIOPHOTONICS 2021; 14:e202000288. [PMID: 32981228 DOI: 10.1002/jbio.202000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The present article describes the development of a technique, applied to paraffin-embedded tissues, which uses three different wavelengths of monochromatic light (λ1 = 445 nm, λ2 = 540 nm and λ3 = 660 nm) for the measures of the degree of polarization, degree of linear polarization, degree of circular polarization and birefringence, all obtained from measurements of Stokes parameters by using polarized light. The goal of this study was to detect changes in developing embryonic mouse eye when pregnant mice fed diets without folic acid for variable periods compared with a healthy control group. We present a biomedical diagnostic technique based on polarized light detection applied to paraffin-embedded tissues to visualize the structural damage to aid us in the diagnosis before applying other techniques. Through this method, we can visualize and identify which parts of the tissue were altered with respect to the control group.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- Department of Anatomy and Embryology, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
- Department of Optics, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | - José Manuel López-Alonso
- Department of Optics, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | - Aurora Del Río Sevilla
- Department of Anatomy and Embryology, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | | |
Collapse
|
15
|
Kakavand K, Jobling AI, Greferath U, Vessey KA, de Iongh RU, Fletcher EL. Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Front Neurosci 2020; 14:581579. [PMID: 33224023 PMCID: PMC7670078 DOI: 10.3389/fnins.2020.581579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Photoreceptor death contributes to 50% of irreversible vision loss in the western world. Pro23His (P23H) transgenic albino rat strains are widely used models for the most common rhodopsin gene mutation associated with the autosomal dominant form of retinitis pigmentosa. However, the mechanism(s) by which photoreceptor death occurs are not well understood and were the principal aim of this study. We first used electroretinogram recording and optical coherence tomography to confirm the time course of functional and structural loss. Electroretinogram analyses revealed significantly decreased rod photoreceptor (a-wave), bipolar cell (b-wave) and amacrine cell responses (oscillatory potentials) from P30 onward. The cone-mediated b-wave was also decreased from P30. TUNEL analysis showed extensive cell death at P18, with continued labeling detected until P30. Focused gene expression arrays indicated activation of, apoptosis, autophagy and necroptosis in whole retina from P14-18. However, analysis of mitochondrial permeability changes (ΔΨm) using JC-1 dye, combined with immunofluorescence markers for caspase-dependent (cleaved caspase-3) and caspase-independent (AIF) cell death pathways, indicated mitochondrial-mediated cell death was not a major contributor to photoreceptor death. By contrast, reverse-phase protein array data combined with RIPK3 and phospho-MLKL immunofluorescence indicated widespread necroptosis as the predominant mechanism of photoreceptor death. These findings highlight the complexity of mechanisms involved in photoreceptor death in the Pro23His rat model of degeneration and suggest therapies that target necroptosis should be considered for their potential to reduce photoreceptor death.
Collapse
Affiliation(s)
- Kiana Kakavand
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Jobling
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Ursula Greferath
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Kirstan A Vessey
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Department Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Erica L Fletcher
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Ulhaq ZS, Soraya GV, Budu, Wulandari LR. The role of IL-6-174 G/C polymorphism and intraocular IL-6 levels in the pathogenesis of ocular diseases: a systematic review and meta-analysis. Sci Rep 2020; 10:17453. [PMID: 33060644 PMCID: PMC7566646 DOI: 10.1038/s41598-020-74203-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Interleukin-6 (IL-6) is one of the key regulators behind the inflammatory and pathological process associated with ophthalmic diseases. The role of IL-6-174 G/C polymorphism as well as intraocular IL-6 levels among various eye disease patients differ across studies and has not been systematically reviewed. Thus, this study aims to provide a summary to understand the relationship between IL-6 and ophthalmic disease. In total, 8,252 and 11,014 subjects for IL-6-174 G/C and intraocular levels of IL-6, respectively, were retrieved from PubMed, Scopus and Web of Science. No association was found between IL-6-174 G/C polymorphisms with ocular diseases. Subgroup analyses revealed a suggestive association between the GC genotype of IL-6-174 G/C with proliferative diabetic retinopathy (PDR). Further, the level of intraocular IL-6 among ocular disease patients in general was found to be higher than the control group [standardized mean difference (SMD) = 1.41, 95% confidence interval (CI) 1.24-1.58, P < 0.00001]. Closer examination through subgroup analyses yielded similar results in several ocular diseases. This study thus indicates that the IL-6-174 G/C polymorphism does not predispose patients to ocular disease, although the GC genotype is likely to be a genetic biomarker for PDR. Moreover, intraocular IL-6 concentrations are related to the specific manifestations of the ophthalmic diseases. Further studies with larger sample sizes are warranted to confirm this conclusion.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim State Islamic University of Malang, Batu, East Java, 65151, Indonesia.
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Budu
- Department of Ophthalmology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Lely Retno Wulandari
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
17
|
Neo T, Gozawa M, Takamura Y, Inatani M, Oki M. Gene expression profile analysis of the rabbit retinal vein occlusion model. PLoS One 2020; 15:e0236928. [PMID: 32735610 PMCID: PMC7394371 DOI: 10.1371/journal.pone.0236928] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
The rabbit retinal vein occlusion (RVO) model is an experimental system that mimics retinal ischemic diseases in humans. The rabbit RVO model is widely used to assess the therapeutic efficacy of various experimental surgical procedures. In the present study, we measured temporal retinal expression of Vegfa, which is known as an ischemic response gene, in rabbit RVO. This analysis revealed that the retinal Vegfa transcriptional response began 7 days after generation of RVO, rather than immediately after induction of ischemia. Next, in order to analyze ischemia-induced changes in gene expression profiles, we performed microarray analysis of day 7 RVO retina versus control retina. The angiogenic regulators Dcn and Mmp1 and pro-inflammatory factors Mmp12 and Cxcl13 were significantly upregulated in RVO retinas. Further, we suggest that epigenetic regulation via the REST/cofactor-complex could contribute to RVO pathology. Among human homologous genes in rabbits, genes associated with hypoxia, angiogenesis, and inflammation were significantly upregulated in RVO retinas. Components of the Tumor necrosis factor-alpha (TNFα) and Nuclear factor-kappa B (NF-κB) pathways, which play regulatory roles in angiogenesis and inflammation, were significantly upregulated in RVO, and the expression levels of downstream factors, such as the transcription factor AP-1 and chemokines, were increased. Further, connectivity map analyses suggested that inhibitors of the NF-κB pathway are potential therapeutic agents for retinal ischemic disease. The present study revealed new insights into the pathology of retinal ischemia using the rabbit RVO model, which accurately recapitulates human disease.
Collapse
Affiliation(s)
- Takuma Neo
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Makoto Gozawa
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science innovation center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
18
|
Lorenc VE, Lima e Silva R, Hackett SF, Fortmann SD, Liu Y, Campochiaro PA. Hepatocyte growth factor is upregulated in ischemic retina and contributes to retinal vascular leakage and neovascularization. FASEB Bioadv 2020; 2:219-233. [PMID: 32259049 PMCID: PMC7133726 DOI: 10.1096/fba.2019-00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/01/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
In patients with macular edema due to ischemic retinopathy, aqueous levels of hepatocyte growth factor (HGF) correlate with edema severity. We tested whether HGF expression and activity in mice with oxygen-induced ischemic retinopathy supports a role in macular edema. In ischemic retina, HGF was increased in endogenous cells and macrophages associated with retinal neovascularization (NV). HGF activator was increased in and around retinal vessels potentially providing vascular targeting. One day after intravitreous injection of HGF, VE-cadherin was reduced and albumin levels in retina and vitreous were significantly increased indicating vascular leakage. Injection of VEGF caused higher levels of vitreous albumin than HGF, and co-injection of both growth factors caused significantly higher levels than either alone. HGF increased the number of macrophages on the retinal surface, which was blocked by anti-c-Met and abrogated in chemokine (C-C motif) ligand 2 (CCL2)-/- mice. Injection of anti-c-Met significantly decreased leakage within 24 hours and after 5 days it reduced retinal NV in mice with ischemic retinopathy, but had no effect on choroidal NV. These data indicate that HGF is a pro-permeability, pro-inflammatory, and pro-angiogenic factor and along with its activator is increased in ischemic retina providing support for a potential role of HGF in macular edema in ischemic retinopathies.
Collapse
Affiliation(s)
- Valeria E. Lorenc
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Raquel Lima e Silva
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sean F. Hackett
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Seth D. Fortmann
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Yuanyuan Liu
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
- Present address:
Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Peter A. Campochiaro
- Departments of Ophthalmology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
19
|
Effects of Exogenous Neuroglobin (Ngb) on retinal inflammatory chemokines and microglia in a rat model of transient hypoxia. Sci Rep 2019; 9:18799. [PMID: 31827177 PMCID: PMC6906524 DOI: 10.1038/s41598-019-55315-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/20/2019] [Indexed: 12/04/2022] Open
Abstract
Neuroglobin is an endogenous neuroprotective protein. We determined the safety of direct delivery of Neuroglobin in the rat retina and its effects on retinal inflammatory chemokines and microglial during transient hypoxia. Exogenous Neuroglobin protein was delivered to one eye and a sham injection to the contralateral eye of six rats intravitreally. Fundus photography, Optical Coherence Topography, electroretinogram, histology and Neuroglobin, chemokines level were determined on days 7 and 30. Another 12 rats were subjected to transient hypoxia to assess the effect of Neuroglobin in hypoxia exposed retina by immunohistochemistry, retinal Neuroglobin concentration and inflammatory chemokines. Intravitreal injection of Neuroglobin did not incite morphology or functional changes in the retina. Retinal Neuroglobin protein was reduced by 30% at day 7 post hypoxia. It was restored to normoxic control levels with intravitreal exogenous Neuroglobin injections and sustained up to 30 days. IL-6, TNFα, IL-1B, RANTES, MCP-1 and VEGF were significantly decreased in Neuroglobin treated hypoxic retinae compared to non-treated hypoxic controls. This was associated with decreased microglial activation in the retina. Our findings provide proof of concept suggesting intravitreal Neuroglobin injection is non-toxic to the retina and can achieve the functional level to abrogate microglial and inflammatory chemokines responses during transient hypoxia.
Collapse
|
20
|
Pielen A, Feltgen N, Hattenbach LO, Hoerauf H, Bertelmann T, Quiering C, Vögeler J, Priglinger S, Lang GE, Schmitz-Valckenberg S, Wolf A, Rehak M. Ranibizumab Pro Re nata versus Dexamethasone in the Management of Ischemic Retinal Vein Occlusion: Post-hoc Analysis from the COMRADE Trials. Curr Eye Res 2019; 45:604-614. [PMID: 31665935 DOI: 10.1080/02713683.2019.1679839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To compare ischemia-related clinical outcomes in patients treated with either ranibizumab pro re nata (PRN) or single dexamethasone implant in the Branch Retinal Vein Occlusion (COMRADE-B) or Central Retinal Vein Occlusion (COMRADE-C) trials.Methods: A post-hoc analysis of the Phase IIIb, 6-month, multicenter, double-masked, randomized, COMRADE-B and COMRADE-C trials. Change over 6 months in retinal ischemia status (central avascular [CA] zone and peripheral nonperfusion [PNP]), mean best-corrected visual acuity (BCVA), the development of shunt vessels and neovascularization, and frequency of laser therapy were assessed in retinal vein occlusion (RVO) patients treated with either ranibizumab 0.5 mg PRN or single dexamethasone 0.7 mg implant, as per European labels, in the COMRADE-B (N = 244; ranibizumab, 126, dexamethasone, 118) or COMRADE-C (N = 243; ranibizumab, 124, dexamethasone, 119) trials. BCVA progression in ischemic vs. non-ischemic patients based on the ischemia assessment at month 6 was carried out.Results: Visual acuity (VA) gains from baseline to month 6 were higher with ranibizumab than with dexamethasone in both patients with central ischemia and those with peripheral retinal nonperfusion, independent of the type of RVO (branch or central). The presence of CA and PNP had a significant impact on VA gain over 6 months in CRVO patients (p < .0001), while there was no significant impact in BRVO. Ranibizumab was associated with less new ischemia than dexamethasone. Central RVO patients treated with dexamethasone received more laser treatments over the 6 months than those treated with ranibizumab, while there was no difference in the frequency of laser therapy between the branch RVO treatment groups.Conclusions: VA gain over six months in ranibizumab-treated RVO patients is not affected by ischemia, and is associated with less development of new ischemia during the first 6 months of treatment and equal or fewer laser treatments than dexamethasone implant.
Collapse
Affiliation(s)
- Amelie Pielen
- Hannover Medical School, University Eye Hospital, Hannover, Germany.,Eye Center, University Medical Center Freiburg, Freiburg, Germany
| | - Nicolas Feltgen
- Eye Hospital, University Medical Center, Goettingen, Germany
| | | | - Hans Hoerauf
- Eye Hospital, University Medical Center, Goettingen, Germany
| | | | - Claudia Quiering
- Department of Ophthalmology, Novartis Pharma GmbH, Nuremberg, Germany
| | - Jessica Vögeler
- Department of Ophthalmology, Novartis Pharma GmbH, Nuremberg, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, University Eye Hospital, Ludwig Maximilian Universität, München, Germany
| | - Gabriele E Lang
- Department of Ophthalmology, University Eye Hospital Ulm, Ulm, Germany
| | | | - Armin Wolf
- Department of Ophthalmology, University Eye Hospital, Ludwig Maximilian Universität, München, Germany
| | - Matus Rehak
- Eye Hospital, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Minaker SA, Mason RH, Bamakrid M, Lee Y, Muni RH. Changes in Aqueous and Vitreous Inflammatory Cytokine Levels in Retinal Vein Occlusion: A Systematic Review and Meta-analysis. ACTA ACUST UNITED AC 2019; 4:36-64. [PMID: 37009560 PMCID: PMC9976078 DOI: 10.1177/2474126419880391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: Evidence suggests that inflammatory cytokines not only play a role in the pathogenesis of retinal vein occlusion (RVO) but also may be useful as biomarkers to predict disease severity and response to treatment. We aimed to quantitatively summarize data on inflammatory cytokines associated with RVO. Methods: A systematic search of peer-reviewed English-language articles was performed without year limitation up to August 19, 2019. Studies were included if they provided data on aqueous or vitreous cytokine concentrations in patients with RVO. Data were extracted from 116 studies that encompassed 3242 study eyes with RVO and 1402 control eyes. Effect sizes were generated as standardized mean differences (SMDs) of cytokine concentrations between patients with RVO vs controls. Results: Among the 4644 eyes in 116 studies, aqueous and vitreous concentrations (SMD, 95% CI, and P value) of interleukin (IL)-6 (aqueous: 1.23, 0.65 to 1.81, P < .001 vitreous: 0.70, 0.49 to 0.90, P < .001), IL-8 (aqueous: 1.11, 0.73 to 1.49, P < .001; vitreous: 1.19, 0.73 to 1.65, P < .001), monocyte chemoattractant protein 1(aqueous: 1.22, 0.72 to 1.72, P < .001; vitreous 1.42, 0.92 to 1.91, P < .001), vascular endothelial growth factor (VEGF) (aqueous: 1.52, 1.09 to 1.94, P < .001; vitreous: 0.99, 0.78 to 1.21, P < .001) were significantly higher in patients with RVO than in healthy controls. Only aqueous concentrations of IL-10 (0.81, 0.45 to 1.18, P < .001), angiopoietin 4 (1.96, 0.92 to 3.00, P < .001), and platelet-derived growth factor (PDGF)-AA (0.82, 0.35 to 1.30, P < .001) were significantly higher in patients with RVO than in healthy controls. Only the vitreous concentration of soluble intercellular adhesion molecule-1 (sICAM-1) (1.23, 0.83 to 1.63, P < .001) was significantly higher in patients with RVO. No differences, failed sensitivity analyses, or insufficient data were found between patients with RVO and healthy controls for the concentrations of the remaining cytokines. Conclusions: Several cytokines in addition to VEGF have the potential to be useful biomarkers and therapeutic targets in RVO.
Collapse
Affiliation(s)
- Samuel A. Minaker
- Department of Ophthalmology, St Michael’s Hospital/Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Vision and Research Center, Toronto, Ontario, Canada
| | - Ryan H. Mason
- Department of Ophthalmology, St Michael’s Hospital/Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Vision and Research Center, Toronto, Ontario, Canada
| | - Motaz Bamakrid
- Department of Ophthalmology, St Michael’s Hospital/Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Vision and Research Center, Toronto, Ontario, Canada
| | - Yung Lee
- Department of Ophthalmology, St Michael’s Hospital/Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rajeev H. Muni
- Department of Ophthalmology, St Michael’s Hospital/Unity Health Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Vision and Research Center, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Jovanovic J, Liu X, Kokona D, Zinkernagel MS, Ebneter A. Inhibition of inflammatory cells delays retinal degeneration in experimental retinal vein occlusion in mice. Glia 2019; 68:574-588. [PMID: 31652020 PMCID: PMC7003783 DOI: 10.1002/glia.23739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
The role of microglia in retinal inflammation is still ambiguous. Branch retinal vein occlusion initiates an inflammatory response whereby resident microglia cells are activated. They trigger infiltration of neutrophils that exacerbate blood–retina barrier damage, regulate postischemic inflammation and irreversible loss of neuroretina. Suppression of microglia‐mediated inflammation might bear potential for mitigating functional impairment after retinal vein occlusion (RVO). To test this hypothesis, we depleted microglia by PLX5622 (a selective tyrosine kinase inhibitor that targets the colony‐stimulating factor‐1 receptor) in fractalkine receptor reporter mice (Cx3cr1gfp/+) subjected to various regimens of PLX5622 treatment and experimental RVO. Effectiveness of microglia suppression and retinal outcomes including retinal thickness as well as ganglion cell survival were compared to a control group of mice with experimental vein occlusion only. PLX5622 caused dramatic suppression of microglia. Despite vein occlusion, reappearance of green fluorescent protein positive cells was strongly impeded with continuous PLX5622 treatment and significantly delayed after its cessation. In depleted mice, retinal proinflammatory cytokine signaling was diminished and retinal ganglion cell survival improved by almost 50% compared to nondepleted animals 3 weeks after vein occlusion. Optical coherence tomography suggested delayed retinal degeneration in depleted mice. In summary, findings indicate that suppression of cells bearing the colony‐stimulating factor‐1 receptor, mainly microglia and monocytes, mitigates ischemic damage and salvages retinal ganglion cells. Blood–retina barrier breakdown seems central in the disease mechanism, and complex interactions between different cell types composing the blood–retina barrier as well as sustained hypoxia might explain why the protective effect was only partial.
Collapse
Affiliation(s)
- Joël Jovanovic
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Xuan Liu
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Ophthalmology, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, China
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Qin C, Zhao XL, Ma XT, Zhou LQ, Wu LJ, Shang K, Wang W, Tian DS. Proteomic profiling of plasma biomarkers in acute ischemic stroke due to large vessel occlusion. J Transl Med 2019; 17:214. [PMID: 31262327 PMCID: PMC6604304 DOI: 10.1186/s12967-019-1962-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Acute ischemic stroke (AIS) due to large vessel occlusion (LVO) is a devastating cerebrovascular disorder, which could benefit from collateral circulation. Proteins associated with acute LVO pathogenesis and endothelial function may appear in blood samples of AIS patients due to LVO, thus permitting development of blood-based biomarkers for its diagnosis and prognosis. Methods This study is a single-center, retrospective, observational case–control trial. Consecutive patients who presented at the Department of Neurology of Tongji Hospital were recruited from July 2016 to April 2018. In the discovery phase, a proteomic approach with iTRAQ-based LC–MS/MS was used to investigate the altered proteomic pattern in plasma from patients with AIS due to LVO. In the validation study, Western blots was used to identify biomarkers associated with stroke diagnosis as well as their prognostic value associated with different collateral statuses. Results For this exploratory study, the proteomic analysis of plasma from 40 patients with AIS due to LVO and 20 healthy controls revealed seven differentially expressed proteins with a 1.2/0.83-fold or greater difference between groups. The four elevated proteins, PPBP (1.58 ± 0.78 vs 0.98 ± 0.37; P < 0.001), THBS1 (1.13 ± 0.88 vs 0.43 ± 0.26; P < 0.001), LYVE1 (1.61 ± 0.55 vs 0.97 ± 0.50; P < 0.001), and IGF2 (1.19 ± 0.42 vs 0.86 ± 0.24; P < 0.001), were verified by Western blots analysis in an independent cohort including 33 patients and 33 controls. A strong interaction was observed between the four-protein panel and the diagnosis of AIS due to LVO (AUC 0.947; P < 0.001). Furthermore, IGF2, LYVE1, and THBS1 were closely associated with collateral status (IGF2 0.115, 95% CI 0.016–0.841, P = 0.033; LYVE1 0.183, 95% CI 0.036–0.918, P = 0.039; THBS1 4.257, 95% CI 1.273–14.228, P = 0.019), and proved to be independent predictors of good outcome (IGF2 0.115, 95% CI 0.015–0.866, P = 0.036; LYVE1 0.028, 95% CI 0.002–0.334, P = 0.005; THBS1 3.294, 95% CI 1.158–9.372, P = 0.025) at a 3-month follow-up. Conclusions The identified 4-biomarker panel could provide diagnostic aid to the existing imaging modalities for AIS due to LVO, and the prognostic value of IGF2, LYVE1, and THBS1 was proved in predicting functional outcomes related to collateral status. Trial registration ClinicalTrials.gov NCT 03122002. Retrospectively registered April 20, 2017. URL of trial registry record: https://www.clinicaltrials.gov/ct2/show/NCT03122002?term=NCT+03122002&rank=1 Electronic supplementary material The online version of this article (10.1186/s12967-019-1962-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xin-Ling Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao-Tong Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
24
|
Reinhard J, Wiemann S, Joachim SC, Palmhof M, Woestmann J, Denecke B, Wang Y, Downey GP, Faissner A. Heterozygous Meg2 Ablation Causes Intraocular Pressure Elevation and Progressive Glaucomatous Neurodegeneration. Mol Neurobiol 2019; 56:4322-4345. [PMID: 30315478 DOI: 10.1007/s12035-018-1376-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
Abstract
Glaucomatous neurodegeneration represents one of the major causes of irreversible blindness worldwide. Yet, the detailed molecular mechanisms that initiate optic nerve damage and retinal ganglion cell (RGC) loss are not fully understood. Members of the protein tyrosine phosphatase (PTP) superfamily are key players in numerous neurodegenerative diseases. In order to investigate the potential functional relevance of the PTP megakaryocyte 2 (Meg2) in retinal neurodegeneration, we analyzed Meg2 knockout (KO) and heterozygous (HET)-synonym protein-tyrosine phosphatase non-receptor type 9 (Ptpn9)-mice. Interestingly, via global microarray and quantitative real-time PCR (RT-qPCR) analyses of Meg2 KO and HET retinae, we observed a dysregulation of several candidate genes that are highly associated with retinal degeneration and intraocular pressure (IOP) elevation, the main risk factor for glaucoma. Subsequent IOP measurements in Meg2 HET mice verified progressive age-dependent IOP elevation. Ultrastructural analyses and immunohistochemistry showed severe optic nerve degeneration accompanied by a dramatic loss of RGCs. Additionally, HET mice displayed reactive micro-/macrogliosis and early activation of the classical complement cascade with pronounced deposition of the membrane attack complex (MAC) in the retina and optic nerve. When treated with latanoprost, significant IOP lowering prevented RGC loss and microglial invasion in HET mice. Finally, electroretinogram (ERG) recordings revealed reduced a- and b-wave amplitudes, indicating impaired retinal functionality in Meg2 HET mice. Collectively, our findings indicate that the heterozygous loss of Meg2 in mice is sufficient to cause IOP elevation and glaucomatous neurodegeneration. Thus, Meg2 HET mice may serve as a novel animal model to study the pathomechanism involved in the onset and progression of glaucoma.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, NDEF 05/594, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, NDEF 05/594, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Marina Palmhof
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Julia Woestmann
- Department of Cell Morphology and Molecular Neurobiology, NDEF 05/594, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yingchun Wang
- Division of Respirology, Department of Medicine, University of Toronto and Toronto General Hospital Research Institute of the University Health Network, 610 University Avenue, Toronto, ON, M5S 1A8, Canada
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Departments of Medicine and Immunology and Microbiology, University of Colorado, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine, Pediatrics and Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, NDEF 05/594, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
25
|
Choi EY, Kang HG, Lee SC, Kim M. Intravitreal dexamethasone implant for central retinal vein occlusion without macular edema. BMC Ophthalmol 2019; 19:92. [PMID: 30999889 PMCID: PMC6471867 DOI: 10.1186/s12886-019-1097-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the efficacy of an intravitreal dexamethasone (IVD) implant (Ozurdex®) for the treatment of central retinal vein occlusion (CRVO) without macular edema (ME). Methods A retrospective cohort study was designed, and 20 eyes of 20 patients diagnosed with non-ischemic CRVO without ME were included. A total of 10 CRVO eyes were observed without treatment, and another 10 CRVO eyes received a single IVD injection at baseline. Mean changes in pathomorphologic parameters of fundus and optical coherence tomography parameters were measured at baseline and at 1, 3, 6, and 12 months. Results The decreases in venous tortuosity (p = 0.014 for superior; 0.036 for inferior arcades) and width (p = 0.024 for superior; 0.003 for inferior arcades) from baseline to 12 months after injection were significantly greater in the treated group than the observed group. The improvements in RNFL swelling (p = 0.010) and retinal hemorrhage (p = 0.006) were also significantly greater in the treated group. Visual symptom improvement was significantly faster in the treated group (p = 0.001). In two cases, IVD injection resulted in complete resolution of cilioretinal artery occlusion associated with the CRVO, leading to complete visual recovery in 1 week. None of the treated eyes showed signs of ME development, ischemia progression, or neovascularization. Conclusions IVD implant was significantly effective in improving venous engorgement, retinal hemorrhage, RNFL swelling, and visual symptoms by presumed alleviation of disc swelling and venous outflow. This treatment may be a considerable treatment option in CRVO patients with no ME.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, South Korea
| | - Hyun Goo Kang
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, South Korea
| | - Sung Chul Lee
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonseiro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min Kim
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, South Korea.
| |
Collapse
|
26
|
Jeong JS, Lee DW, Kim BS, Yoo WS, Chung IY, Park JM. Comparison of Short-term Effects of Intravitreal Injection of Three Modalities on Central Retinal Vein Occlusion. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2019. [DOI: 10.3341/jkos.2019.60.11.1072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ji-Seong Jeong
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Hospital, Jinju, Korea
| | - Dong-Woo Lee
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Hospital, Jinju, Korea
| | - Byoung-Seon Kim
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Hospital, Jinju, Korea
| | - Woong-Sun Yoo
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Hospital, Jinju, Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - In Young Chung
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Hospital, Jinju, Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jong-Moon Park
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Hospital, Jinju, Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
27
|
Zeng Y, Cao D, Yu H, Zhuang X, Yang D, Hu Y, He M, Zhang L. Comprehensive analysis of vitreous chemokines involved in ischemic retinal vein occlusion. Mol Vis 2019; 25:756-765. [PMID: 31814701 PMCID: PMC6857774 DOI: pmid/31814701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To investigate vitreous levels of chemokines in eyes with ischemic retinal vein occlusion (RVO). METHODS The vitreous humor was collected at the start of 23-gauge pars plana vitrectomy from patients with ischemic RVO and patients with idiopathic preretinal membranes (PRMs) and idiopathic macular holes (IMHs). The levels of 40 different chemokines were measured using magnetic color-bead-based multiplex assay. The chi-square test was performed for clinical variables such as sex, and the Mann-Whitney U test was performed to evaluate the differences in the chemokine levels between the RVO group and the control group. RESULTS Vitreous humor was collected from 20 controls and 25 subjects with ischemic RVO. C-C motif ligand 17 (CCL17) was unmeasurable in more than 70% of the samples. The levels of 29 of 39 chemokines were statistically significantly elevated in the RVO group compared with the control group, including CCL21, C-X-C motif ligand (CXCL) 13, CCL27, CCL24, CX3CL1, CXCL6, interferon-gamma (IFN-γ), interleukin (IL) 1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-16, CXCL10, CXCL11, CCL8, CCL7, CCL13, CCL22, macrophage migration inhibitory factor (MIF), CXCL9, CCL3, CCL15, CCL20, CCL19, CCL23, CCL25, and tumor necrosis factor-alpha (TNF-α). Among the 29 elevated chemokines, we found that the levels of three chemokines (IL-8, CXCL9, and TNF-α) showed a more than six-fold increase in the RVO eyes versus controls, and CXCL9 expression showed the greatest change of all tested chemokines. CONCLUSIONS Dozens of chemokines were found to be elevated in the vitreous of RVO eyes complicated with vitreous hemorrhage, suggesting that inflammation is severe in the ischemic retina. The knowledge of specific upregulation of chemokines in ischemic RVO could allow more targeted future therapies.
Collapse
Affiliation(s)
- Yunkao Zeng
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Dan Cao
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuenan Zhuang
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Dawei Yang
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yunyan Hu
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Miao He
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Zhang
- Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
28
|
IGFBP2 is a potential biomarker in acute kidney injury (AKI) and resveratrol-loaded nanoparticles prevent AKI. Oncotarget 2018; 9:36551-36560. [PMID: 30564296 PMCID: PMC6290963 DOI: 10.18632/oncotarget.25663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
This study aims to determine whether insulin-like growth factor binding protein2 (IGFBP2) is a useful biomarker for early diagnosis of acute kidney injury (AKI), evaluate the therapeutic effects of resveratrol-loaded nanoparticles (Res-NPs), and investigate the possible underlying mechanisms in a rat model of AKI induced by IRI. Forty male Sprague–Dawley rats were randomly divided into four groups (10 animals per group): sham, IRI control, resveratrol, and Res-NPs injection. Kidney injury and the effects of Resveratrol and Res-NPs were determined by histological examination, renal function, cell apoptosis profile, and gene expression. Changes in IGFBP2 were similar with the pattern of well-known renal biomarkers, namely, kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin, in all groups. Compared with the IRI control and resveratrol groups, the Res-NPs groups displayed significantly reduced apoptotic rate, reactive oxygen species level, and malondialdehyde content, downregulated protein expression levels of Caspase3 and Bax with increased antioxidant glutathione peroxidase level, and upregulated expression of Bcl-2 protein. Thus, IGFBP2 may serve as a promising novel biomarker of AKI, and Res-NPs may prevent kidney injury from ischemia/reperfusion in a rat model.
Collapse
|
29
|
Khayat M, Williams M, Lois N. Ischemic retinal vein occlusion: characterizing the more severe spectrum of retinal vein occlusion. Surv Ophthalmol 2018; 63:816-850. [DOI: 10.1016/j.survophthal.2018.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
30
|
Gene expression profiling in a mouse model of retinal vein occlusion induced by laser treatment reveals a predominant inflammatory and tissue damage response. PLoS One 2018. [PMID: 29529099 PMCID: PMC5846732 DOI: 10.1371/journal.pone.0191338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Retinal vein occlusion (RVO) has been investigated in several laser-induced animal models using pigs, rabbits and rats. However, laser-induced RVO has been rarely reported in mice, despite the impressive number of available mutants, ease of handling and cost effectiveness. The aim of this study was to further assess the feasibility of a RVO mouse model for gene expression analysis and its possible use to investigate effects of hypoxia. Methods C57Bl/6J mice were injected with eosin Y for photo-sensitization. Subsequently, large retinal veins were laser-treated in one eye to induce vascular occlusion. Contralateral control eyes received non-occlusive retinal laser treatment sparing large vessels. The animals were followed for up to eight days and assessed by funduscopy, angiography, hypoxyprobe staining, histopathology and gene expression analysis by qPCR and RNA sequencing (RNAseq). Another group of mice was left untreated and studied at a single time point to determine baseline characteristics. Results Laser-induced RVO persisted in half of the treated veins for three days, and in a third of the veins for the whole observation period of 8 days. Funduscopy revealed large areas of retinal swelling in all laser-treated eyes, irrespective of vascular targeting or occlusion status. Damage of the outer retina, retinal pigment epithelium (RPE), and even choroid and sclera at the laser site was observed in histological sections. Genes associated with inflammation or cell damage were highly up-regulated in all laser-treated eyes as detected by RNAseq and qPCR. Retinal hypoxia was observed by hypoxyprobe staining in all RVO eyes for up to 5 days with a maximal extension at days 2 and 3, but no significant RVO-dependent changes in gene expression were detected for angiogenesis- or hypoxia-related genes. Conclusion The laser-induced RVO mouse model is characterized by a predominant general inflammatory and tissue damage response, which may obscure distinct hypoxia- and angiogenesis-related effects. A non-occlusive laser treatment control is essential to allow for proper data interpretation and should be mandatory in animal studies of laser-induced RVO to dissect laser-induced tissue damage from vascular occlusion effects.
Collapse
|
31
|
Yan Z, An J, Shang Q, Zhou N, Ma J. YC-1 Inhibits VEGF and Inflammatory Mediators Expression on Experimental Central Retinal Vein Occlusion in Rhesus Monkey. Curr Eye Res 2018; 43:526-533. [PMID: 29364731 DOI: 10.1080/02713683.2018.1426102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhipeng Yan
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Jianbin An
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Nalei Zhou
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| | - Jingxue Ma
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang Hebei Province, China
| |
Collapse
|
32
|
Laine I, Lindholm JM, Ylinen P, Tuuminen R. Intravitreal bevacizumab injections versus dexamethasone implant for treatment-naïve retinal vein occlusion related macular edema. Clin Ophthalmol 2017; 11:2107-2112. [PMID: 29225460 PMCID: PMC5708292 DOI: 10.2147/opth.s144688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose To compare the short-term effects of three monthly intravitreal bevacizumab (IVB) injections to single dexamethasone (DEX) implantation in treatment-naïve patients with cystoid macular edema (CME) secondary to branch (BRVO) and central retinal vein occlusion (CRVO). Design A retrospective single-center study. Subjects A total of 135 eyes of 135 patients with BRVO (n=83) and CRVO (n=52). Methods Changes in clinical parameters were recorded before treatment and at the first and third month after commencement of IVB (n=121) and DEX (n=14). Main outcome measures Central retinal thickness (CRT), intraocular pressure (IOP), and best-corrected visual acuity (BCVA). Results The baseline parameters were comparable between IVB and DEX groups. After the first month, CRT decreased by 131.3±42.9 μm in IVB and by 266.9±48.3 μm in DEX (mean ± SEM; p=0.047). IOP change was –0.29±0.39 mmHg in IVB and +3.70±2.34 mmHg in DEX (p=0.005). IOP elevation to ≥25 mmHg and ≥5 mmHg from the baseline was observed in two of the DEX- and in none of the IVB-treated eyes (p=0.010). After the third month, no differences regarding CRT and IOP were observed between the treatment modalities. Moreover, BCVA gain was comparable between IVB (0.37±0.05 logarithm of minimum angle of resolution [logMAR] units) and DEX (0.33±0.30 logMAR units) groups. Conclusion DEX was associated with faster resolution of CME, but had greater probability for short-term IOP elevation when compared to IVB. After the third month, treatments were comparably effective. Anatomical outcomes and adverse drug reactions of IVB versus DEX should be considered case specifically in patients having CME secondary to BRVO/CRVO.
Collapse
Affiliation(s)
- Ilkka Laine
- Helsinki Retina Research Group, University of Helsinki, Helsinki.,Unit of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland.,Department of Automation and Electrical Engineering, Aalto University, Helsinki, Finland
| | - Juha-Matti Lindholm
- Helsinki Retina Research Group, University of Helsinki, Helsinki.,Unit of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Petteri Ylinen
- Helsinki Retina Research Group, University of Helsinki, Helsinki.,Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki.,Unit of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland.,The Insurance Centre, Patient Insurance Centre, Helsinki, Finland
| |
Collapse
|
33
|
Advanced glycation endproducts link inflammatory cues to upregulation of galectin-1 in diabetic retinopathy. Sci Rep 2017; 7:16168. [PMID: 29170525 PMCID: PMC5700925 DOI: 10.1038/s41598-017-16499-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/14/2017] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) is an inflammatory and progressive vaso-occlusive disease resulting in angiogenesis. Galectin-1 is a hypoxia-induced angiogenic factor associated with cancer and proliferative DR. Here we reveal a significant upregulation of galectin-1 in eyes of DR patients along with progression of clinical stages beginning from the pre-ischemic, inflammatory stage with diabetic macular edema, but not in eyes with non-diabetic retinal vascular occlusions. As for its regulatory mechanism unrelated to hypoxia but selective to DR, in vitro galectin-1/LGALS1 expression was shown to increase after application to Müller glial cells with interleukin (IL)-1β, which was induced in monocyte-derived macrophages and microglial cells via toll-like receptor (TLR) 4 signaling stimulated by advanced glycation endproducts (AGE). In vivo inhibition of AGE generation with aminoguanidine, macrophage depletion with clodronate liposomes, and antibody-based blockade of Il-1β and Tlr4 attenuated diabetes-induced retinal Lgals1 expression in mice. Fibrovascular tissues from proliferative DR eyes were immunoreactive for AGE, TRL4 and IL-1β in macrophages, and IL-1β receptor-positive glial cells expressed galectin-1. Therefore, diabetes-induced retinal AGE accumulation was suggested to activate IL-1β-related inflammatory cues in macrophages followed by Müller cells, linking to galectin-1 upregulation in human DR with time. Our data highlight AGE-triggered inflammation as the DR-selective inducer of galectin-1.
Collapse
|
34
|
Guo F, Zhang J, Wang L, Zhao W, Yu J, Zheng S, Wang J. Identification of differentially expressed inflammatory factors in Wilms tumors and their association with patient outcomes. Oncol Lett 2017; 14:687-694. [PMID: 28693222 PMCID: PMC5494663 DOI: 10.3892/ol.2017.6261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to identify differentially expressed inflammatory factors observed in Wilms tumors (WT), and to investigate the association of these factors with clinical stage, pathological type, lymph node metastasis and vascular involvement of WT. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry was performed to screen differentially expressed proteins among WT and normal tissue pairs. Upregulated proteins in WT were separated and purified by solid phase extraction and Tricine SDS-PAGE, respectively. Following in-gel digestion, the peptide mixture was subjected to liquid chromatography mass spectrometry to identify proteins on the basis of their amino acid sequences. Immunohistochemistry was used to confirm the expression of differentially expressed inflammatory proteins. Of the proteins that were upregulated in WT, two proteins with mass/charge (m/z) ratio of 12,138 and 13,462 were identified as macrophage migration inhibitory factor (MIF) and C-X-C motif ligand 7 (CXCL7) chemokine, respectively. The expression of these two proteins was increased in WT compared with adjacent normal tissues and normal renal tissues, and increased with increasing clinical stage. In addition, their expression was significantly increased in patients with unfavorable pathological type, lymph node metastasis and vascular involvement compared with the groups with favorable type, and without lymph node metastasis or vascular involvement (P<0.05). Increased pro-inflammatory MIF and CXCL7 expression in WT is closely associated with the clinical stage, pathological type, lymph node metastasis and vascular involvement, and may represent biomarkers for the clinical diagnosis of WT.
Collapse
Affiliation(s)
- Fei Guo
- Department of Pediatric Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junjie Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Wang
- Department of Pediatric Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiekai Yu
- Institute of Cancer, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shu Zheng
- Institute of Cancer, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
35
|
Wroblewski JJ, Hu AY. Topical Squalamine 0.2% and Intravitreal Ranibizumab 0.5 mg as Combination Therapy for Macular Edema Due to Branch and Central Retinal Vein Occlusion: An Open-Label, Randomized Study. Ophthalmic Surg Lasers Imaging Retina 2017; 47:914-923. [PMID: 27759857 DOI: 10.3928/23258160-20161004-04] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate the effects of squalamine (OHR-102; Ohr Pharmaceuticals, New York, NY) and ranibizumab (Lucentis; Genentech, South San Francisco, CA) on macular edema (ME) secondary to retinal vein occlusion (RVO). PATIENTS AND METHODS Twenty consecutive, treatment-naïve patients with RVO-related ME received topical squalamine and intravitreal ranibizumab 0.5 mg for 10 weeks, followed by randomization to continue or discontinue squalamine. Groups received as-needed ranibizumab from weeks 2 through 34. The primary endpoint was the proportion of eyes gaining 15 or more Early Treatment Diabetic Retinopathy Study (ETDRS) letters at week 38. Safety and tolerability were assessed. Data from 13 treatment-naïve control eyes previously enrolled in three similar trials evaluating monthly ranibizumab 0.5 mg for RVO-related ME were included for comparison. RESULTS At baseline, mean best-corrected visual acuity (BCVA) measures were 55.6 ETDRS letters and 55.0 ETDRS letters in the squalamine and control groups, respectively. At week 38, BCVA improved 25.6 letters in the squalamine group; at month 9, BCVA improved 16.3 letters in the control group. This corresponds to a between-treatment-group difference of 9.2 letters. Squalamine and ranibizumab combination therapy was well-tolerated. CONCLUSIONS In patients with RVO-related ME, topical squalamine combined with early, as-needed ranibizumab appears to enhance visual recovery versus ranibizumab alone. Combination therapy appears safe and was well-tolerated. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:914-923.].
Collapse
|
36
|
Abstract
Purpose To demonstrate the relationship between ischemia and plasma fibrinogen and serum albumin levels in cases of retinal vein occlusion (RVO). Methods This study included 44 patients with central RVO (CRVO), 68 patients with branch RVO (BRVO), and 54 age- and sex-matched controls, for a total of 166 subjects. All of the subjects underwent full ophthalmologic examinations and complete physical examinations, including a detailed medical history and blood count, and biochemical parameters. Results The mean fibrinogen to albumin ratios were 92.5 ± 36.1 for the patients with CRVO, 84.5 ± 31.5 for the patients with BRVO, and 68.4 ± 12.2 for the control group. Overall, the patients with CRVO and patients with BRVO with ischemia had higher fibrinogen to albumin ratios and higher fibrinogen levels. Moreover, significant positive correlations were found between ischemia and the fibrinogen to albumin ratio (r = 0.732, p = 0.001) and the fibrinogen level (r = 0.669, p = 0.001). Conclusions The fibrinogen to albumin ratio is significantly associated with ischemic RVO. Instead of complicated and invasive methods, such as a retinal angiogram, the fibrinogen to albumin ratio could be a useful initial diagnostic test to predict ischemia in RVO.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This article summarizes recent findings pertaining to advancements in the treatment of glaucomas secondary to vascular occlusive disease to maximize visual outcomes. RECENT FINDINGS Retinal ischemia leads to a local increase in transcription of proteins responsible for aberrant angiogenesis and subsequent neovascular glaucoma. Antivascular endothelial growth factor (VEGF) therapy is helpful in the management of this condition. Although bevacizumab and ranibizumab offer relatively short-term effects, preliminary studies suggest that aflibercept may allow for longer term treatment. Preoperative anti-VEGF injection therapy improves outcomes after trabeculectomy and glaucoma drainage implant surgeries. The treatments for vascular occlusive disease may lead to intraocular pressure elevation and subsequent glaucoma. Aflibercept appears to be a safer agent in this regard. SUMMARY Prompt diagnosis and management of glaucomas associated with vascular occlusive disease are required to allow for the best possible outcome. Novel anti-VEGF agents, particularly aflibercept, should be strongly considered in the management of these conditions.
Collapse
|
38
|
Effect of Guibi-Tang, a Traditional Herbal Formula, on Retinal Neovascularization in a Mouse Model of Proliferative Retinopathy. Int J Mol Sci 2015; 16:29900-10. [PMID: 26694358 PMCID: PMC4691154 DOI: 10.3390/ijms161226211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022] Open
Abstract
Ocular pathologic angiogenesis is an important causative risk factor of blindness in retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular macular degeneration. Guibi-tang (GBT) is a frequently used oriental herbal formula in East Asian countries, and is also called Qui-pi-tang in Chinese and Kihi-To in Japanese. In the present study, we investigated the preventive effect of GBT on retinal pathogenic neovascularization in a mouse model of oxygen-induced retinopathy (OIR). C57BL/6 mice were exposed to 75% hyperoxia for five days on postnatal day 7 (P7). The mice were then exposed to room air from P12 to P17 to induce ischemic proliferative retinopathy. GBT (50 or 100 mg/kg/day) was intraperitoneally administered daily for five days (from P12 to P16). On P17, Retinal neovascularization was measured on P17, and the expression levels of 55 angiogenesis-related factors were analyzed using protein arrays. GBT significantly decreased retinal pathogenic angiogenesis in OIR mice, and protein arrays revealed that GBT decreased PAI-1 protein expression levels. Quantitative real-time PCR revealed that GBT reduced vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and plasminogen activator inhibitor 1 (PAI-1) mRNA levels in OIR mice. GBT promotes potent inhibitory activity for retinal neovascularization by decreasing VEGF, FGF2, and PAI-1 levels.
Collapse
|
39
|
Cinidium officinale and its Bioactive Compound, Butylidenephthalide, Inhibit Laser-Induced Choroidal Neovascularization in a Rat Model. Molecules 2015; 20:20699-708. [PMID: 26610445 PMCID: PMC6332384 DOI: 10.3390/molecules201119728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
Choroidal neovascularization (CNV) is a common pathology in age-related macular degeneration. In this study, we evaluated in a rat model the effect of an extract of Cinidium officinale Makino and its bioactive compound, butylidenephthalide, on laser-induced CNV. Experimental CNV was induced in Long-Evans rats by laser photocoagulation. C. officinale extract (COE) and butylidenephthalide was intraperitoneally injected once per day for ten days after laser photocoagulation. Choroidal flat mounts were prepared to measure CNV areas and macrophage infiltration. We used a protein array to evaluate the expression levels of angiogenic factors. The CNV area and macrophage infiltration in COE-treated rats were significantly lower than in vehicle-treated rats. COE decreased the expression levels of IGFBP-1, MCP-1, PAI-1, and VEGF. Additionally, butylidenephthalide also inhibited the laser-induced CNV formation and macrophage infiltration and down-regulated the expression of IGFBP-1, MCP-1 and VEGF. These results suggest that COE exerts anti-angiogenic effects on laser-induced CNV by inhibiting the expression of IGFBP-1, MCP-1, and VEGF, indicating that anti-angiogenic activities of COE may be in part due to its bioactive compound, butylidenephthalide.
Collapse
|
40
|
Lenox AR, Bhootada Y, Gorbatyuk O, Fullard R, Gorbatyuk M. Unfolded protein response is activated in aged retinas. Neurosci Lett 2015; 609:30-5. [PMID: 26467812 DOI: 10.1016/j.neulet.2015.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
An unfolded protein response (UPR) in addition to oxidative stress and the inflammatory response is known to be activated in age-related ocular disorders, such as macular degeneration, diabetic retinopathy, glaucoma, and cataracts. Therefore, we aimed to investigate whether healthy aged retinas display UPR hallmarks, in order to establish a baseline for the activated UPR markers for age-related ocular diseases. Using western blotting, we determined that the hallmarks of the UPR PERK arm, phosphorylated (p) eIF2a, ATF4, and GADD34, were significantly altered in aged vs. young rat retinas. The cleaved pATF6 (50) and CHOP proteins were dramatically upregulated in the aged rodent retinas, indicating the activation of the ATF6 UPR arm. The UPR activation was associated with a drop in rhodopsin expression and in the NRF2 and HO1 levels, suggesting a decline in the anti-oxidant defense in aged retinas. Moreover, we observed down-regulation of anti-inflammatory IL-10 and IL-13 and upregulation of pro-inflammatory RANTES in the healthy aged retinas, as measured using the Bio-plex assay. Our results suggest that cellular homeostasis in normal aged retinas is compromised, resulting in the concomitant activation of the UPR, oxidative stress, and inflammatory signaling. This knowledge brings us closer to understanding the cellular mechanisms of the age-related retinopathies and ocular disorders characterized by an ongoing UPR, and highlight the UPR signaling molecules that should be validated as potential therapeutic targets.
Collapse
Affiliation(s)
- Austin R Lenox
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Yogesh Bhootada
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Oleg Gorbatyuk
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Roderick Fullard
- University of Alabama at Birmingham, Department of Vision Sciences, United States
| | - Marina Gorbatyuk
- University of Alabama at Birmingham, Department of Vision Sciences, United States.
| |
Collapse
|