1
|
Degrelle SA, Liu F, Laloe D, Richard C, Le Bourhis D, Rossignol MN, Hue I. Understanding bovine embryo elongation: a transcriptomic study of trophoblastic vesicles. Front Physiol 2024; 15:1331098. [PMID: 38348224 PMCID: PMC10859461 DOI: 10.3389/fphys.2024.1331098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Background: During the process of elongation, the embryo increases in size within the uterus, while the extra-embryonic tissues (EETs) develop and differentiate in preparation for implantation. As it grows, the ovoid embryo transforms into a tubular form first and then a filamentous form. This process is directed by numerous genes and pathways, the expression of which may be altered in the case of developmental irregularities such as when the conceptus is shorter than expected or when the embryo develops after splitting. In bovines, efforts to understand the molecular basis of elongation have employed trophoblastic vesicles (TVs)-short tubular EET pieces that lack an embryo-which also elongate in vivo. To date, however, we lack molecular analyses of TVs at the ovoid or filamentous stages that might shed light on the expression changes involved. Methods: Following in vivo development, we collected bovine conceptuses from the ovoid (D12) to filamentous stages (D18), sectioned them into small pieces with or without their embryonic disc (ED), and then, transferred them to a receptive bovine uterus to assess their elongation abilities. We also grew spherical blastocysts in vitro up to D8 and subjected them to the same treatment. Then, we assessed the differences in gene expression between different samples and fully elongating controls at different stages of elongation using a bovine array (10 K) and an extended qPCR array comprising 224 genes across 24 pathways. Results: In vivo, TVs elongated more or less depending on the stage at which they had been created and the time spent in utero. Their daily elongation rates differed from control EET, with the rates of TVs sometimes resembling those of earlier-stage EET. Overall, the molecular signatures of TVs followed a similar developmental trajectory as intact EET from D12-D18. However, within each stage, TVs and intact EET displayed distinct expression dynamics, some of which were shared with other short epithelial models. Conclusion: Differences between TVs and EET likely result from multiple factors, including a reduction in the length and signaling capabilities of TVs, delayed elongation from inadequate uterine signals, and modified crosstalk between the conceptus and the uterus. These findings confirm that close coordination between uterine, embryonic, and extra-embryonic tissues is required to orchestrate proper elongation and, based on the partial differentiation observed, raise questions about the presence/absence of certain developmental cues or even their asynchronies.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
- Inovarion, Paris, France
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Denis Laloe
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, Jouy en Josas, France
| | - Christophe Richard
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
| | | | - Marie-Noëlle Rossignol
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, Jouy en Josas, France
| | - Isabelle Hue
- Université Paris-Saclay, Université Versailles Saint-Quentin en Yvelines, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Biologie de la Reproduction, Environnement, Epigénétique et Développment, Jouy en Josas, France
| |
Collapse
|
2
|
Alberio R, Kobayashi T, Surani MA. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 2021; 16:1078-1092. [PMID: 33979595 PMCID: PMC8185373 DOI: 10.1016/j.stemcr.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Toshihiro Kobayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
3
|
Tríbulo P, Rabaglino MB, Bo MB, Carvalheira LDR, Bishop JV, Hansen TR, Hansen PJ. Dickkopf-related protein 1 is a progestomedin acting on the bovine embryo during the morula-to-blastocyst transition to program trophoblast elongation. Sci Rep 2019; 9:11816. [PMID: 31413296 PMCID: PMC6694114 DOI: 10.1038/s41598-019-48374-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Progesterone regulates the endometrium to support pregnancy establishment and maintenance. In the ruminant, one action of progesterone early in pregnancy is to alter embryonic development and hasten the process of trophoblast elongation around day 14–15 of pregnancy, which is required for maternal recognition of pregnancy. Here we demonstrate that the WNT antagonist DKK1, whose expression is increased by progesterone treatment, can act on the bovine embryo during day 5 to 7.5 of development (the morula to blastocyst stage) to promote embryonic elongation on day 15 of pregnancy. Embryos were produced in vitro and exposed to 0 or 100 ng/ml recombinant human DKK1 from day 5 to 7.5 of culture. Blastocysts were transferred into synchronized recipient cows on day 7.5 (n = 23 for control and 17 for DKK1). On day 15, cows were slaughtered and embryos recovered by flushing the uterus. Embryo recovery was n = 11 for controls (48% recovery) and n = 11 for DKK1 (65% recovery). Except for two DKK1 embryos, all embryos were filamentous. Treatment with DKK1 increased (P = 0.007) the length of filamentous embryos from 43.9 mm to 117.4 mm and the intrauterine content of the maternal recognition of pregnancy signal IFNT (P = 0.01) from 4.9 µg to 16.6 µg. Determination of differentially expressed genes (DEG), using the R environment, revealed 473 DEG at p < 0.05 but none at FDR < 0.05, suggesting that DKK1 did not strongly modify the embryo transcriptome at the time it was measured. However, samples clustered apart in a multidimensional scaling analyisis. Weighted gene co-expression analysis of the transcriptome of filamentous embryos revealed a subset of genes that were related to embryo length, with identification of a significant module of genes in the DKK1 group only. Thus, several of the differences between DKK1 and control groups in gene expression were due to differences in embryo length. In conclusion, DKK1 can act on the morula-to-blastocyst stage embryo to modify subsequent trophoblast elongation. Higher pregnancy rates associated with transfer of DKK1-treated embryos may be due in part to enhancements of trophoblast growth and antiluteolytic signaling through IFNT secretion. Given that progesterone can regulate both timing of trophoblast elongation and DKK1 expression, DKK1 may be a mediator of progesterone effects on embryonic development.
Collapse
Affiliation(s)
- Paula Tríbulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA
| | | | | | - Luciano de R Carvalheira
- Departamento de Clínica e Cirugia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jeanette V Bishop
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523-1683, USA
| | - Thomas R Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523-1683, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
4
|
High Proliferative Placenta-Derived Multipotent Cells Express Cytokeratin 7 at Low Level. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2098749. [PMID: 31392209 PMCID: PMC6662495 DOI: 10.1155/2019/2098749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to investigate the immunophenotypes and gene expression profile of high proliferative placenta-derived multipotent cells (PDMCs) population at different stages of culture. We demonstrated that the colonies resulting from single cells were either positive or negative for CK7, whereas only PDMC clones with weak CK7 expression (CK7low-clones) were highly proliferative. Interestingly, vimentin positive (Vim+) placental stromal mesenchymal cells did not express CK7 in situ, but double CK7+Vim+ cells detection in tissue explants and explants outgrowth indicated CK7 inducible expression in vitro. PCNA presence in CK7+Vim+ cells during placental explants culturing confirmed belonging of these cells to proliferative subpopulation. Transcription factors CDX2 and EOMES were expressed in both CK7low-clones and subset of stromal mesenchymal cells of first-trimester placental tissue in situ. Meanwhile, CK7low -clones and stromal mesenchymal cells of full-term placental tissue in situ expressed ERG heterogeneously. SPP1, COL2A1, and PPARG2 mesodermal-related genes expression by CK7low-clones additionally confirms their mesenchymal origin. Inherent stem cell-related gene expression (IFTM3, POU5F1, and VASA) in CK7low-clones might indicate their enrichment for progenitors. Finally, in CK7low-clones we observed expression of such trophoblast-associated genes as CGB types I and II, fusogenic ERVW-1, GCM1, and GATA3. Thus, our results indicate that PDMCs acquired the representative immunophenotype signature under culture conditions.
Collapse
|
5
|
Pillai VV, Siqueira LG, Das M, Kei TG, Tu LN, Herren AW, Phinney BS, Cheong SH, Hansen PJ, Selvaraj V. Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biol Open 2019; 8:bio037937. [PMID: 30952696 PMCID: PMC6550082 DOI: 10.1242/bio.037937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Luiz G Siqueira
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- Brazilian Agricultural Research Corporation - Embrapa Gado de Leite, Juiz de Fora, Minas Gerais 36038-330, Brazil
| | - Moubani Das
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anthony W Herren
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Brett S Phinney
- Genome Center, Proteomics Core Facility, University of California, Davis, CA 95616, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Svitina H, Kyryk V, Skrypkina I, Kuchma M, Bukreieva T, Areshkov P, Shablii Y, Denis Y, Klymenko P, Garmanchuk L, Ostapchenko L, Lobintseva G, Shablii V. Placenta-derived multipotent cells have no effect on the size and number of DMH-induced colon tumors in rats. Exp Ther Med 2017; 14:2135-2147. [PMID: 28962134 PMCID: PMC5609206 DOI: 10.3892/etm.2017.4792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Transplantation of placenta-derived multipotent cells (PDMCs) is a promising approach for cell therapy to treat inflammation-associated colon diseases. However, the effect of PDMCs on colon cancer cells remains unknown. The aim of the present study was to characterize PDMCs obtained from human (hPDMCs) and rat (rPDMCs) placentas and to evaluate their impact on colon cancer progression in rats. PDMCs were obtained from human and rat placentas by tissue explant culturing. Stemness- and trophoblast-related gene expression was studied using reverse transcription-polymerase chain reaction (RT-PCR), and surface markers and intracellular proteins were detected using flow cytometry and immunofluorescence, respectively. Experimental colon carcinogenesis was induced in male albino Wistar rats by injecting 20 mg/kg dimethylhydrazine (DMH) once a week for 20 consecutive weeks. The administration of rPDMCs and hPDMC was performed at week 22 after the initial DMH-injection. All animals were sacrificed through carbon dioxide asphyxiation at week 5 after cell transplantation. The number and size of each tumor lesion was calculated. The type of tumor was determined by standard histological methods. Cell engraftment was determined by PCR and immunofluorescence. Results demonstrated that rPDMCs possessed the immunophenotype and differentiation potential inherent in MSCs; however, hPDMCs exhibited a lower expression of cluster of differentiation 44 and did not express trophoblast-associated genes. The data of the present study indicated that PDMCs may engraft in different tissues but do not significantly affect DMH-induced tumor growth during short-term observations.
Collapse
Affiliation(s)
- Hanna Svitina
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Vitaliy Kyryk
- Department of Cell and Tissue Technologies, State Institute of Genetics and Regenerative Medicine of Academy of Medicine of Ukraine, 04114 Kyiv, Ukraine
| | - Inessa Skrypkina
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Maria Kuchma
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Tetiana Bukreieva
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Pavlo Areshkov
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Functional Genomics, Institute of Molecular Biology and Genetics of National Academy of Science of Ukraine, 03680 Kyiv, Ukraine
| | - Yulia Shablii
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Yevheniy Denis
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Pavlo Klymenko
- Department of Cell and Tissue Technologies, State Institute of Genetics and Regenerative Medicine of Academy of Medicine of Ukraine, 04114 Kyiv, Ukraine
| | - Liudmyla Garmanchuk
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Liudmyla Ostapchenko
- Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Galina Lobintseva
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine
| | - Volodymyr Shablii
- Cell Culture Laboratory, Cryobank, Institute of Cell Therapy, 03680 Kyiv, Ukraine.,Department of Biochemistry, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| |
Collapse
|
7
|
Sandra O, Charpigny G, Galio L, Hue I. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions. Annu Rev Anim Biosci 2016; 5:205-228. [PMID: 27959670 DOI: 10.1146/annurev-animal-022516-022900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| |
Collapse
|
8
|
Sauvegarde C, Paul D, Bridoux L, Jouneau A, Degrelle S, Hue I, Rezsohazy R, Donnay I. Dynamic Pattern of HOXB9 Protein Localization during Oocyte Maturation and Early Embryonic Development in Mammals. PLoS One 2016; 11:e0165898. [PMID: 27798681 PMCID: PMC5087947 DOI: 10.1371/journal.pone.0165898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/01/2016] [Indexed: 02/06/2023] Open
Abstract
Background We previously showed that the homeodomain transcription factor HOXB9 is expressed in mammalian oocytes and early embryos. However, a systematic and exhaustive study of the localization of the HOXB9 protein, and HOX proteins in general, during mammalian early embryonic development has so far never been performed. Results The distribution of HOXB9 proteins in oocytes and the early embryo was characterized by immunofluorescence from the immature oocyte stage to the peri-gastrulation period in both the mouse and the bovine. HOXB9 was detected at all studied stages with a dynamic expression pattern. Its distribution was well conserved between the two species until the blastocyst stage and was mainly nuclear. From that stage on, trophoblastic cells always showed a strong nuclear staining, while the inner cell mass and the derived cell lines showed important dynamic variations both in staining intensity and in intra-cellular localization. Indeed, HOXB9 appeared to be progressively downregulated in epiblast cells and only reappeared after gastrulation had well progressed. The protein was also detected in the primitive endoderm and its derivatives with a distinctive presence in apical vacuoles of mouse visceral endoderm cells. Conclusions Together, these results could suggest the existence of unsuspected functions for HOXB9 during early embryonic development in mammals.
Collapse
Affiliation(s)
- Caroline Sauvegarde
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Delphine Paul
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Séverine Degrelle
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S1139, U767, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUp Foundation, Paris, France
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - René Rezsohazy
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabelle Donnay
- Biologie Moléculaire et Cellulaire Animale (AMCB), Institut des Sciences de la Vie (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
9
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
10
|
Transcriptome analysis of primary bovine extra-embryonic cultured cells. GENOMICS DATA 2015; 6:110-1. [PMID: 26697347 PMCID: PMC4664713 DOI: 10.1016/j.gdata.2015.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/15/2015] [Indexed: 12/03/2022]
Abstract
The dataset described in this article pertains to the article by Hue et al. (2015) entitled “Primary bovine extra-embryonic cultured cells: A new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation” [1]. In mammals, extra-embryonic tissues are essential to support not only embryo patterning but also embryo survival, especially in late implanting species. These tissues are composed of three cell types: trophoblast (bTCs), endoderm (bXECs) and mesoderm (bXMCs). Until now, it is unclear how these cells interact. In this study, we have established primary cell cultures of extra-embryonic tissues from bovine embryos collected at day-18 after artificial insemination. We used our homemade bovine 10K array (GPL7417) to analyze the gene expression profiles of these primary extra-embryonic cultured cells compared to the corresponding cells from in vivo micro-dissected embryos. Here, we described the experimental design, the isolation of bovine extra-embryonic cell types as well as the microarray expression analysis. The dataset has been deposited in Gene Expression Omnibus (GEO) (accession number GSE52967). Finally, these primary cell cultures were a powerful tool to start studying their cellular properties, and will further allow in vitro studies on cellular interactions among extra-embryonic tissues, and potentially between extra-embryonic vs embryonic tissues.
Collapse
|