1
|
Perrotti E, L'Episcopia M, Menegon M, Soares IS, Rosas-Aguirre A, Speybroeck N, LLanos-Cuentas A, Menard D, Ferreira MU, Severini C. Reduced polymorphism of Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2. Parasit Vectors 2023; 16:238. [PMID: 37461081 DOI: 10.1186/s13071-023-05851-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND ETRAMP11.2 (PVX_003565) is a well-characterized protein with antigenic potential. It is considered to be a serological marker for diagnostic tools, and it has been suggested as a potential vaccine candidate. Despite its immunological relevance, the polymorphism of the P. vivax ETRAMP11.2 gene (pvetramp11.2) remains undefined. The genetic variability of an antigen may limit the effectiveness of its application as a serological surveillance tool and in vaccine development and, therefore, the aim of this study was to investigate the genetic diversity of pvetramp11.2 in parasite populations from Amazonian regions and worldwide. We also evaluated amino acid polymorphism on predicted B-cell epitopes. The low variability of the sequence encoding PvETRAMP11.2 protein suggests that it would be a suitable marker in prospective serodiagnostic assays for surveillance strategies or in vaccine design against P. vivax malaria. METHODS The pvetramp11.2 of P. vivax isolates collected from Brazil (n = 68) and Peru (n = 36) were sequenced and analyzed to assess nucleotide polymorphisms, allele distributions, population differentiation, genetic diversity and signature of selection. In addition, sequences (n = 104) of seven populations from different geographical regions were retrieved from the PlasmoDB database and included in the analysis to study the worldwide allele distribution. Potential linear B-cell epitopes and their polymorphisms were also explored. RESULTS The multiple alignments of 208 pvetramp11.2 sequences revealed a low polymorphism and a marked geographical variation in allele diversity. Seven polymorphic sites and 11 alleles were identified. All of the alleles were detected in isolates from the Latin American region and five alleles were detected in isolates from the Southeast Asia/Papua New Guinea (SEA/PNG) region. Three alleles were shared by all Latin American populations (H1, H6 and H7). The H1 allele (reference allele from Salvador-1 strain), which was absent in the SEA/PNG populations, was the most represented allele in populations from Brazil (54%) and was also detected at high frequencies in populations from all other Latin America countries (range: 13.0% to 33.3%). The H2 allele was the major allele in SEA/PNG populations, but was poorly represented in Latin America populations (only in Brazil: 7.3%). Plasmodium vivax populations from Latin America showed a marked inter-population genetic differentiation (fixation index [Fst]) in contrast to SEA/PNG populations. Codon bias measures (effective number of codons [ENC] and Codon bias index [CBI]) indicated preferential use of synonymous codons, suggesting selective pressure at the translation level. Only three amino acid substitutions, located in the C-terminus, were detected. Linear B-cell epitope mapping predicted two epitopes in the Sal-1 PvETRAMP11.2 protein, one of which was fully conserved in all of the parasite populations analyzed. CONCLUSIONS We provide an overview of the allele distribution and genetic differentiation of ETRAMP11.2 antigen in P. vivax populations from different endemic areas of the world. The reduced polymorphism and the high degree of protein conservation supports the application of PvETRAMP11.2 protein as a reliable antigen for application in serological assays or vaccine design. Our findings provide useful information that can be used to inform future study designs.
Collapse
Affiliation(s)
- Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| | | | - Michela Menegon
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro LLanos-Cuentas
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Didier Menard
- Laboratoire de Parasitologie Et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Parasitologie Et Pathologie Tropicale, Université de Strasbourg, Strasbourg, France
- Malaria Genetics and Resistance Unit-INSERM U1201, Institut Pasteur, Paris, France
| | - Marcelo Urbano Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Muh F, Kim N, Nyunt MH, Firdaus ER, Han JH, Hoque MR, Lee SK, Park JH, Moon RW, Lau YL, Kaneko O, Han ET. Cross-species reactivity of antibodies against Plasmodium vivax blood-stage antigens to Plasmodium knowlesi. PLoS Negl Trop Dis 2020; 14:e0008323. [PMID: 32559186 PMCID: PMC7304578 DOI: 10.1371/journal.pntd.0008323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas. In recent years, malaria initiatives have increasingly shifted focus from achieving malaria control to achieving malaria elimination. However, the interventions used are leading to drastic changes in the proportions of different Plasmodium species causing clinical infection, particularly within Southeast Asia. Little is known about how these different parasite species interact/compete in nature or whether exposure to one species could cause some level of protection against another. We examined cross-reactive antibody responses to key parasite proteins with roles in red blood cell invasion and identified novel cross-species reactivity among the closest of malaria affecting the human population (P. vivax and P. knowlesi). This comprehensive analysis provides evidence that cross-reactive immunity could play an important role in areas where species distributions are perturbed by malaria control measures, and future efforts to identify the specific cross-reactive epitopes involved would be invaluable both to our understanding of malaria immunity and vaccine development.
Collapse
Affiliation(s)
- Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Namhyeok Kim
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | - Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Mohammad Rafiul Hoque
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
3
|
Lee SK, Han JH, Park JH, Ha KS, Park WS, Hong SH, Na S, Cheng Y, Han ET. Evaluation of antibody responses to the early transcribed membrane protein family in Plasmodium vivax. Parasit Vectors 2019; 12:594. [PMID: 31856917 PMCID: PMC6921578 DOI: 10.1186/s13071-019-3846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria parasites form intracellular membranes that separate the parasite from the internal space of erythrocytes, and membrane proteins from the parasites are exported to the host via the membrane. In our previous study, Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2, an intracellular membrane protein that is highly expressed in blood-stage parasites, was characterized as a highly immunogenic protein in P. vivax malaria patients. However, the other PvETRAMP family proteins have not yet been investigated. In this study, PvETRAMPs were expressed and evaluated to determine their immunological profiles. Methods The protein structure and amino acid alignment were carried out using bioinformatics analysis software. A total of six PvETRAMP family proteins were successfully expressed and purified using a wheat germ cell free protein expression system and the purified proteins were used for protein microarray and immunization of mice. The localization of the protein was determined with serum against PvETRAMP4. IgG subclasses were assessed from the immunized mice. Results In silico analysis showed that P. vivax exhibits nine genes encoding the ETRAMP family. The ETRAMP family proteins are relatively small molecules with conserved structural features. A total of 6 recombinant ETRAMP proteins were successfully expressed and purified. The serum positivity of P. vivax malaria patients and healthy individuals was evaluated using a protein microarray method. Among the PvETRAMPs, ETRAMP4 showed the highest positivity rate of 62%, comparable to that of PvETRAMP11.2, which served as the positive control, and a typical export pattern of PvETRAMP4 was observed in the P. vivax parasite. The assessment of IgG subclasses in mice immunized with PvETRAMP4 showed high levels of IgG1 and IgG2b. PvETRAMP family proteins were identified and characterized as serological markers. Conclusions The relatively high antibody responses to PvETRAMP4 as well as the specific IgG subclasses observed in immunized mice suggest that the ETRAMP family is immunogenic in pathogens and can be used as a protein marker and for vaccine development.![]()
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
4
|
López C, Yepes-Pérez Y, Díaz-Arévalo D, Patarroyo ME, Patarroyo MA. The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 ( PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile. Front Cell Infect Microbiol 2018; 8:156. [PMID: 29868512 PMCID: PMC5962679 DOI: 10.3389/fcimb.2018.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria caused by Plasmodium vivax is a neglected disease which is responsible for the highest morbidity in both Americas and Asia. Despite continuous public health efforts to prevent malarial infection, an effective antimalarial vaccine is still urgently needed. P. vivax vaccine development involves analyzing naturally-infected patients' immune response to the specific proteins involved in red blood cell invasion. The P. vivax rhoptry neck protein 2 (PvRON2) is a highly conserved protein which is expressed in late schizont rhoptries; it interacts directly with AMA-1 and might be involved in moving-junction formation. Bioinformatics approaches were used here to select B- and T-cell epitopes. Eleven high-affinity binding peptides were selected using the NetMHCIIpan-3.0 in silico prediction tool; their in vitro binding to HLA-DRB1*0401, HLA-DRB1*0701, HLA-DRB1*1101 or HLA-DRB1*1302 was experimentally assessed. Four peptides (39152 (HLA-DRB1*04 and 11), 39047 (HLA-DRB1*07), 39154 (HLADRB1*13) and universal peptide 39153) evoked a naturally-acquired T-cell immune response in P. vivax-exposed individuals from two endemic areas in Colombia. All four peptides had an SI greater than 2 in proliferation assays; however, only peptides 39154 and 39153 had significant differences compared to the control group. Peptide 39047 was able to significantly stimulate TNF and IL-10 production while 39154 stimulated TNF production. Allele-specific peptides (but not the universal one) were able to stimulate IL-6 production; however, none induced IFN-γ production. The Bepipred 1.0 tool was used for selecting four B-cell epitopes in silico regarding humoral response. Peptide 39041 was the only one recognized by P. vivax-exposed individuals' sera and had significant differences concerning IgG subclasses; an IgG2 > IgG4 profile was observed for this peptide, agreeing with a protection-inducing role against P. falciparum and P. vivax as previously described for antigens such as RESA and MSP2. The bioinformatics results and in vitro evaluation reported here highlighted two T-cell epitopes (39047 and 39154) being recognized by memory cells and a B-cell epitope (39041) identified by P. vivax-exposed individuals' sera which could be used as potential candidates when designing a subunit-based vaccine.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,MSc Program in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales, Bogotá, Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|